PONTIFICIA UNIVERSIDAD CATÓLICA DEL ECUADOR

FACULTAD DE MEDICINA

Validación de la escala de CRIES para la valoración del dolor asociado a procedimientos invasivos en los recién nacidos en el servicio de neonatología del Hospital Gineco Obstétrico Isidro Ayora durante el periodo de Junio a Septiembre del 2015

DISERTACIÓN PREVIA A LA OBTENCIÓN DEL TÍTULO DE MÉDICO CIRUJANO

 Autoras: María Daniela Grijalva Játiva, Bárbara María Helbling Woolfson

 Directora: Dra. Catalina Verdesoto

 Asesor Metodológico: Dr. Luis Escobar

 Quito 2015
AGRADECIMIENTOS

En primer lugar queremos agradecer a nuestros padres que nos han apoyado durante este largo camino y que a pesar de las dificultades nunca dejaron de creer en nosotras.

A nuestros amigos que han sido cómplices de esta travesía y motivo de incomparables risas e historias que contar.

A la Dra. Catalina Verdesoto por su paciencia y ayuda en la elaboración de este trabajo.

Al Dr. Luis Escobar por brindarnos su tiempo y ser nuestra guía en este trabajo; a su libro “Investigación científica para médicos” que fue de gran utilidad en el aspecto estadístico.

Dra. Nelly Báez, Dr. Milton Páez, Dr. William Gordón, Dr. Luis Mejía y Dra. Linda Arturo por su apoyo científico y gran amabilidad.

A todo el personal del área de neonatología del HGOIA que estuvo dispuesto a colaborar de una u otra forma en esta investigación.

A Mario Cuvero por su aporte técnico, su gran humor y apoyo.

A María Eugenia Játiva y Raúl de la Torre por su colaboración para perfeccionar este trabajo.
DEDICATORIAS

Bárbara:

A mi hermano, que me introdujo desde pequeña al mundo de la Medicina. Ha sido mi inspiración y mi fuerza para alcanzar esta meta.

A mis padres, de sangre y de corazón, por creer en mí y ser mi apoyo incondicional.

A mi abuela, por haberme enseñado que las adversidades de la vida no son obstáculos, son motivaciones. Que su sabiduría y bondad me guíen en esta nueva etapa. Aspiro ser tan grande como ella.

A todos los que me apoyaron de una u otra forma a lo largo de mi carrera. Sé que no es fácil convivir con un(a) estudiante de Medicina.

Daniela:

A mis padres por enseñarme el valor del trabajo duro, de la paciencia y la dedicación, por ser siempre mi luz, mi todo.

A mi abuela Olga por ser la gran mujer que fue, por todas las lecciones de vida que nos dejó, por ser mi inspiración.

A mi hermano por darme su apoyo y darme fuerza en todo momento.

A mis abuelos por el amor tan dulce y el apoyo que siempre me han brindado.

A mis hermanas siempre incondicionales, Daya y Kari, por haber recorrido este duro camino a mi lado, por todas las risas, por todo lo que hemos vivido juntas y por lo que nos faltan por vivir.

Y a mi amiga y compañera de tesis, Bárbara, por la gran amistad que hemos formado y por el logro que hemos construido juntas.
CONTENIDO

AGRADECIMIENTOS ... 1

INDICE DE TABLAS .. 5

INDICE DE FIGURAS .. 8

ACRÓNICOS .. 9

GLOSARIO .. 10

RESUMEN .. 11

ABSTRACT ... 12

CAPÍTULO I. INTRODUCCIÓN .. 13

2.1 Definición ... 16

2.2 Incidencia y epidemiología .. 16

2.3 Clasificación del dolor ... 19

2.4 Bases neurofisiológicas del dolor .. 21

2.5 Neurofisiología del dolor neonatal .. 22

2.6 Factores que intervienen en la percepción del dolor .. 25

2.7 Indicadores de dolor en el neonato .. 33

2.8 Escalas para la valoración del dolor ... 35

2.9 Diagnóstico diferencial: expresión y llanto ... 38

2.10 Impacto del dolor a corto y largo plazo ... 40

2.11 Analgesia ... 44

CAPÍTULO III. MATERIALES Y MÉTODOS ... 52

3.1 Justificación ... 52

3.2 Problema de investigación .. 54

3.3 Objetivos ... 54

3.4 Hipótesis ... 55

3.5 Operacionalización de variables ... 55

3.6 Tipo de estudio ... 58

3.7 Población y muestra ... 58

3.8 Aspectos bioéticos .. 62

3.9 Limitaciones y delimitaciones .. 63

3.10 Recursos .. 64
CAPÍTULO IV. RESULTADOS ..65
 4.1 Análisis univarial ..65
 4.2 Análisis de variables cruzadas ..74
CAPÍTULO V. DISCUSION ..89
CAPÍTULO VI. CONCLUSIONES Y RECOMENDACIONES94
 6.1. Conclusiones ..94
 6.2 Recomendaciones ...95
REFERENCIAS BIBLIOGRÁFICAS ...96
ANEXOS ..101
 Anexo 1. Consentimiento Informado ..101
 Anexo 2. Hoja de recolección de datos ...102
 Anexo 3. Escalas para valoración de dolor neonatal103
INDICE DE TABLAS

Tabla 1. Clasificación del dolor ...20
Tabla 2. Escala de CRIES ...37
Tabla 3. Escala de PIPP ...38
Tabla 4. Respuesta fisiológica aguda ante estímulos dolorosos42
Tabla 5. Resumen de los factores relacionados con el impacto del dolor neonatal a largo plazo...44
Tabla 6. Esquema paso a paso para el tratamiento del dolor agudo en neonatos ...45
Tabla 7. Resumen de las principales medidas no farmacológicas47
Tabla 8. Dosis y posología de los analgésicos y sedantes más utilizados en neonatología...50
Tabla 9. Operacionalización de variables ...55
Tabla 10. Cálculo del tamaño de la muestra ...60
Tabla 11. Valoración del dolor mediante la escala de CRIES en el postquirúrgico ...69
Tabla 12. Valoración del dolor mediante la escala de PIPP en períodos postquirúrgicos ...70
Tabla 13. Valoración del dolor mediante la escala de CRIES durante el procedimiento en pacientes no quirúrgicos ..70
Tabla 14. Valoración del dolor mediante la escala de PIPP durante el procedimiento en pacientes no quirúrgicos ..71
Tabla 15. Tabla 2x2 Prueba diagnóstica (Escala de CRIES) con Estándar de Oro (Escala de PIPP) ...74
Tabla 16. Propiedades métricas de la escala de CRIES en los pacientes quirúrgicos y no quirúrgicos...74
Tabla 17. Tabla 2x2 Prueba diagnóstica (Escala de CRIES) con Estándar de Oro (Escala de PIPP) en pacientes no quirúrgicos ..75
Tabla 18. Propiedades métricas de la escala de CRIES en los pacientes no quirúrgicos...75
Tabla 19. Tabla 2x2 Prueba diagnóstica (Escala de CRIES) con Estándar de Oro (Escala de PIPP) en pacientes quirúrgicos ..76
Tabla 20. Propiedades métricas de la escala de CRIES en los pacientes quirúrgicos ...76
Tabla 21. Comparación de las capacidades métricas de la escala de CRIES en los grupos estudiados

Tabla 22. Relación de la intensidad de dolor valorada con la escala de CRIES y el Estándar de Oro (escala de PIPP) en todos los pacientes estudiados

Tabla 23. Diferencia de la intensidad de dolor entre la escala de CRIES y el Estándar de Oro (escala de PIPP) en todos los pacientes estudiados

Tabla 24. Asociación entre la intensidad de dolor con la escala de CRIES y el Estándar de Oro (escala de PIPP) en todos los pacientes estudiados

Tabla 25. Relación de la intensidad de dolor valorada con la escala de CRIES y el Estándar de Oro (escala de PIPP) en los pacientes postquirúrgicos

Tabla 26. Diferencia de la intensidad de dolor entre la escala de CRIES y el Estándar de Oro (escala de PIPP) en todos los pacientes postquirúrgicos

Tabla 27. Asociación entre la intensidad de dolor con la escala de CRIES y el Estándar de Oro (escala de PIPP) en los pacientes postquirúrgicos

Tabla 28. Relación de la intensidad de dolor valorada con la escala de CRIES y el Estándar de Oro (escala de PIPP) en los pacientes no quirúrgicos

Tabla 29. Diferencia de la intensidad de dolor entre la escala de CRIES y el Estándar de Oro (escala de PIPP) en los pacientes no quirúrgicos

Tabla 30. Asociación entre la intensidad de dolor con la escala de CRIES y el Estándar de Oro (escala de PIPP) en los pacientes no quirúrgicos

Tabla 31. Relación entre la edad gestacional y la intensidad de dolor valorada por la escala de CRIES en todos los pacientes estudiados

Tabla 32. Diferencia en la percepción del dolor según la escala de CRIES entre todos los recién nacidos a término y pretérmino estudiados

Tabla 33. Asociación entre la edad gestacional y la intensidad de dolor valorada con la escala de CRIES en todos los pacientes estudiados

Tabla 34. Relación entre el género y la intensidad de dolor valorada con la escala de CRIES en todos los pacientes estudiados

Tabla 35. Diferencia según el género en la intensidad del dolor valorada con la escala de CRIES en todos los pacientes estudiados

Tabla 36. Asociación entre el género y la intensidad de dolor valorada con la escala de CRIES en todos los pacientes estudiados

Tabla 37. Relación entre el tipo de parto y la intensidad de dolor valorada por la escala de CRIES en todos los pacientes estudiados

Tabla 38. Diferencia según el tipo de parto y la intensidad del dolor valorada por la escala de CRIES en todos los pacientes estudiados
Tabla 39. Asociación entre el tipo de parto y la intensidad de dolor valorada con la escala de CRIES en todos los pacientes estudiados

Tabla 40. Relación entre la analgesia y la intensidad de dolor valorada con la escala de CRIES en pacientes postquirúrgicos

Tabla 41. Diferencia entre el tipo de analgesia y la intensidad del dolor valorada con la escala de CRIES en pacientes postquirúrgicos

Tabla 42. Relación entre la analgesia y la intensidad de dolor valorada con la escala de CRIES en pacientes no quirúrgicos

Tabla 43. Diferencia de la intensidad del dolor según la escala de CRIES y analgesia en pacientes no quirúrgicos

Tabla 44. Asociación entre la analgesia y la intensidad de dolor valorada con la escala de CRIES en pacientes postquirúrgicos
INDICE DE FIGURAS

Gráfico 1. Porcentaje de pacientes quirúrgicos y no quirúrgicos.................................655
Gráfico 2. Porcentaje de acuerdo al sexo de recién nacidos estudiados..................666
Gráfico 3. Frecuencia según edad gestacional en recién nacidos estudiados677
Gráfico 4. Porcentaje de pacientes nacidos por parto céfalovaginal y cesárea……70

Gráfico 5. Frecuencia según tipo de analgesia utilizada en el total de recién nacidos estudiados--711
Gráfico 6. Frecuencia según tipo de analgesia utilizada en el grupo de los recién nacidos no quirúrgicos..722
Gráfico 7. Frecuencia según tipo de analgesia utilizada en el grupo de recién nacidos postquirúrgicos..733
<table>
<thead>
<tr>
<th>ACRÓNIMOS</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRIES</td>
<td>Crying, Requires Oxygen Saturation, Increased Vital Signs, Expression and Sleeplessness</td>
</tr>
<tr>
<td>PIPP</td>
<td>Premature Infant Pain Profile</td>
</tr>
<tr>
<td>HGOIA</td>
<td>Hospital Gineco Obstétrico Isidro Ayora</td>
</tr>
<tr>
<td>UCIN</td>
<td>Unidad de Cuidados Intensivos Neonatales</td>
</tr>
<tr>
<td>IASP</td>
<td>International Association for the Study of Pain</td>
</tr>
<tr>
<td>VIP</td>
<td>Péptido intestinal Vasoactivo</td>
</tr>
<tr>
<td>CGRP</td>
<td>Péptido relacionado con el gen de la calcitonina</td>
</tr>
<tr>
<td>GABA</td>
<td>Ácido Gama-Aminobutírico</td>
</tr>
<tr>
<td>JCAHO</td>
<td>Joint Commission on Accreditation of Healthcare Organizations</td>
</tr>
<tr>
<td>AEP</td>
<td>Asociación Española de Pediatría</td>
</tr>
<tr>
<td>EMLA</td>
<td>Combinación de lidocaína al 2,5% y prilocaina al 2,5%</td>
</tr>
<tr>
<td>AINES</td>
<td>Antinflamatorios no esteroideos</td>
</tr>
<tr>
<td>NMDA</td>
<td>N-metil-D-aspartato</td>
</tr>
<tr>
<td>EG</td>
<td>Edad gestacional</td>
</tr>
<tr>
<td>VPP</td>
<td>Valor predictivo positivo</td>
</tr>
<tr>
<td>VPN</td>
<td>Valor predictivo negativo</td>
</tr>
<tr>
<td>APP</td>
<td>American Academy of Pediatrics</td>
</tr>
<tr>
<td>CPS</td>
<td>Canadian Pediatric Society</td>
</tr>
<tr>
<td>MSP</td>
<td>Ministerio de Salud Pública del Ecuador</td>
</tr>
</tbody>
</table>
GLOSARIO

Hipocampo: Circunvolución del lóbulo temporal, que interviene en el proceso de la memoria.

Sistema límbico: Agrupación de estructuras del encéfalo que se relacionan con las emociones y sentimientos.

Diencéfalo: División del cerebro entre el telencéfalo y el mesencéfalo. Consta del hipotálamo, tálamo, metatálamo, y epitálamo e incluye la mayor parte del tercer ventrículo.

Neurotransmisor: Sustancia química que modifica o provoca impulsos nerviosos en una sinapsis.

Receptores glutamatérgicos: Estructura química receptora del glutamato, principal neurotransmisor excitatorio del cerebro.

Receptores opioides: Receptores celulares que se unen a los neurotransmisores opioides.

Encefalinas: Pentapéptido producido en el organismo con el fin de disminuir el dolor.

Endorfinas: Neuropeptidos compuestos de gran número de aminoácidos, elaborados por la hipófisis, que actúan en los sistemas nerviosos central y periférico reduciendo el dolor.

Dinorfinas: Neuropeptido perteneciente a una de las tres familias de las endorfinas.
RESUMEN

Durante varios años, la percepción del dolor en el recién nacido ha sido subestimada debido a la inmadurez biológica de su sistema nervioso central. Sin embargo, en la actualidad, existen múltiples estudios que han comprobado que los receptores nerviosos periféricos se desarrollan en etapas muy tempranas de la gestación. Este estudio, realizado en el HGOIA en el periodo de junio a septiembre del 2015, se enfoca en determinar la validez de la escala de CRIES, comparándola con la escala de PIPP como Gold Standard para la valoración del dolor agudo en recién nacidos pretérmino y a término. **Objetivo:** Determinar la validez de la escala de CRIES para la valoración del dolor luego de un procedimiento invasivo en recién nacidos del HGOIA en el periodo de junio a agosto del 2015. **Materiales y métodos:** Se realizó un estudio tipo analítico transversal para evaluación de prueba diagnóstica, en el cual se aplicaron las escalas antes descritas a recién nacidos sometidos a procedimientos invasivos. Para la muestra se tomó a 69 recién nacidos sometidos a intervenciones quirúrgicas y los ingresados a UCIN sometidos a procedimientos invasivos en el HGOIA en un tiempo determinado. **Resultados y conclusiones:** Se demostró que la escala de CRIES tiene la misma capacidad métrica que la escala de PIPP (p=0,000) para la valoración del dolor en recién nacidos luego de un procedimiento invasivo. La escala de CRIES para evaluación de la percepción del dolor presenta una sensibilidad del 81.39%, especificidad del 84.61%, VPP: 89.74% y VPN: 73.33% estadísticamente significativo con p= 0,000.
ABSTRACT

For several years, the perception of pain in the newborn has been underestimated due to biological immaturity of the central nervous system. However, currently there are multiple studies that have demonstrated that peripheral nerve receptors are developed in the very early stages of pregnancy. This study focuses on determining the validity of the scale of CRIES, compared to the scale of PIPP, as Gold Standard for the assessment of acute pain in term and preterm infants. **Objective:** Determine the validity of the pain assessment scale of CRIES, after an invasive procedure in newborns of the HGOIA in the period from June to August 2015. **Materials and Methods:** A cross-sectional analytic study, for diagnostic evaluation test, was performed with 69 newborn infants admitted to Intermediate and Intensive Care Unit in the HGOIA in a period of time. **Results and Conclusions:** A p 0.000 was obtained for the relationship between the scale of CRIES and PIPP. CRIES scale has a sensitivity of 81.39%, 84.61% specificity, PPV: 89.74% and NPV: 73.33% which were statistically significant with p = 0.000.
CAPÍTULO I. INTRODUCCIÓN

Décadas atrás, se pensaba que la incapacidad de los recién nacidos para verbalizar sus sentimientos y expresar su dolor era sinónimo de incapacidad para experimentarlo y recordarlo por la inmadurez de su sistema nervioso, por lo que la aplicación de analgesia no se consideraba necesaria en dichos pacientes.¹

Afortunadamente, en la actualidad existen datos suficientes para afirmar que el neonato es capaz de percibir dolor, inclusive se han presentado estudios que demuestran que el dolor agudo puede producir inestabilidad clínica, con cambios en las medidas fisiológicas como la frecuencia cardíaca y respiratoria, tensión arterial, saturación de oxígeno y fluctuaciones en la presión intracraneal, dando complicaciones tales como la hemorragia intraventricular.²⁻⁵

También se ha evidenciado una respuesta endocrina con un aumento en la secreción de cortisol, catecolaminas, glucagón y un aumento del catabolismo, que en situaciones no controladas pueden producir un empeoramiento clínico del paciente aumentando las tasas de morbimortalidad.¹⁻⁶⁻⁷

Además, se ha demostrado, que el dolor crónico o repetitivo puede tener consecuencias a largo plazo.⁸ Esta memoria del dolor a largo plazo existe en los recién nacidos, incluidos los nacidos prematuramente,⁹ ya que los sistemas necesarios para ello (hipocampo, sistema límbico, diencéfalo, neurotransmisores y receptores glutamatérgicos y opioides) están lo suficientemente desarrollados desde las 25-26 semanas de edad gestacional.¹⁻¹⁰
Así, se ha demostrado, según diversos estudios, que los estímulos dolorosos repetitivos en etapas tempranas de la vida y la separación materna, conllevan cambios permanentes en el procesamiento del dolor a nivel espinal, supra espinal y periférico, alteraciones neuroendocrinas y fundamentalmente del neurodesarrollo10, que se manifiestan en etapas posteriores como una hipersensibilidad al dolor, alteraciones en el desarrollo cognitivo y el aprendizaje.11,12

En los últimos años se han producido numerosos avances en el cuidado y manejo del recién nacido.13 Existen diversas escalas de evaluación del dolor en neonatos las cuales se basan en alteraciones fisiológicas, cambios del comportamiento, o una combinación de ambos.9,14,15

Hay una serie de medidas generales que son de vital importancia en el tratamiento del dolor en neonatos. En primer lugar, evitar procedimientos dolorosos innecesarios, cuidados del ambiente que rodea al neonato, soluciones orales dulces, la estimulación multisensorial, así como amamantar del pecho de su madre durante la intervención dolorosa.4-16 Sin embargo, hay ocasiones en las que estos recursos son insuficientes y hemos de recurrir a las medidas farmacológicas.7 Los fármacos más utilizados a nivel mundial son los anestésicos locales, AINES y opioides.17 En casos de estrés severo o procedimientos más invasivos también se emplean sedantes como el hidrato de cloral, remifentanilo o midazolam.3,18

Consideramos que actualmente en el Ecuador, a pesar, de la existencia de dichos avances en la evaluación, prevención y tratamiento del dolor en recién nacidos, existen
pocas instituciones que implementan dichas medidas. Tampoco se consideran sus posibles complicaciones a corto y largo plazo.

En este estudio pretendemos actualizar al personal de salud respecto al dolor neonatal. Esperamos posteriormente se puedan integrar estas escalas a las normatizaciones estándar del cuidado neonatal, especialmente en la unidad de cuidados intensivos, donde los procedimientos estresantes son inminentes y frecuentes. De esta manera los recién nacidos podrán obtener un mejor manejo analgésico, lo que conlleva una atención integral y humanizada en el cuidado neonatal, reducción de complicaciones a corto y a largo plazo17,19.
CAPÍTULO II. REVISIÓN BIBLIOGRÁFICA

2.1 DEFINICIÓN

La IASP define el dolor como la experiencia sensitiva y emocional desagradable ocasionada por una lesión tisular real o potencial.\(^1,2^0\) Con respecto al dolor en niños y neonatos añade que: “La incapacidad de una persona para comunicarse de ninguna manera niega la posibilidad de que está experimentando dolor y está en necesidad de recibir un tratamiento apropiado para aliviarlo.” \(^2^1\) Se lo considera el síntoma más frecuente de afección en una enfermedad. El dolor es un fenómeno multidimensional, con componentes sensoriales, fisiológicos, cognitivos, afectivos, conductuales y espirituales. Las alteraciones en cada uno de sus componentes modifican la transmisión de los estímulos nocivos al cerebro.\(^2^2\)

El estrés, por su parte, es definido como un factor físico, químico o emocional que causa tensión corporal o mental y puede ser un factor causal de enfermedad. Hay que considerar que el dolor es siempre estresante, pero el estrés no necesariamente es doloroso; sin embargo, ambos requieren evaluación y tratamiento.\(^5^\)

2.2 INCIDENCIA Y EPIDEMIOLOGÍA

Al respecto del dolor en la población pediátrica la OMS dice: “Es un problema de salud pública de gran importancia en casi todo el mundo. Aunque existen conocimientos y
medios para aliviarlo, es frecuente que el dolor de los niños no se reconozca, se ignore o incluso se niegue.»

La cita previa fue tomada de las “Directrices de la OMS sobre el tratamiento farmacológico del dolor persistente en niños con enfermedades médicas”, propuesta en el año 2012. Sin embargo, no se encontraron guías completas, referentes al dolor agudo, propuestas por esta organización; únicamente se proponen pautas aisladas, cómo el uso de leche materna, sacarosa y el plan canguro en el momento del procedimiento doloroso.

Es cierto, que además de los múltiples procedimientos realizados dentro de las unidades de cuidados intensivos e intermedios neonatales se debe considerar, también, el dolor originado por situaciones patológicas propias del recién nacido; no obstante, es otro tipo de dolor que no se toma en cuenta en el presente estudio.

Los avances en el cuidado neonatal no solo aseguran un trato más humanizado, sino que también han demostrado mejorar la supervivencia de los niños afectados. A pesar de lo mencionado, aún no se considera el manejo del dolor como algo primordial para la atención hospitalaria en este grupo de pacientes.

Los neonatos ingresados en las Unidades de Cuidados Intensivos e Intermedios a menudo deben someterse a intervenciones invasivas que producen dolor. Se estima que en estas salas se realizan, aproximadamente, de 5 a 14 procedimientos dolorosos al día en los pacientes, sin brindar las medidas analgésicas adecuadas.
A continuación presentamos algunos datos estadísticos respecto a la población de nuestro estudio realizado en el HGOIA, Hospital de Especialidad para madres embarazadas y recién nacidos, de referencia nacional. Según los datos registrados por el Departamento de Estadística de esta institución, en el año 2014, 2356 neonatos requirieron de hospitalización. El 83.4% fue admitido en cuidados intermedios y el 16.6% en cuidados intensivos. Del total de los mismos el 54.2% correspondió al sexo masculino y el 45.8% al femenino. Hubo un total de 794 (33.7%) prematuros y 132 (5.6%) neonatos fallecieron estando hospitalizados. La incidencia de malformaciones fue del 11.54%.

En el periodo de enero hasta agosto del 2015 hubo 5371 nacimientos de los cuales 2995 (55.76%) fueron partos normales y el 44.24% cesáreas; del total de nacimientos, el 36.08% corresponde a madres adolescentes y el 63.92% a hijos de madres adultas (mayores de 19 años). De los nacidos vivos, el 28.11% tuvo algún tipo de patología, el 85.77% ingresó a Cuidados Intermedios y el 14.23% a UCIN. Es decir, el 4% del total de nacidos vivos requirió de Cuidados Intensivos.

De los 1510 pacientes ingresados en las salas de Cuidados Intermedios e Intensivos el 2.71% fue intervenido quirúrgicamente, siendo las cirugías más frecuentes las derivaciones ventrículo peritoneales (31.70%), laparotomías (29.26%), corrección de gastosquisis (14.63%) y otras (24.39%), en su mayoría correspondientes a cirugías abdominales.
Al momento de nuestro estudio no estaban disponibles datos estadísticos acerca del uso de analgesia y del dolor en los neonatos del HGOIA. Tampoco se encontraron evidencias de que las escalas para el dolor sean utilizadas apropiadamente en otras instituciones del país.

2.3 CLASIFICACIÓN DEL DOLOR

Existen varias clasificaciones del dolor conocidas universalmente. La OMS propone la siguiente: según el mecanismo fisiopatológico del dolor (nociceptivo o neuropático), su duración (crónico, agudo, intercurrente), su etiología (maligna o no maligna) y según su localización anatómica. En el siguiente cuadro se observa un resumen de dicha clasificación:
Tabla 1. Clasificación del dolor

<table>
<thead>
<tr>
<th>CLASIFICACIÓN</th>
<th>TIPOS</th>
<th>CARACTERÍSTICAS</th>
<th>ESTÍMULO</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOCICENSEVO</td>
<td>Lesión tisular</td>
<td>Somático</td>
<td>Activa receptores específicos del dolor</td>
</tr>
<tr>
<td></td>
<td>Sustancias químicas liberadas por los tejidos</td>
<td>Visceral</td>
<td>Daño estructural y la disfunción de las neuronas del SNC o periférico</td>
</tr>
<tr>
<td>FISIOPATOLÓGICA</td>
<td>NEUROPÁTICO</td>
<td>Procesamiento anormal de las señales dolorosas por el cerebro o la médula espinal.</td>
<td>MIXTO</td>
</tr>
<tr>
<td>CRÓNICO</td>
<td>Continuo o recurrente</td>
<td>Comienzo súbito</td>
<td>Contínuo o recurrente >1 mes</td>
</tr>
<tr>
<td>AGUDO</td>
<td>Corta duración</td>
<td>Intermítente Largo periodo de tiempo</td>
<td></td>
</tr>
<tr>
<td>DURACIÓN</td>
<td>EPISÓDICO/RECURRENTE</td>
<td>Aumento temporal de la intensidad del dolor por encima del nivel doloroso preexistente</td>
<td></td>
</tr>
<tr>
<td></td>
<td>INTERCURRENTE</td>
<td>Inicio súbito, intenso y de corta duración.</td>
<td></td>
</tr>
<tr>
<td>ETIOLOGÍA</td>
<td>MALIGNA</td>
<td>Dimension netamente física, No incluye mecanismo subyacente</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BENIGNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LOCALIZACIÓN ANATÓMICA</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: OMS. Directrices de la OMS sobre el tratamiento farmacológico del dolor persistente en niños con enfermedades médicas, 2012

Realizado por: Daniela Grijalva, Bárbara Helbling, 2015.
2.4 BASES NEUROFISIOLOGÍCAS DEL DOLOR

Se ha definido que para la percepción del dolor periférico intervienen principalmente dos tipos de fibras aferentes que reaccionan en forma máxima a estímulos nociceptivos; las fibras tipo C de conducción lenta, amielínicas, y las fibras tipo A delta (A-δ) de conducción más rápida y con una fina capa de mielina.21,25 Además, dentro de estas fibras, se conocen tres categorías de terminaciones libres o receptores: los mecanorreceptores, termorreceptores y nociceptores. La mayoría de las fibras C responden a estímulos nocivos con mayor eficacia, pero además transmiten estímulos mecánicos, térmicos y químicos. Las fibras A delta (A-δ) reaccionan al tacto superficial, temperatura y presión.21

Se habla, además, que para la transmisión de los impulsos dolorosos, intervienen en las terminaciones de las A delta (A-δ) aminoácidos exitatorios con el glutamato y aspartato, y nucleótidos como el ATP. Por otro lado, entre las sustancias más importantes que intervienen en la trasmisión de impulsos en las fibras C está la sustancia P, la cual produce excitación de las neuronas nociceptivas del ganglio de la raíz y asta dorsales.21 Además de las sustancias excitatorias, se han encontrado opiáceos que intervienen en la modulación del dolor. Se ha observado que, cuando las neuronas aferentes del asta dorsal de la médula espinal se activan, los opiáceos disminuyen la sustancia P y se producen péptidos opioides endógenos como las encefalinas, endorfinas y dinorfinas, los cuales se unen de manera específica a receptores opiáceos e inhiben la transmisión del dolor.21,25
2.5 NEUROFISIOLOGÍA DEL DOLOR NEONATAL

Desde 1965, Mel Zack y Wall investigaron la fisiopatología del dolor en neonatos. Sin embargo, fue a partir de 1993, que los investigadores Fitzgerald y Anand plantearon la teoría de que el estímulo doloroso en los niños desencadena los mismos mecanismos fisiopatológicos que en el adulto. Esta afirmación, aunque con ciertas discrepancias, se ha mantenido a través de los años por diferentes autores (Hoza 1995, Rokyta 1995, McGrath y Unruh 2006). La literatura actual, con escasas excepciones, apoya esta teoría y la sustenta con exhaustiva evidencia, demostrando que incluso en la vida intrauterina el ser humano es capaz de procesar estímulos dolorosos.27, 28

Se ha demostrado que a partir de las siete semanas de gestación aparecen los primeros nociceptores. En esta etapa la respuesta a estímulos dolorosos es únicamente a través de reflejos motores.29 A las 8 semanas comienza el desarrollo de la neocorteza fetal y a partir de la semana 20, luego de la concepción, el sistema nervioso periférico ya es funcional. Entre las semanas 24-26 comienza la arborización de los procesos dendríticos corticales, y las vías tálamo-corticales ya son funcionales.25 Estudios comprueban que hacia esta última semana ya se ha completado la formación de receptores nerviosos localizados en piel y mucosas. Además, las sustancias asociadas al dolor (sustancia P, somatostatina, VIP, metaencefalina y glutamato) están presentes desde etapas tempranas de la gestación.25

Para las semanas 16-18 ya se pueden evidenciar alteraciones del flujo cerebral y a partir de la semana 23 existe elevación de cortisol y Beta-endorfinas tras un estímulo doloroso. Los potenciales evocados emitidos desde la corteza, a partir de las 29 semanas, indican
que ya existe una vía significativa que conduce los estímulos dolorosos desde los nociceptores periféricos hasta la corteza cerebral.

Alrededor de la 30ª semana se da inicio a la mielinización de las vías nociceptivas en tronco cerebral, tálamo y los tractos nerviosos espinales, completándose dicho proceso en el segundo y tercer trimestre de gestación.6,10 Se considera que a partir de entonces los estímulos dolorosos no solo causan reflejos motores, sino que se expresan por medio de muecas, alteraciones en el estado de sueño/vigilia y variaciones de los parámetros fisiológicos, como la frecuencia cardíaca y saturación de oxígeno.29

Los investigadores Fitzgerald en 1995 y Fitzgerald & Anand en 1993, estudiaron la neuroanatomía y fisiología fetal y neonatal; han confirmado que estos poseen las estructuras periféricas necesarias para la trasmisión del dolor, y que éstas son similares a las de los adultos.30

En la transmisión del dolor en el recién nacido participan principalmente las fibras amielínicas C y A delta (A-δ), escasamente mielinizadas; esto hace que la conducción sea más lenta comparada con la del adulto o niños mayores.

Dentro de la transmisión del dolor forman parte numerosas respuestas neuroendocrinas, con sus propios mecanismos excitatorios (sustancia P, péptido relacionado con el gen de la calcitonina CGRP y la neurokinina) e inhibitorios (norepinefrina, serotonina, GABA, glicina y encefalina).25

Estos mecanismos de inhibición descendente, son todavía inmaduros en los neonatos, tanto a término como pretérmino, lo que implica un estado de hipersensibilidad con
respuestas fisiológicas y hormonales exageradas frente a estímulos dolorosos. Incluso se ha demostrado que, a menor edad gestacional, menor es el umbral del dolor.9,10,25 La insuficiente mielinización de las vías neurales encargadas de la nocicepción, ha sido por años un argumento para creer que la inmadurez neurológica del feto y el neonato no les permite percibir el dolor. Dicha afirmación pierde validez al demostrarse que incluso los nervios periféricos de los adultos transmiten impulsos nociceptivos a través de fibras no mielinizadas: C-polimodales y A delta (A-\(\delta\)).31

Además, se ha demostrado que las vías del dolor están completamente mielinizadas entre la semana 30 y 37, por lo que la teoría de la “mielinización insuficiente” no es certera.

Otra teoría declara que si bien el neonato es capaz de percibir dolor, el mismo no tiene un componente afectivo por falta de estimulación cortical. Este argumento es controversial; expertos afirman que el desarrollo cortical es insuficiente en el neonato. No obstante, hemos encontrado varios estudios que demuestran mediante espectroscopía la activación cortical temprana producida por un estímulo doloroso, por lo que es un tema sujeto a futuros estudios.29-33

Al igual que en los adultos, el dolor se puede clasificar en inmediato (agudo), el mismo que dura entre segundos y minutos, dolor mediato, de horas a días y dolor prolongado (crónico) que puede durar de semanas a meses.32

En el presente estudio únicamente nos centramos en el dolor agudo. Se ha demostrado que, a pesar de la corta exposición, este tipo de dolor conlleva repercusiones a nivel fisiológico, metabólico y en el comportamiento del neonato. Se produce un incremento
en la secreción de catecolaminas, glucagón y corticoides que se evidencia a través del aumento en la frecuencia cardiaca, respiratoria y la presión arterial. Ademá, se produce un estado catabólico en respuesta al estrés que favorece la hipo/anorexia y sus respectivas complicaciones asociadas, cómo la cicatrización de heridas, movilidad limitada, trastornos del sueño, irritabilidad y retraso en el crecimiento y desarrollo. 34

Los efectos del dolor crónico no están muy claros todavía; sin embargo, consideramos que hay que tomar en cuenta la exposición a estrés y dolor prolongado, relacionados a la permanencia prolongada en UCIN y a patologías del neonato, al momento de valorar el dolor agudo. Se sabe que estos neonatos desarrollan mayor sensibilidad ante estímulos nocivos que aquellos que fueron expuestos a una menor cantidad de procedimientos.

2.6 FACTORES QUE INTERVIENEN EN LA PRECEPCIÓN DEL DOLOR

La plasticidad en cuanto a los efectos neurofisiológicos del dolor y el significado del mismo, se van desarrollando a lo largo de la vida y difieren en cada persona. Por este motivo, al momento de evaluar el dolor, no sólo se debe tomar en cuenta la madurez neurológica del RN, sino también el contexto de cada paciente, al igual que en niños mayores.

Los diversos factores que intervienen en el dolor pueden no tener un papel determinante en las repercusiones del dolor si se los analiza por separado. Sin embargo, los
analizaremos individualmente, recordando que deben ser evaluados dentro del contexto del neonato.

Factores biológicos

Variación genética. La variación genética incluye diferencias en la cantidad y el tipo de neurotransmisores y los receptores de la mediación del dolor. Poco se sabe de los genes responsables para la percepción del dolor. Los patrones familiares de la expresión del dolor pueden ser, en parte, causados por los rasgos genéticos y no simplemente por el resultado de los factores psicológicos. 35-38

Género. La mayoría de autores no han encontrado diferencias significativas relativas al género. Sólo en dos estudios (Bartocci et al., 2006; Holsti et al., 2005) observaron una respuesta al dolor más pronunciada en varones respecto a las mujeres. Estos estudios se realizaron en neonatos prematuros, donde los de sexo masculino mostraron una activación cortical bilateral más marcada que la del sexo femenino. 39-41

Por su parte, Goodenough et al., en 1999 realizaron un estudio en el cual concluyen que en lactantes mayores y preescolares no hay diferencias en cuanto al género. Se sabe que en escolares la intensidad del dolor puede ser similar, pero las niñas manifiestan mayor desagrado que los niños, lo que se atribuye a una mayor asimilación de los aspectos emocionales del dolor y/o la renuencia de los niños para expresar sus emociones. 37,41-43

Existen grandes controversias en cuanto a si el género influye en la percepción del dolor y pocos datos específicos que permitan afirmar que verdaderamente existe diferencia según el género.
Historial de dolor. Las experiencias previas de dolor conducen a alteraciones en el procesamiento del mismo, lo cual puede ser reversible o permanente. Estudios en neonatos prematuros, como el que realizaron Johnston CC y Stevens, con un grupo de RNPT, sometidos a punción de talón, demuestran que el haber tenido estímulos dolorosos anteriores es el factor más determinante en cuanto la respuesta al dolor agudo. Se observó también, que a mayor exposición a estímulos dolorosos, menores son las respuestas comportamentales y mayores las respuestas cardiovasculares.

Esta puede ser la razón por la cual, a medida que aumentan los estímulos nocivos, también aumenten los puntajes de dolor en las escalas, si es que no se maneja una adecuada analgesia.48,39

Características del dolor

Las características del dolor, así como el origen (si es por una lesión aguda o por una enfermedad) y la ubicación, también influencian en la percepción y respuesta al dolor.48

Factores cognitivos

A mayor edad del niño/a, más capacidad para entender el significado y las consecuencias de dolor. Es por esto que, a medida que pasa el tiempo, expresan menos dolor que los menores. Este factor no aplica en neonatos, por obvias razones.48
Factores Psicológicos

Al igual que los factores cognitivos, en los neonatos no se puede afirmar que el dolor tenga un componente psicológico, debido a que este elemento aún no está desarrollado en ellos. El factor psico-afectivo tiene que ver con el significado que los niños dan al dolor, el mismo que, en niños mayores puede afectar la percepción del estímulo. Dentro del componente psicológico también están el temperamento y el entorno familiar en el que han sido criados.

Factores socioculturales

La mayoría de investigaciones sobre cómo influye el factor sociocultural en la respuesta al dolor se han hecho en adultos. Aunque es lógico que existan similitudes en las respuestas de los niños, sigue siendo necesaria la investigación. No obstante, estas diferencias pueden ser en parte causadas por variación en niveles de neurotransmisores, por lo que planteamos se tome en cuenta este factor en futuros estudios, a pesar de que la mayor diferencia cultural, sin duda, está en las expectativas culturales o sociales aprendidas.

Contacto materno

En el caso de los neonatos, el contacto físico, especialmente con la madre, es un factor muy importante en varios aspectos del bienestar neonatal. En un sinnúmero de estudios se demuestra que el plan canguro es efectivo para reducir el estrés traumático y la percepción del dolor. Esto se ha evidenciado sobre todo en RNPT y de bajo peso.
Akcan et al., 2009, valoraron el dolor antes, durante y después de un procedimiento invasivo en 50 prematuros y concluyeron que los valores de la escala de PIPP son significativamente menores en el grupo que estuvo en plan canguro durante o inmediatamente después del procedimiento, que en los controles. En base a este hallazgo, recomiendan aplicar el contacto piel con piel 30 minutos antes y continuar durante 10 min después del estímulo doloroso con esta medida analgésica no farmacológica.33, 38-40

Johnston et al., 1996, por su parte, estudiaron el efecto de la voz materna durante los procedimientos dolorosos y concluyeron que la misma no es suficiente como medida analgésica aislada.40,41

Edad gestacional

La hipótesis de que los recién nacidos no sienten dolor se sostenía en la creencia que para la transmisión e interpretación del dolor es necesario una mielinización completa de los nervios periféricos y una corteza cerebral madura. Afortunadamente, en la actualidad ya se habla de que la completa mielinización no es un requisito para la transmisión del dolor, como mencionamos antes en este trabajo.

Chugani & Phelps, en un estudio publicado en 1986, revelan que en recién nacidos a término, la utilización de glucosa cerebral aumenta, durante un estímulo doloroso, en las áreas sensoriales, lo que sugiere madurez funcional en éstas áreas.29

La discusión de si los neonatos de 28 a 36.6 semanas (considerados como prematuros según la OMS, 2013)35 son capaces de procesar los estímulos dolorosos, es aún más
compleja que en los RNAT. Las referencias bibliográficas actuales indican que los neonatos no sólo son capaces de sentir dolor, sino que incluso son más sensibles en la percepción de estímulos dolorosos que los RNAT debido a la inmadurez del sistema inhibitorio del dolor.

Adicionalmente, los RNpT permanecen, generalmente, más tiempo internados en la UCIN debido a las comorbilidades respecto a su EG. Están, asimismo, sujetos a un estado de estrés constante causado por dolor crónico, correspondiente a patologías propias del prematuro, como enterocolitis necrotizante (ECN), el ruido permanente, la luz y manipulación frecuente. Requieren con mayor frecuencia procedimientos invasivos como venopunciones, punciones de talón, vías centrales, tubos torácicos, aspiración endotraqueal o nasal, sondas nasogástricas, vesicales y/o tubos endotorácicos.32

Los neonatos son sometidos a un promedio de 5 procedimientos invasivos al día durante su permanencia en la UCIN.

Por todo lo mencionado, además de la fragilidad de su piel, los RNPT son más propensos a inflamación y laceración de la piel que los RNAT. Esto conlleva adicionalmente a un estado de hiperalgesia en las zonas afectadas.32 No sólo los RNPT son más sensibles al dolor; un estudio afirma que, incluso, los neonatos en general son más sensibles que los lactantes entre 3 y 12 meses de edad.31,32

Características del nacimiento

Taddio & Katz, 1997, revelan que factores como nacimientos altamente estresantes (utilización de fórceps, cesárea de emergencia) o características de nacimiento subóptimas (peso alto o bajo al nacimiento, prematurez, APGAR ≤5 a los 5 minutos)
pueden influenciar en la respuesta al dolor producida por los neonatos, ocasionando una respuesta exagerada a los estímulos dolorosos.43,44

Experiencias dolorosas previas

Johnston CC y Stevens BJ, 1996, relacionaron el tiempo de permanencia en la UCIN con las respuestas al dolor. Se analizó la reacción fisiológica y la expresión facial al momento de la punción de talón en recién nacidos (4 días) comparándolas con RN de la misma edad gestacional que habían nacido 4 semanas antes. El número de procedimientos invasivos fue el factor principal que explicó las diferencias de comportamiento, con el parámetro de APGAR como segundo factor explicativo.41

Una mayor frecuencia de procedimientos invasivos se asocia con la inmadurez de comportamiento, mientras que los factores de nacimiento se asocian con inmadurez fisiológica.14 Liisa Holsti et al., 2006, también afirman que experiencias previas inducen una reactividad bioconductual elevada en prematuros durante procedimientos posteriores.44

Afectación neurológica

Tim F. Oberlander et al., 2010, compararon la respuesta al dolor en neonatos que tenían lesiones del parénquima cerebral con la de los recién nacidos sanos. Al contrario de lo que se cree comúnmente, no evidenciaron un patrón alterado en la respuesta al dolor. Estos hallazgos sugieren que en el periodo neonatal las lesiones cerebrales que predominantemente afectan a la materia blanca central no afectan en nada las respuestas del tronco cerebral.33
Analgesia

Desde hace ya más de una década se viene demostrando que tanto las medidas no farmacológicas como las farmacológicas son necesarias y efectivas en el periodo neonatal. Es más, mejoran la morbimortalidad de los recién nacidos, sobre todo en UCIN. Los beneficios de estas medidas utilizadas adecuadamente, según esquemas internacionales, no son riesgosas para el neonato, como se creía anteriormente.

En el apartado de analgesia, hacemos una revisión a cerca de las recomendaciones actuales. 33, 45

Factores del personal de salud

Por último, y no menos importante, son esenciales, el conocimiento, la actitud, la experiencia y destreza del equipo de neonatología al momento de realizar cualquier procedimiento. La calidad en la atención afecta de manera significativa la experiencia traumática de los recién nacidos, así como lo hace en todos los rangos etarios. La falta de educación sobre el dolor neonatal en el personal de enfermería y médicos, es una de las principales causas de los mitos que impiden una adecuada evaluación y tratamiento del dolor en la población pediátrica. La implementación de herramientas estandarizadas, multidimensionales, como las que planteamos en este estudio, pueden ser de utilidad en amenorar el dolor neonatal dependiente del factor del personal.
2.7 INDICADORES DE DOLOR EN EL NEONATO

Valoración del dolor

A pesar de que los neonatos son incapaces de expresar en lenguaje verbal, el dolor y desconfort, existen varias escalas validadas y fiables para su evaluación en recién RNaT y RNpT.

Los indicadores se dividen en dos grupos, los conductuales y los fisiológicos. Dentro de los conductuales están, por ejemplo, el llanto, la actividad facial, el lenguaje corporal y los cambios de comportamiento.

Los indicadores fisiológicos son objetivos e incluyen el cambio en la frecuencia cardíaca, frecuencia respiratoria, presión arterial, saturación de oxígeno, el tono vagal, la sudoración palmar, el cortisol plasmático, los niveles de catecolaminas y la medición de otros neurotransmisores asociados a estrés.\(^{32}\)

Debido a que ambos tipos de indicadores pueden alterarse en varias situaciones, su validez aumenta cuando se los evalúa conjuntamente. Por separado, estos parámetros no aportan información relevante respecto al dolor.

Los indicadores conductuales son considerados el Estándar de Oro para el dolor agudo. Es por esto que los analizaremos por separado.

Llanto

El llanto inducido por dolor difiere en frecuencia e intensidad respecto al que es producido por enojo, miedo o hambre. El limitante en este parámetro es que es dependiente del observador y requiere de la experticia y práctica de los padres o las enfermeras pediátricas que son los que mejor pueden reconocer el tipo de llanto.
Field & Goldson (1984) fueron los primeros en afirmar que a los neonatos a los que se les proporcionó un chupón para succionar durante un procedimiento doloroso presentaron menos llanto.46

El movimiento del cuerpo y la postura

Los reflejos y la variabilidad de movimientos del torso y las extremidades están ligados a la intensidad de dolor y a la edad gestacional. Eso se demuestra, por ejemplo, con que los recién nacidos a término reaccionan de una manera más activa que los prematuros.

Expresión facial

Es posible evidenciar una variedad de estados emocionales, subjetivos, con la observación de las expresiones faciales de los neonatos. Para un correcto análisis los expertos sugieren dividir la cara en tres regiones independientes una de la otra. La primera región comprende la frente y las cejas; la segunda los ojos, párpados y puente nasal y la tercera región, la parte inferior de la cara, es decir, las mejillas, la boca, la parte inferior de la nariz y el mentón.

Esta división es importante, debido a que la expresión facial también difiere entre los RNAT y los RNPT. Por ejemplo, la expresión de los prematuros es más evidente en la región superior de la cara.

Sin embargo, es importante tener en cuenta que ésta es una variable subjetiva. En primer lugar depende del observador y en segundo lugar, su ausencia no necesariamente descarta que haya dolor.
A pesar de sus limitaciones, la expresión facial y el llanto en conjunto, son más específicas que los parámetros fisiológicos, ya que estos pueden alterarse por un sinnúmero de causas, no necesariamente dolorosas.46,43

Los cuatro métodos para cuantificar el dolor más utilizados en la actualidad combinan parámetros conductuales y fisiológicos. Estos son, la escala de confort de Ambuel et al., desarrollada en 1992, la escala del dolor infantil y neonatal de Lawrence et al., 1993, la escala de CRIES (Krechel & Bildner, 1995) y la escala de PIPP por sus siglas en inglés Premature Infant Pain Profile (Stevens et al., 1996).

Aunque estas escalas son utilizadas mundialmente, se requieren más estudios para desarrollar la escala ideal que pueda diferenciar dolor de ansiedad o agitación o que ayude a evaluar el dolor crónico.46

2.8 ESCALAS PARA LA VALORACIÓN DEL DOLOR

En el año 2001, la JCAHO estableció que todos los pacientes tienen derecho a un adecuado manejo del dolor mediante la utilización de escalas para su cuantificación y tratamiento. Se deben utilizar escalas universalmente aceptadas, sensibles, fiables y aplicables para cada caso en particular. En la actualidad no existe ninguna escala que se la considere como Estándar de Oro y las escalas son subutilizadas en la mayoría de países.26,27

En un estudio realizado recientemente en Canadá, en distintas unidades de cuidados intensivos neonatales, se determinó que el personal de estas unidades no incluye a la
valoración del dolor como un examen rutinario ni necesario. Se observó, además, que las escalas utilizadas en dichas unidades no están validadas para su aplicación en el grupo de estudio. Se concluyó que esto se debe a la falta de investigación en el área de dolor neonatal postoperatorio, durante procedimientos y ventilación mecánica.26

Una escala ideal para la valoración del dolor debe requerir un mínimo de recursos financieros, ser fácil y rápido de aplicar e interpretar, además de ser adecuada para la edad del niño, al contexto clínico y al tipo de dolor.27

Dentro de la bibliografía se han encontrado más de 20 escalas diseñadas específicamente para neonatos (Ver anexo 3), dentro de las cuales se encuentran CRIES y PIPP, utilizadas en este estudio, con las siguientes características:

Escala de CRIES27

- **Población de estudio:** Recién nacidos a término y pretérmino
- **Medidas:** Fisiológicas y comportamiento
- **Estímulo:** Dolor prolongado, postquirúrgico
- **Validación:** La escala de CRIES fue comparada con las escalas de CHIPPS y de NIPS. Todas mostraron una excelente confiabilidad interobservador (≥0.9), y una elevada sensibilidad y especificidad (≥90%) en la valoración del dolor postquirúrgico.
Tabla 2. Escala de CRIES

<table>
<thead>
<tr>
<th>INDICADOR</th>
<th>0</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Llanto*</td>
<td>Sin llanto o llanto que no es de tono agudo</td>
<td>Llanto agudo pero fácilmente consolable</td>
<td>Llanto agudo inconsolable</td>
</tr>
<tr>
<td>Requiere O2 para SatO2 <95%</td>
<td>No requiere oxígeno. FiO2 21%</td>
<td>Requiere FiO2 <30% de oxígeno</td>
<td>Requiere FiO2 >30% de oxígeno</td>
</tr>
<tr>
<td>Signos vitales aumentados (PA y FC)</td>
<td>PA y FC estable o menor al basal</td>
<td>PA o FC aumentada <20% del basal</td>
<td>PA o FC aumentada >20% del basal</td>
</tr>
<tr>
<td>Expresión facial</td>
<td>Sin ceño fruncido. Normal, neutra</td>
<td>Mueca de dolor Solo ceño fruncido</td>
<td>Muecas y gemidos Ceño fruncido y quejido de tonalidad baja (sin llanto)</td>
</tr>
<tr>
<td>Sueño</td>
<td>Normales, continuamente dormido</td>
<td>Se despierta frecuentemente</td>
<td>Constantemente despierto</td>
</tr>
</tbody>
</table>

0-1: Sin dolor
2-4: Dolor leve. Medidas no farmacológicas
5-7: Dolor moderado. Medidas no farmacológicas + soporte farmacológico
≥7: Dolor severo. Medidas farmacológicas
*El llanto de dolor es de tono altamente agudo

Modificado por: Daniela Grijalva, Bárbara Helbling, 2015

Escala de PIPP

- **Población de estudio**: Recién nacidos a término y pretérmino
- **Medidas**: Edad gestacional, fisiológicas y comportamiento
- **Estímulo**: Dolor agudo debido a procedimientos (punción de talón, venopunción, colocación de vías centrales), también se puede utilizar en periodo postquirúrgico.
- **Validación:** Tiene una confiabilidad interobservador de 0.93 a 0.96 e intraobservador de 0.94 a 0.98.

Tabla 3. Escala de PIPP

<table>
<thead>
<tr>
<th>PROCESO</th>
<th>INDICADOR</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edad gestacional</td>
<td>≥36 semanas</td>
<td>32-35.6 semanas</td>
<td>28-31.6 semanas</td>
<td>≤28 semanas</td>
<td></td>
</tr>
<tr>
<td>Observe RN por 15 seg.</td>
<td>Estado conductual</td>
<td>Activo/ despierto</td>
<td>Tranquilo/ despierto</td>
<td>Activo/ durmiendo</td>
<td>Tranquilo/ durmiendo</td>
</tr>
<tr>
<td></td>
<td>Ojos abiertos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Movimientos faciales</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Observe RN por 30 seg.</td>
<td>Aumento de FC</td>
<td>0-4 lpm</td>
<td>5-14 lpm</td>
<td>15-24 lpm</td>
<td>≥25 lpm</td>
</tr>
<tr>
<td></td>
<td>Saturación de O₂</td>
<td>↓ 0-2,4%</td>
<td>↓ 2,5-4,9%</td>
<td>↓ 5-7,4%</td>
<td>↓ 7,5% o más</td>
</tr>
<tr>
<td></td>
<td>Ceño fruncido</td>
<td>0-3 seg</td>
<td>3-12 seg</td>
<td>12-21 seg</td>
<td>≥21 seg</td>
</tr>
<tr>
<td></td>
<td>Ojos apretados</td>
<td>0-3 seg</td>
<td>3-12 seg</td>
<td>12-21 seg</td>
<td>≥21 seg</td>
</tr>
<tr>
<td></td>
<td>Surco nasolabial</td>
<td>0-3 seg</td>
<td>3-12 seg</td>
<td>12-21 seg</td>
<td>≥21 seg</td>
</tr>
</tbody>
</table>

0-5 dolor mínimo o ausente
6-12 dolor moderado
Mayor de 12 dolor severo
En general se sugiere manejo farmacológico con puntajes mayores de 12

Modificado por: Daniela Grijalva, Bárbara Helbling, 2015

2.9 DIAGNÓSTICO DIFERENCIAL: EXPRESIÓN Y LLANTO

El llanto es la única herramienta que el neonato posee para comunicarse, por lo que consideramos necesario hacer una adecuada diferenciación del mismo junto con
expresiones faciales y cambios fisiológicos para poder identificar correctamente la percepción del dolor. El llanto y las muecas no son respuestas exclusivas del dolor. Es por esto que es importante que el personal de neonatología desarrolle la destreza de poder diferenciar cuándo el dolor es el causante del llanto y de cierta expresión facial. Esto, como hemos mencionado antes, es sumamente difícil y dependiente del observador.32

Dentro de la percepción del dolor, se ha demostrado que las respuestas comportamentales son más consistentes y específicas que las fisiológicas. Se consideran a las medidas fisiológicas más objetivas y sensibles, mas no son específicas del dolor.26

Los neonatos expuestos a estímulos dolorosos presentan múltiples manifestaciones:

- **Expresión psicoemocional:** llanto con un tono altamente agudo, movimientos faciales (entrecejo fruncido, ojos apretados, arruga el área naso labial, boca abierta), posición corporal antiálgica. Los RNaT generalmente expresan el dolor a través del llanto y movimientos corporales, acompañados de taquicardia y aumento de la presión arterial, mientras que los RNpT, especialmente los más inmaduros, pueden llegar a un estado letárgico y sin respuesta.

- **Autonómica:** taquicardia, taquipnea, hipertensión arterial, diaforesis, midriasis, palidez, tensión muscular, disminución de la SatO2, aumento del consumo de oxígeno, disminución del peristaltismo.

- **Metabólica:** Hiperglucemia, catabolismo de proteínas aumentado.
- **Hormonal**: Aumento de cortisol, glucagón, aldosterona, catecolaminas y endorfinas y disminución de insulina.\(^{30,47}\)

2.10 IMPACTO DEL DOLOR A CORTO Y LARGO PLAZO

El dolor en los recién nacidos induce cambios fisiológicos, hormonales y biológicos. Las alteraciones agudas se han estudiado ampliamente, sin embargo, las complicaciones a largo plazo son controversiales, debido a la complejidad del seguimiento de los pacientes en la infancia y vida adulta. Varios autores plantean que las respuestas neuroendocrinas al dolor inducen cambios en el desarrollo neurobiológico por lo que se producen alteraciones moleculares que persisten a lo largo del tiempo. Gruña, entre otros autores, concluyen que los niños expuestos a estrés y dolor neonatal pueden posteriormente presentar dificultades en los procesos de aprendizaje y de comportamiento, en el desarrollo emocional y social, así como en las funciones de la memoria y la autorregulación del dolor. Esto se atribuye, entre otras, a los niveles basales elevados de cortisol y cambios neuroendocrinos.

Por otro lado se plantea que tras varios estímulos dolorosos y/o una intervención quirúrgica, los neonatos pueden perder la capacidad de regular los sistemas de respuesta ante estrés y la hipersensibilidad. Por este motivo, el dolor puede persistir a lo largo de los años, similar a lo que puede ocurrir en adultos también.\(^{35}\) Grunau, 2001, también plantea como posibles factores influyentes, los ambientales, sociales, maternos,
genéticos y patológicos, los mismos que pueden ejercer efectos nocivos adicionales haciendo más difícil la valoración del dolor.35

Consecuencias a corto plazo

Dentro de las complicaciones a corto plazo están los estados de hipoxemia, hipercarbia, acidosis, hiperglicemia o distrés respiratorio. Se ha demostrado, también, que la recuperación postquirúrgica es mucho más rápida en los recién nacidos que recibieron adecuada analgesia perioperatoria.31

Los RNpT son más vulnerables a efectos negativos del dolor debido a que generalmente se encuentran expuestos repetidamente y por un tiempo más prolongado a procedimientos dolorosos en la UCIN. En el año 2001, Grunau et al., estudiaron a 136 RNpT entre 23 a 32 semanas de edad gestacional, y observaron a los pacientes luego de la realización de una punción de talón. En los neonatos que al nacimiento tuvieron peso y edad gestacional más bajos, se encontraron, frecuencias cardiacas en reposo más altas. Concluyeron que la exposición temprana y frecuente al dolor está asociada a un posterior desarrollo de un estado de estrés continuo y sugiere que un adecuado uso de la analgesia puede ser eficaz para modular este efecto.30

Marshall, Stratton, Moore & Boxerman, 1980, demostraron que en neonatos que fueron sometidos a circuncisión sin aplicar anestesia, los efectos a corto plazo incluyen patrones de sueño alterados, agitación y aumentos en las cifras de frecuencia cardíaca.30
Tabla 4. Respuesta fisiológica aguda ante estímulos dolorosos

<table>
<thead>
<tr>
<th>RESPUESTA FISIOLÓGICA AGUDA ANTE ESTÍMULOS DOLOROSOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESPUESTA CONDUCTUAL</td>
</tr>
<tr>
<td>• Movimientos faciales</td>
</tr>
<tr>
<td>• Movimientos corporales</td>
</tr>
<tr>
<td>• Tono muscular aumentado</td>
</tr>
<tr>
<td>• Llanto</td>
</tr>
<tr>
<td>CARDIORESPIRATORIO</td>
</tr>
<tr>
<td>• Aumento FC Y PA</td>
</tr>
<tr>
<td>• Disminuye variabilidad de FC (modulación autonómica)</td>
</tr>
<tr>
<td>• Taquipnea</td>
</tr>
<tr>
<td>• Desaturación de oxígeno</td>
</tr>
<tr>
<td>NEUROFISIOLÓGICO</td>
</tr>
<tr>
<td>• Espectroscopía</td>
</tr>
<tr>
<td>Aumento de flujo sanguíneo en corteza somatosensorial</td>
</tr>
<tr>
<td>• Electroencefalografía</td>
</tr>
<tr>
<td>Cambios específicos en actividad cerebral</td>
</tr>
<tr>
<td>• RMN funcional</td>
</tr>
<tr>
<td>Respuesta cortical a estímulos periféricos</td>
</tr>
<tr>
<td>HORMONAL</td>
</tr>
<tr>
<td>• Aumento de cortisol</td>
</tr>
<tr>
<td>• Aumento de catecolaminas</td>
</tr>
</tbody>
</table>

Modificado por: Daniela Grijalva, Bárbara Helbling, 2015

Consecuencias a largo plazo

Taddio et al. demuestran que los pacientes expuestos pueden presentar una respuesta exagerada al dolor en la infancia tardía. Se plantea la teoría que los infantes pueden retener una memoria de las experiencias dolorosas, lo que posteriormente, puede causar que estos sean propensos a desarrollar trastornos de ansiedad y también presentar una hipersensibilidad al dolor en la vida adulta. Debido a que estas experiencias dolorosas ocurren repetidamente durante un periodo de un rápido desarrollo cortical, se puede además alterar negativamente el desarrollo subsecuente del sistema nervioso.30
El dolor crónico también ha sido implicado en el fenómeno de muerte neuronal excitatoria, diferente de la apoptosis y mediada por NMDA, a nivel de diversas estructuras encefálicas (hipotálamo, tálamo, hipocampo y córtex). 36

El dolor no tratado en recién nacidos puede contribuir significativamente al incremento de morbilidad y mortalidad. Investigadores atribuyen que, la alta mortalidad postoperatoria, el desarrollo deficiente relacionado a un prolongado catabolismo de proteínas y la necesidad de utilizar ventilación mecánica por un tiempo prolongado, han sido atribuidas a que el dolor no sea tratado de una manera adecuada o no sea tratado en absoluto. 30
Tabla 5. Resumen de los factores relacionados con el impacto del dolor neonatal a largo plazo

<table>
<thead>
<tr>
<th>FACTORES DE POTenciales CONFUSION TrAS EL ESTÍMULO INICIAL</th>
<th>Nivel de desarrollo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genero</td>
<td></td>
</tr>
<tr>
<td>Enfermedades concomitantes</td>
<td></td>
</tr>
<tr>
<td>Estrés</td>
<td></td>
</tr>
<tr>
<td>Carga inmunológica</td>
<td></td>
</tr>
<tr>
<td>Factores sociales</td>
<td></td>
</tr>
<tr>
<td>Dosis y tipo de analgesia</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ORIGEN Y TIPO DE DOLOR INICIAL Y LESIÓN</th>
<th>UCIN: procedimientos +/- cirugías</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Venopunciones repetidas</td>
</tr>
<tr>
<td></td>
<td>Cirugía</td>
</tr>
<tr>
<td></td>
<td>Circuncisión</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TIEMPO</th>
<th>Edad al momento del estímulo doloroso</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intervalo previo a la evaluación</td>
</tr>
<tr>
<td></td>
<td>Edad al momento del seguimiento</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ESTÍMULOS SUBSEQUENTES</th>
<th>Estímulos nocivos experimentales</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Procedimientos</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RESULTADO</th>
<th>Responsa conductual</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Requerimiento de analgesia perioperatoria</td>
</tr>
</tbody>
</table>

Fuente: Clinics in Perinatology, 2013; 40 (3): 471–491
Editado por: Daniela Grijalva, Bárbara Helbling, 2015

2.11 ANALGESIA

En el año 2006, la APP y la CPS indicaron en sus guías que todo establecimiento de salud que trate a neonatos debe establecer un programa de control para el dolor en recién nacidos. Existe un esquema paso a paso, que incluye medidas farmacológicas y no farmacológicas que se deben utilizar en el tratamiento del dolor agudo en neonatos.42
Tabla 6. Esquema paso a paso para el tratamiento del dolor agudo en neonatos

<table>
<thead>
<tr>
<th>MEDICAMENTO UTILIZADO (EJEMPLO)</th>
<th>SEDACIÓN/ANALGESIA O ANESTESIA GENERAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>PASO 6</td>
<td>Fentanil, anestésicos o sedantes</td>
</tr>
<tr>
<td>ANESTESIA LOCAL: INFILTRACIÓN SUBCUTÁNEA O BLOQUEO NERVIOSO</td>
<td>PASO 5 Lidocaína, bupivacaína</td>
</tr>
<tr>
<td>INFUSIÓN INTRAVENOSA DE OPIOIDES</td>
<td>PASO 4 Fentanil, Morfina, Remifentanilo</td>
</tr>
<tr>
<td>ACETAMINOFEN O AINES</td>
<td>PASO 3 Acetaminofen, ibuprofeno</td>
</tr>
<tr>
<td>ANESTÉSICOS TÓPICOS</td>
<td>PASO 2 Lidocaína, Tetracaína</td>
</tr>
<tr>
<td>SUCCIÓN NO NUTRITIVA, SACAROSA, MANEJO CANGURO, LACTANCIA MATerna</td>
<td>PASO 1 Sacarosa 24%, glucosa 30%, leche materna</td>
</tr>
<tr>
<td>EVITAR PROCEDIMIENTOS DOLORosos</td>
<td>Línea de Base Ninguna</td>
</tr>
</tbody>
</table>

Tomado de: Pain Clinical Updates. Dec 2011; Vol. XIX
Modificado por: Daniela Grijalva, Barbara Helbling, 2015

Medidas no farmacológicas

- **Prevención**: limitar el número de procedimientos para diagnóstico y tratamiento realizados en recién nacidos.\(^\text{36,42}\)

- **Succión no nutritiva**: Se ha demostrado mediante estudios, que la utilización de la misma durante procedimientos dolorosos tiene como resultados disminución del llanto, cifras de la frecuencia cardíaca más bajas y niveles de saturación de oxígeno más elevados.\(^\text{36,42}\)
- **Soluciones dulces:** Una revisión sistemática Cochrane, publicada en el año 2010, concluyó que la utilización de soluciones dulces, como la solución de sacarosa al 24% unos pocos minutos antes de la realización de un procedimiento doloroso, como venopunción o punción de talón, es segura y eficaz para producir un efecto analgésico durante dichos procedimientos en neonatos.36,42

 - 24–26 semanas de gestación: 0.1 mL
 - 27–31 semanas de gestación: 0.25 mL
 - 32–36 semanas de gestación: 0.5 mL
 - >37 semanas de gestación: 1 mL

- **Plan canguro:**

 El “Plan canguro” se trata de un método propuesto por primera vez en 1978 por los doctores Rey y Martínez en Bogotá, Colombia, donde se desarrolló como alternativa a los cuidados en incubadora, dispensados a RNPT que habían superado dificultades iniciales y que necesitaban únicamente alimentarse y crecer. En un inicio fue implementado en centros de salud de países en vías de desarrollo, convirtiéndose en un método que en la actualidad se utiliza en las UCIN a nivel mundial. Sus principales características son el contacto piel a piel temprano, continuo y prolongado entre la madre y el bebé y la lactancia materna exclusiva. Se ha demostrado que el “Plan canguro” repercute eficazmente en el control de la temperatura, la lactancia materna y el desarrollo de vínculos afectivos.50
Gray, entre otros autores, encontró que el contacto piel con piel entre el recién nacido y la madre durante 10–15 minutos reduce la frecuencia cardíaca, llanto y muecas durante la punción de talón.\(^{42}\)

- **Lactancia materna**
- **Reducción de los niveles de ruido en la UCIN**
- **Evitar la exposición a luces brillantes**

Tabla 7. Resumen de las principales medidas no farmacológicas

| MEDIDAS AMBIENTALES | • Evitar el ruido
| | • Disminuir la luminosidad
| | • Respetar ciclo vigilia/sueño
| | • Agrupar tareas
| | • Seleccionar procedimientos
| MEDIDAS DE DISTRACCION | • Música
| | • Voz materna
| | • Mecer
| MEDIDAS DE POSICIONAMIENTO | • Plegamiento facilitado
| | • Envolver al RN durante procedimientos
| MEDIDAS TACTILES | • Masajear
| | • Técnica canguro
| SUCCIÓN | • Sacarosa
| MEDIDAS NUTRITIVAS | • Glucosa
| | • Leche materna
| | • Succión no nutritiva
| TÉCNICAS NO INVASIVAS | • Pulsioxímetro
| | • Medición transcutánea de bilirrubinemia

*Fuente: Protocolos Diagnóstico Terapéuticos de la AEP: Neonatología 2008; 49:466
Modificado por: Daniela Grijalva, Bárbara Helbling, 2015*
Medidas farmacológicas

Analgésicos opioides

- **Fentanilo**: En recién nacidos pretérmino y a término, disminuye la respuesta al dolor, los episodios de hipoxia y los niveles de hormonas producidos en respuesta a estrés. También reduce el dolor en el periodo postquirúrgico. Saarenmaa et al., 1999, compararon los efectos del Fentanilo vs Morfina en los primeros 2 días de vida de recién nacidos sometidos a ventilación mecánica y demostraron que el Fentanilo produce efectos hipotensores y sedativos menos severos que la Morfina, además tiene menos efectos en la motilidad del sistema gastrointestinal, menor retención urinaria y puede tener un efecto analgésico a corto plazo superior. Sin embargo, se ha visto que este puede provocar mayor tolerancia a los opioides.

Analgésicos no opioides

- **Paracetamol**: Puede ser utilizado en dolor leve o moderado. El aclaramiento plasmático del paracetamol es más lento en RNAT y pretérmino, en comparación a niños mayores, por lo que se requiere la aplicación de una nueva dosis menos frecuentemente.

Se recomienda dar dosis de 10–15 mg/kg VO cada 6-8 horas. Para administración intravenosa se recomienda una dosis de carga de 20 mg/kg, seguida por una dosis de 10 mg/kg cada 6–8 horas.
No se debe exceder una dosis máxima de 40 mg/kg/día para recién nacidos de 26 a 32 semanas, y de 60 mg/kg/día para niños de 32 a 42 semanas debido a la inmadurez de las enzimas hepáticas.42

Sedantes

Las benzodiacepinas como el Diazepam y Midazolam son utilizadas para tratar la agitación, mas no para tratar el dolor.

- **Diazepam:** Efecto sedante potente con una vida media larga (20 a 80 horas)
- **Midazolam:** Posee un efecto sedante potente. Vida media de 1 a 3 horas.

A continuación presentamos las dosis, recomendadas internacionalmente, de los medicamentos analgésicos y sedantes más utilizados en el área de neonatología del HGOIA:
Tabla 8. Dosis y posología de los analgésicos y sedantes más utilizados en neonatología

<table>
<thead>
<tr>
<th>MEDICAMENTO</th>
<th>VÍA DE ADMINISTRACIÓN</th>
<th>DOSIS</th>
<th>POSOLOGÍA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACETAMINOFÉN</td>
<td>Rectal</td>
<td>20-25mg/kg</td>
<td>Cada 6-8 horas</td>
</tr>
<tr>
<td></td>
<td>Vía oral</td>
<td>10-15mg/kg</td>
<td>Cada 6-8 horas</td>
</tr>
<tr>
<td></td>
<td>Intravenoso</td>
<td>Inicio: 20mg/kg
Mantenimiento: 10 mg/kg
Max. 40mg/kg/día (RNPT)
Max. 60mg/kg/día (RNAT)</td>
<td>Cada 6-8h</td>
</tr>
<tr>
<td>IBUPROFENO</td>
<td>No existen estudios sobre su eficacia analgésica en recién nacidos.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MORFINA</td>
<td>Intravenoso</td>
<td>10-30ug/kg/h</td>
<td>Infusión continua</td>
</tr>
<tr>
<td>FENTANILO</td>
<td>Intravenoso</td>
<td>0.5-1 mcg/kg/h</td>
<td>Infusión continua</td>
</tr>
<tr>
<td>REMIFENTANILO</td>
<td>Intravenoso</td>
<td>0.4-1 mcg/kg/min</td>
<td>Infusión contínua</td>
</tr>
<tr>
<td></td>
<td>(Con Óxido nítrico)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

La AEP incluye en los Protocolos de manejo del dolor, pautas analgésicas según el procedimiento. Mencionaremos a continuación algunas de sus recomendaciones:

- Punción de talón: Sacarosa/glucosa. Evitar expresión para obtener la sangre.
- Cateterismo periférico: sacarosa/opioïdes/ EMLA
- Catéter umbilical: sacarosa, maniobras de contención
- Extracciones hemáticas: EMLA, sacarosa, contención
- Catéter central: opioides/ EMLA
- Intubación endotraqueal: Combinaciones de opioides y sedantes. Considerar relajantes musculares

- Aspiración secreciones respiratorias: sacarosa, técnicas táctiles y/o de posicionamiento

- Punción lumbar/suprapúbica: sacarosa, EMLA, lidocaína subcutánea.
CAPÍTULO III. MATERIALES Y MÉTODOS

3.1 JUSTIFICACIÓN

Se estima que en las salas de Cuidados Críticos e Intermedios de Neonatología, se realizan aproximadamente 5 a 14 procedimientos dolorosos al día, sin brindar una adecuada analgesia. Como mencionado anteriormente, la evidencia actual demuestra que la exposición prolongada y permanente a estos estímulos dolorosos produce respuestas fisiológicas, metabólicas y conductuales que traen consecuencias nocivas a corto y largo plazo; inclusive se ha visto que aumentan las tasas de morbimortalidad.

En la Maternidad Isidro Ayora, institución en la que se realizó el presente estudio, hospital materno infantil de referencia en el Ecuador, hay un promedio de 30 nacimientos al día, de los cuales el 75% corresponde a hijos de madres adultas; el 20% ingresa a Cuidados Intensivos e Intermedios Neonatales.

Consideramos que actualmente, en el Ecuador, a pesar de la existencia de dichos estudios sobre el dolor en recién nacidos y las normas del MSP, existen pocas instituciones que utilicen dichas medidas y no se da la importancia debida a la prevención, tratamiento y complicaciones del dolor en estos pacientes.

El concepto erróneo de que la percepción del dolor en neonatos es escasa o nula, ha conducido a que las herramientas para su valoración, como por ejemplo escalas, y las medidas analgésicas sean subestimadas y poco utilizadas en este grupo etario. El manejo para la prevención y el tratamiento del mismo es ausente o insuficiente en las áreas
críticas de Neonatología en nuestro país y en otros lugares del mundo. Esto ocurre especialmente en países subdesarrollados o en vías de desarrollo, dónde hay una alta demanda de pacientes y bajos recursos económicos, por lo que se da prioridad a otros aspectos de la salud.

Planteamos este estudio con el fin de demostrar la importancia del dolor neonatal y, ojalá, poder integrar estas escalas a las normatizaciones estándar del cuidado neonatal, especialmente en la UCIN, dónde los procedimientos estresantes son frecuentes.

Esperamos de esta forma, poder aportar a que los recién nacidos obtengan mayor beneficio de medidas analgésicas, y poder alcanzar un enfoque de integralidad en el cuidado neonatal para humanizar el manejo de este grupo de pacientes.

Considerando que la aplicación de la escala de CRIES, para la valoración del dolor neonatal, es más simple, y el tiempo de aplicación es menor, en comparación a otras escalas con el mismo fin, nos planteamos el objetivo de validar la misma en la unidad de neonatología del HGOIA. Este hospital de referencia nacional, es idóneo para obtener una muestra significativa y posteriormente poder justificar la implementación a nivel del país.

La aplicación de la escala se realizará antes y después de cada procedimiento doloroso, en diferentes grupos de neonatos del HGOIA seleccionados al azar para garantizar la confiabilidad y eficacia de la escala, teniendo como Estándar de Oro la prueba de PIPP.
3.2 PROBLEMA DE INVESTIGACION

¿Es válida la escala de CRIES para la valoración del dolor luego de un procedimiento invasivo en recién nacidos del HGOIA en los meses de junio a agosto del año 2015?

3.3 OBJETIVOS

3.3.1 Objetivo General

Determinar la validez de la escala de CRIES para la valoración del dolor luego de un procedimiento invasivo en recién nacidos del HGOIA en los meses de junio y agosto del año 2015.

3.3.2 Objetivos Específicos

- Determinar la sensibilidad y especificidad de la escala de CRIES para la valoración del dolor luego de un procedimiento doloroso en el Servicio de Neonatología del HGOIA en los meses de junio a agosto del año 2015.
- Determinar el valor predictivo positivo, predictivo negativo de la escala de CRIES para la valoración del dolor luego de un procedimiento doloroso en el Servicio de Neonatología del HGOIA en los meses de junio a agosto del año 2015.
- Determinar si existe relación entre la percepción del dolor y la edad gestacional, sexo, analgesia recibida y tipo de parto.
3.4 HIPÓTESIS

La escala de CRIES tiene la misma capacidad métrica que la escala de PIPP para la valoración del dolor en recién nacidos luego de un procedimiento invasivo.

3.5 OPERACIONALIZACIÓN DE VARIABLES

Tabla 9. Operacionalización de variables

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>DEFINICIÓN</th>
<th>TIPO DE VARIABLE</th>
<th>ESCALA</th>
<th>DIMENSIÓN</th>
<th>INDICADOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dolor</td>
<td>Experiencia sensitiva y emocional desagradable ocasionada por una lesión tisular real o potencial.</td>
<td>Cualitativa</td>
<td>Ordinal ESCALA DE PIPP ESCALA DE CRIES</td>
<td>Leve Moderado Severo</td>
<td></td>
</tr>
<tr>
<td>Frecuencia cardiaca</td>
<td>Aumento de frecuencia cardiaca basal del RN, medida en latidos por minuto.*</td>
<td>Cuantitativa Intervalo</td>
<td>ESCALA DE PIPP</td>
<td>0-4 lpm 5-14 lpm 15-24 lpm >25 lpm</td>
<td></td>
</tr>
<tr>
<td>Saturación de O2</td>
<td>Disminución de satO2 medida en porcentaje.</td>
<td>Cuantitativa Porcentaje</td>
<td>ESCALA DE PIPP</td>
<td>0-2.4% 2.5-4.9% 5-7.4% >7.5%</td>
<td></td>
</tr>
<tr>
<td>Comportamiento</td>
<td>Actividad del RN comparada con la previa al estímulo doloroso.</td>
<td>Cualitativa Ordinal</td>
<td>ESCALA DE PIPP</td>
<td>Despierto y activo Despierto e inactivo Dormido y activo Dormido e inactivo</td>
<td></td>
</tr>
</tbody>
</table>

* En este estudio se considerará basal a los valores medidos antes del estímulo doloroso, independientemente si estos estén dentro de los rangos esperados para la edad.
<table>
<thead>
<tr>
<th>Entrecéjo Fruncido</th>
<th>Pliegues intercelares comparados con la apariencia del entrecéjo previa al estímulo doloroso.</th>
<th>Cuantitativa</th>
<th>Intervalo</th>
<th>ESCALA DE PIPP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>0-3 seg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-12 seg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12-21 seg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>>21 seg</td>
<td></td>
</tr>
<tr>
<td>Ojos apretados</td>
<td>Oclusión de los párpados comparada a la apariencia de los mismos, previas al estímulo doloroso.</td>
<td>Cuantitativa</td>
<td>Intervalo</td>
<td>ESCALA DE PIPP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0-3 seg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-12 seg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12-21 seg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>>21 seg</td>
<td></td>
</tr>
<tr>
<td>Surco nasolabial</td>
<td>Contracción del surco nasolabial comparado con la apariencia previa al estímulo doloroso</td>
<td>Cuantitativa</td>
<td>Intervalo</td>
<td>ESCALA DE PIPP</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0-3 seg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3-12 seg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12-21 seg</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>>21 seg</td>
<td></td>
</tr>
<tr>
<td>Fio2 para SatO2 >95%</td>
<td>Fracción inspirada de oxígeno requerida para una saturación mayor al 95%. Independientemente a los valores previos al estímulo doloroso.</td>
<td>Cuantitativa</td>
<td>Porcentaje</td>
<td>ESCALA DE CRIES</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>21%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>22-30%</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>>30%</td>
<td></td>
</tr>
<tr>
<td>FC y TA sistólica</td>
<td>Aumento de la frecuencia cardíaca y la presión arterial sistólica respecto a los valores basales. Expresado en porcentaje.*</td>
<td>Cualitativa</td>
<td>Ordinal</td>
<td>ESCALA DE CRIES</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Igual a la cifra basal</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aumento menor al 20% de la basal</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aumento mayor al 20% de la basal</td>
<td></td>
</tr>
<tr>
<td>Llanto</td>
<td>Lloriqueo y/o sollozo del RN luego del procedimiento doloroso. El llanto de un RN intubado será valorado por sus movimientos faciales y bucales.</td>
<td>Cualitativa</td>
<td>Ordinal</td>
<td>ESCALA DE CRIES</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>No llora, tranquilo</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Llanto consolable</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Llanto intenso, no consolable</td>
<td></td>
</tr>
<tr>
<td>Expresión</td>
<td>Pliegues faciales y muecas emitidas por el recién nacido luego del procedimiento doloroso.</td>
<td>Cualitativa</td>
<td>Ordinal</td>
<td>ESCALA DE CRIES</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Períodos de sueño</td>
<td>Estado de sueño/vigilia luego del procedimiento doloroso.</td>
<td>Cualitativa</td>
<td>Ordinal</td>
<td>ESCALA DE CRIES</td>
</tr>
<tr>
<td>Edad gestacional</td>
<td>Edad en semanas de un recién nacido desde el primer día de la última menstruación.</td>
<td>Cuantitativa</td>
<td>Intervalo</td>
<td>ESCALA DE PIPP</td>
</tr>
<tr>
<td>Sexo</td>
<td>Condición por la que se distinguen los hombres de las mujeres, teniendo como parámetro los genitales externos.</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td>Genitales externos</td>
</tr>
<tr>
<td>Analgesia</td>
<td>Desaparición provocada o natural de cualquier sensación de dolor</td>
<td>Cualitativa</td>
<td>Nominal</td>
<td>Tratamiento farmacológico</td>
</tr>
<tr>
<td>Procedimiento</td>
<td>Plan de acción destinado a lograr un resultado en el cuidado de personas con problemas de salud</td>
<td>Cualitativo</td>
<td>Ordinal</td>
<td>Intervención dolorosa</td>
</tr>
</tbody>
</table>
3.6 TIPO DE ESTUDIO

Estudio tipo analítico transversal para evaluación de prueba diagnóstica, realizado en los recién nacidos sometidos a procedimientos dolorosos en el Hospital Gineco Obstétrico Isidro Ayora durante los meses de Junio y Agosto del 2015.

3.7 POBLACIÓN Y MUESTRA

Universo

Todos los neonatos nacidos en el HGOIA, hospitalizados en UCIN y neonatos sometidos a cirugía de cuidados intermedios.

Población de referencia

La población de referencia corresponderá a los pacientes neonatos, a los que se les realice algún procedimiento invasivo mientras se encuentren hospitalizados en cuidados intermedios o intensivos del servicio de Neonatología del HGOIA.

Población de estudio

La presente investigación se llevará a cabo en recién nacidos hospitalizados en el servicio de Neonatología del HGOIA, que cumplan con los criterios de inclusión, en el periodo de Junio a Agosto del 2015. La población está dividida en dos grupos: quirúrgicos y no quirúrgicos.
Muestra

El HGOIA es un Hospital de Especialidad para madres embarazadas y recién nacidos de referencia nacional. Según los datos registrados por el Departamento de Estadística de esta institución, un promedio de 2356 neonatos son admitidos a la unidad de Cuidados Intermedios e Intensivos al año. El 83.4% corresponde a Cuidados Intermedios y el 16.6% a Cuidados Intensivos.

La muestra del presente estudio fue tomada en las salas de Cuidados Intermedios, de las cuales únicamente se tomaron en cuenta los neonatos que requerían de cirugía y en la Unidad de Cuidados Intensivos, donde se incluyó a todos recién nacidos (quirúrgicos o no quirúrgicos) que fueron sometidos a algún procedimiento doloroso. Para el análisis se dividió la muestra en los dos grupos mencionados anteriormente.

Cálculo del tamaño de muestra

Para el cálculo del tamaño de la muestra se utilizó el programa “Calculek”, tomando en cuenta el total de neonatos hospitalizados al mes que cumplían con los criterios de inclusión.
3.7.1 Criterios de Inclusión

- Neonatos sometidos a procedimientos dolorosos en el servicio de Neonatología del Hospital Gineco Obstétrico Isidro Ayora durante los meses de junio y agosto del 2015.

- Recién nacidos que permanecen en alojamiento conjunto que no son sometidos a procedimientos dolorosos en el Hospital Gineco Obstétrico Isidro Ayora durante los meses de junio y agosto del 2015.

- Hijos de madres adultas ingresados al Servicio de Neonatología del Hospital Gineco Obstétrico Isidro Ayora durante los meses de junio y agosto del 2015.
3.7.2 Criterios de Exclusión

- Recién nacidos que no tengan el consentimiento informado en su historia clínica.
- Hijos de madres adolescentes.
- Pacientes sedados.

3.7.3 Recolección de la información

La recopilación de la información se realizó por medio de un formato de recolección de datos, que incluyó el consentimiento informado y la información básica de los neonatos participantes, incluyendo identificación, datos clínicos y las escalas de evaluación del dolor (Anexo 2).

La evaluación del dolor en neonatos se realizó de distinta manera, según los grupos:

Quirúrgicos

Los datos basales de las escalas se obtuvieron antes de que el neonato sea intervenido quirúrgicamente. Se aplicó las escalas del dolor en el postquirúrgico inmediato, mediato y tardío.

No quirúrgicos

En este grupo se obtuvieron los datos basales de los pacientes de la UCIN en reposo, inmediatamente antes de que se realice el procedimiento invasivo (no quirúrgico) y se aplicó las escalas durante el procedimiento.

Las escalas fueron aplicadas por las autoras de este estudio, teniendo un conocimiento previo del mecanismo de aplicación y su respectiva interpretación.
3.7.4 Prueba piloto

Se aplicó inicialmente la prueba piloto a 20 neonatos de todas las salas de hospitalización neonatal del HGOIA que cumplieron los criterios de selección y fueron sometidos a procedimientos dolorosos (punción de talón, venopunción).

Esto permitió identificar falencias en la aplicación de las escalas y la población incluida.

Una vez corregidos los problemas identificados en la prueba piloto, se procedió a la validación de la escala de CRIES (resultados definitivos), y se aplicó la misma al número de niños de la muestra calculada.

3.8 ASPECTOS BIOÉTICOS

Se incluirán las normas planteadas por la declaración de Helsinki para las investigaciones médicas en los seres humanos.

Todas las escalas que se aplicarán a los pacientes serán con previa autorización y firma del consentimiento informado por del representante legal del recién nacido, y autorización de la Gerencia y jefes del Servicio de Neonatología del HGOIA. La obtención de datos será confidencial, sin conocer la identidad del recién nacido o sus padres. Toda la información recopilada será única y exclusivamente con fines investigativos. (Anexo 1)
3.9 LIMITACIONES Y DELIMITACIONES

Limitaciones

- Subjetividad de ciertos parámetros referentes al dolor establecidos en dichas escalas.
- Disponibilidad de monitores para la medición de constantes vitales.
- Accesibilidad a los pacientes críticos ingresados en el servicio de Neonatología del HGOIA.
- Cooperación del personal de salud del servicio de Neonatología del HGOIA.
- Consentimiento del representante legal del neonato.

Delimitaciones

- Se realizará la recopilación de la información mediante la aplicación de las escalas a los neonatos que permanecen en las salas de alojamiento conjunto y a los que se encuentran sometidos a procedimientos dolorosos ingresados en el servicio de Neonatología del Hospital Gineo Obstétrico Isidro Ayora durante los meses de Junio y Agosto del 2015.
3.10 RECURSOS

- Recién nacidos sometidos a procedimientos invasivos en el servicio de Neonatología del Hospital Gineco Obstétrico Isidro Ayora durante los meses de Junio y Agosto del 2015.
- Escalas de PIPP y CRIES para la valoración de dolor neonatal.
- Programa informático para tabulación de datos.
- Económicos.
CAPITULO IV. RESULTADOS

4.1 ANALISIS UNIVARIAL

Se aplicaron las escalas anteriormente mencionadas a 65 recién nacidos ingresados en las salas de Cuidados Intermedios e Intensivos de Neonatología del Hospital Gineco Obstétrico Isidro Ayora en el periodo de junio a agosto del 2015, de los cuales 38 fueron pacientes sometidos a procedimientos invasivos (no quirúrgicos), 18 que fueron intervenidos quirúrgicamente y 13 controles; los mismos que cumplieron con todos los criterios de inclusión y exclusión expuestos.

Gráfico 1. Porcentaje de pacientes quirúrgicos y no quirúrgicos

Fuente: Base de datos, SPSS 22
Realizada por Daniela Grijalva y Bárbara Helbling.
Estudio Dolor neonatal. HGOIA. Quito. 2015
Gráfico 2. Porcentaje de acuerdo al sexo de recién nacidos estudiados

Fuente: Base de datos, SPSS 22
Realizada por Daniela Grijalva y Bárbara Helbling.
Estudio Dolor neonatal. HGOIA. Quito. 2015
Gráfico 3. Frecuencia según edad gestacional en recién nacidos estudiados

¡Fuente: Base de datos, SPSS 22
Realizada por Daniela Grijalva y Bárbara Helbling.
Estudio Dolor neonatal. HGOIA. Quito. 2015
Gráfico 4. Porcentaje de pacientes nacidos por parto céfalo vaginal y cesárea

Fuente: Base de datos, SPSS 22
Realizada por Daniela Grijalva y Bárbara Helbling.
Estudio Dolor neonatal. HGOIA. Quito. 2015
<table>
<thead>
<tr>
<th>CRIES</th>
<th>Frecuencia</th>
<th>Porcentaje</th>
<th>Porcentaje válido</th>
<th>Porcentaje acumulado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inmediato</td>
<td>Sin Dolor – Leve</td>
<td>21</td>
<td>67,7</td>
<td>67,7</td>
</tr>
<tr>
<td></td>
<td>Moderado – Severo</td>
<td>10</td>
<td>32,3</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>31</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>24 horas</td>
<td>Sin Dolor – Leve</td>
<td>23</td>
<td>74,2</td>
<td>74,2</td>
</tr>
<tr>
<td></td>
<td>Moderado – Severo</td>
<td>8</td>
<td>25,8</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>31</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>48 horas</td>
<td>Sin Dolor – Leve</td>
<td>22</td>
<td>71</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>Moderado – Severo</td>
<td>9</td>
<td>29</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>31</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>72 horas</td>
<td>Sin Dolor – Leve</td>
<td>27</td>
<td>87,1</td>
<td>87,1</td>
</tr>
<tr>
<td></td>
<td>Moderado – Severo</td>
<td>4</td>
<td>12,9</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>31</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Fuente: Base de datos, SPSS 22
Realizada por Daniela Grijalva y Bárbara Helbling.
Estudio Dolor neonatal. HGOIA. Quito. 2015
Tabla 12. Valoración del dolor mediante la escala de PIPP en periodos postquirúrgicos

<table>
<thead>
<tr>
<th></th>
<th>Frecuencia</th>
<th>Porcentaje</th>
<th>Porcentaje válido</th>
<th>Porcentaje acumulado</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIPP Inmediato</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sin Dolor – Leve</td>
<td>20</td>
<td>64,5</td>
<td>64,5</td>
<td>64,5</td>
</tr>
<tr>
<td>Moderado – Severo</td>
<td>11</td>
<td>35,5</td>
<td>35,5</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>31</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>PIPP 24 horas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sin Dolor – Leve</td>
<td>24</td>
<td>77,4</td>
<td>77,4</td>
<td>77,4</td>
</tr>
<tr>
<td>Moderado – Severo</td>
<td>7</td>
<td>22,6</td>
<td>22,6</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>31</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>PIPP 48 horas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sin Dolor – Leve</td>
<td>26</td>
<td>83,9</td>
<td>83,9</td>
<td>83,9</td>
</tr>
<tr>
<td>Moderado – Severo</td>
<td>5</td>
<td>16,1</td>
<td>16,1</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>31</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>PIPP 72 horas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sin Dolor – Leve</td>
<td>29</td>
<td>93,5</td>
<td>93,5</td>
<td>93,5</td>
</tr>
<tr>
<td>Moderado – Severo</td>
<td>2</td>
<td>6,5</td>
<td>6,5</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>31</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Base de datos, SPSS 22
Realizada por Daniela Grijalva y Bárbara Helbling.
Estudio Dolor neonatal. HGOIA. Quito. 2015

Tabla 13. Valoración del dolor mediante la escala de CRIES durante el procedimiento en pacientes no quirúrgicos

<table>
<thead>
<tr>
<th></th>
<th>Frecuencia</th>
<th>Porcentaje</th>
<th>Porcentaje válido</th>
<th>Porcentaje acumulado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Válido</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sin Dolor – Leve</td>
<td>22</td>
<td>43,1</td>
<td>43,1</td>
<td>43,1</td>
</tr>
<tr>
<td>Moderado – Severo</td>
<td>29</td>
<td>56,9</td>
<td>56,9</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>51</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Base de datos, SPSS 22
Realizada por Daniela Grijalva y Bárbara Helbling.
Estudio Dolor neonatal. HGOIA. Quito. 2015
Tabla 14. Valoración del dolor mediante la escala de PIPP durante el procedimiento en pacientes no quirúrgicos

<table>
<thead>
<tr>
<th>Válido</th>
<th>Frecuencia</th>
<th>Porcentaje</th>
<th>Porcentaje válido</th>
<th>Porcentaje acumulado</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sin Dolor – Leve</td>
<td>19</td>
<td>37,3</td>
<td>37,3</td>
<td>37,3</td>
</tr>
<tr>
<td>Moderado - Severo</td>
<td>32</td>
<td>62,7</td>
<td>62,7</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>51</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Base de datos, SPSS 22
Realizada por Daniela Grijalva y Bárbara Helbling.
Estudio Dolor neonatal. HGOIA. Quito. 2015

Gráfico 5. Frecuencia según tipo de analgesia utilizada en el total de recién nacidos estudiados

Fuente: Base de datos, SPSS 22
Realizada por Daniela Grijalva y Bárbara Helbling.
Estudio Dolor neonatal. HGOIA. Quito. 2015
Gráfico 6. Frecuencia según tipo de analgesia utilizada en el grupo de los recién nacidos no quirúrgicos

Fuente: Base de datos, SPSS 22
Realizada por Daniela Grijalva y Bárbara Helbling.
Estudio Dolor neonatal. HGOIA. Quito. 2015
Gráfico 7. Frecuencia según tipo de analgesia utilizada en el grupo de recién nacidos postquirúrgicos

Fuente: Base de datos, SPSS 22
Realizada por Daniela Grijalva y Bárbara Helbling.
Estudio Dolor neonatal. HGOIA. Quito. 2015
4.2 ANÁLISIS DE VARIABLES CRUZADAS

Se consideró el valor de Chi Cuadrado siendo \(p < 0.05 \), el cual indicaría la significancia de las variables.

Además, se calculó la sensibilidad, especificidad, valor predictivo positivo y valor predictivo negativo mediante una tabla de 2x2 tomando en cuenta la escala estudiada (escala de CRIES) frente al estándar de oro (escala de PIPP), con un nivel de confianza del 95%.

Tabla 15. Tabla 2x2 Prueba diagnóstica (Escala de CRIES) con Estándar de Oro (Escala de PIPP)

<table>
<thead>
<tr>
<th>PRUEBA DIAGNOSTICA ESCALA DE CRIES</th>
<th>STANDART DE ORO ESCALA DE PIPP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>POSITIVO</td>
</tr>
<tr>
<td>POSITIVO</td>
<td>35</td>
</tr>
<tr>
<td>NEGATIVO</td>
<td>8</td>
</tr>
<tr>
<td>Total</td>
<td>43</td>
</tr>
</tbody>
</table>

Fuente: Base de datos, Calculek
Realizada por Daniela Grijalva y Bárbara Helbling.
Estudio Dolor neonatal. HGOIA. Quito. 2015

Tabla 16. Propiedades métricas de la escala de CRIES en los pacientes quirúrgicos y no quirúrgicos

<table>
<thead>
<tr>
<th></th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensibilidad (%)</td>
<td>81,39</td>
</tr>
<tr>
<td>Especificidad (%)</td>
<td>84,61</td>
</tr>
<tr>
<td>Valor predictivo positivo (%)</td>
<td>89,74</td>
</tr>
<tr>
<td>Valor predictivo negativo (%)</td>
<td>73,33</td>
</tr>
</tbody>
</table>

Fuente: Base de datos, Calculek
Realizada por Daniela Grijalva y Bárbara Helbling.
Estudio Dolor neonatal. HGOIA. Quito. 2015
Tabla 17. Tabla 2x2 Prueba diagnóstica (Escala de CRIES) con Estándar de Oro (Escala de PIPP) en pacientes no quirúrgicos

<table>
<thead>
<tr>
<th>PRUEBA DIAGNOSTICA</th>
<th>ESCALA DE CRIES</th>
<th>POSITIVO</th>
<th>NEGATIVO</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>POSITIVO</td>
<td>27</td>
<td>2</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>NEGATIVO</td>
<td>5</td>
<td>17</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>32</td>
<td>19</td>
<td>51</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Base de datos, Calculek
Realizada por Daniela Grijalva y Bárbara Helbling.
Estudio Dolor neonatal. HGOIA. Quito. 2015

Tabla 18. Propiedades métricas de la escala de CRIES en los pacientes no quirúrgicos

<table>
<thead>
<tr>
<th></th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensibilidad (%)</td>
<td>84,37</td>
</tr>
<tr>
<td>Especificidad (%)</td>
<td>89,47</td>
</tr>
<tr>
<td>Valor predictivo positivo (%)</td>
<td>93,10</td>
</tr>
<tr>
<td>Valor predictivo negativo (%)</td>
<td>77,27</td>
</tr>
</tbody>
</table>

Fuente: Base de datos, Calculek
Realizada por Daniela Grijalva y Bárbara Helbling.
Estudio Dolor neonatal. HGOIA. Quito. 2015
Tabla 19. Tabla 2x2 Prueba diagnóstica (Escala de CRIES) con Estándar de Oro (Escala de PIPP) en pacientes quirúrgicos

<table>
<thead>
<tr>
<th></th>
<th>POSITIVO</th>
<th>NEGATIVO</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRUEBA DIAGNOSTICA</td>
<td>ESCALA DE CRIES</td>
<td>ESCALA DE PIPP</td>
<td></td>
</tr>
<tr>
<td>POSITIVO</td>
<td>8</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>NEGATIVO</td>
<td>3</td>
<td>18</td>
<td>21</td>
</tr>
<tr>
<td>Total</td>
<td>11</td>
<td>20</td>
<td>31</td>
</tr>
</tbody>
</table>

Fuente: Base de datos, Calculek
Realizada por Daniela Grijalva y Bárbara Helbling.
Estudio Dolor neonatal. HGOIA. Quito. 2015

Tabla 20. Propiedades métricas de la escala de CRIES en los pacientes quirúrgicos

<table>
<thead>
<tr>
<th></th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensibilidad (%)</td>
<td>72,72</td>
</tr>
<tr>
<td>Especificidad (%)</td>
<td>90</td>
</tr>
<tr>
<td>Valor predictivo positivo (%)</td>
<td>80</td>
</tr>
<tr>
<td>Valor predictivo negativo (%)</td>
<td>85,71</td>
</tr>
</tbody>
</table>

Fuente: Base de datos, Calculek
Realizada por Daniela Grijalva y Bárbara Helbling.
Estudio Dolor neonatal. HGOIA. Quito. 2015
Tabla 21. Comparación de las capacidades métricas de la escala de CRIES en los grupos estudiados

<table>
<thead>
<tr>
<th></th>
<th>SENSIBILIDAD (%)</th>
<th>ESPECIFICIDAD (%)</th>
<th>VPP (%)</th>
<th>VPN (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUIRÚRGICOS</td>
<td>72</td>
<td>90</td>
<td>80</td>
<td>85</td>
</tr>
<tr>
<td>NO QUIRÚRGICOS</td>
<td>84</td>
<td>89</td>
<td>93</td>
<td>77</td>
</tr>
<tr>
<td>TOTAL DE LA MUESTRA</td>
<td>81</td>
<td>84</td>
<td>89</td>
<td>73</td>
</tr>
</tbody>
</table>

Fuente: Base de datos
Realizada por Daniela Grijalva y Bárbara Helbling.
Estudio Dolor neonatal. HGOIA. Quito. 2015

Tabla 22. Relación de la intensidad de dolor valorada con la escala de CRIES y el Estándar de Oro (escala de PIPP) en todos los pacientes estudiados

<table>
<thead>
<tr>
<th></th>
<th>PIPP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sin Dolor – Leve</td>
</tr>
<tr>
<td>CRIES</td>
<td>Recuento</td>
</tr>
<tr>
<td>Sin Dolor – Leve</td>
<td></td>
</tr>
<tr>
<td>% del total</td>
<td>31,9%</td>
</tr>
<tr>
<td>Moderado - Severo</td>
<td></td>
</tr>
<tr>
<td>% del total</td>
<td>5,8%</td>
</tr>
<tr>
<td>Total</td>
<td>Recuento</td>
</tr>
<tr>
<td>% del total</td>
<td>37,7%</td>
</tr>
</tbody>
</table>

Fuente: Base de datos, SPSS 22
Realizada por Daniela Grijalva y Bárbara Helbling.
Estudio Dolor neonatal. HGOIA. Quito. 2015
Tabla 23. Diferencia de la intensidad de dolor entre la escala de CRIES y el Estándar de Oro (escala de PIPP) en todos los pacientes estudiados

<table>
<thead>
<tr>
<th></th>
<th>Valor</th>
<th>Gl</th>
<th>Sign. asintótica (2 caras)</th>
<th>Significación exacta (2 caras)</th>
<th>Significación exacta (1 cara)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-cuadrado de Pearson</td>
<td>28,730°</td>
<td>1</td>
<td>.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrección de continuidad</td>
<td>26,107</td>
<td>1</td>
<td>.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Razón de verosimilitud</td>
<td>30,834</td>
<td>1</td>
<td>.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prueba exacta de Fisher</td>
<td>69</td>
<td></td>
<td></td>
<td>.000</td>
<td>.000</td>
</tr>
</tbody>
</table>

Fuente: Base de datos, SPSS 22
Realizada por Daniela Grijalva y Bárbara Helbling.
Estudio Dolor neonatal. HGOIA. Quito. 2015

Tabla 24. Asociación entre la intensidad de dolor con la escala de CRIES y el Estándar de Oro (escala de PIPP) en todos los pacientes estudiados

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>Intervalo de confianza de 95 %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Valor</td>
<td>Inferior</td>
</tr>
<tr>
<td>Odds ratio para CRIES (Sin Dolor – Leve / Moderado - Severo)</td>
<td>24,063</td>
<td>6,471</td>
</tr>
<tr>
<td>Para cohorte PIPP = Sin Dolor – Leve</td>
<td>7,150</td>
<td>2,757</td>
</tr>
<tr>
<td>Para cohorte PIPP = Moderado – Severo</td>
<td>.297</td>
<td>.163</td>
</tr>
<tr>
<td>N de casos válidos</td>
<td>69</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Base de datos, SPSS 22
Realizada por Daniela Grijalva y Bárbara Helbling.
Estudio Dolor neonatal. HGOIA. Quito. 2015
Tabla 25. Relación de la intensidad de dolor valorada con la escala de CRIES y el Estándar de Oro (escala de PIPP) en los pacientes postquirúrgicos

<table>
<thead>
<tr>
<th></th>
<th>PIPP</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sin Dolor -</td>
<td>Moderado -</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leve</td>
<td>Severo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CRIES</td>
<td>Recuento</td>
<td>% del total</td>
<td>% del total</td>
<td>% del total</td>
</tr>
<tr>
<td>Sin Dolor</td>
<td>18</td>
<td>58,1%</td>
<td>67,7%</td>
<td>21</td>
</tr>
<tr>
<td>Leve</td>
<td>3</td>
<td>9,7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderado</td>
<td>2</td>
<td>6,5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Severo</td>
<td>8</td>
<td>25,8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>20</td>
<td>64,5%</td>
<td>35,5%</td>
<td>100,0%</td>
</tr>
</tbody>
</table>

Fuente: Base de datos, SPSS 22
Realizada por Daniela Grijalva y Bárbara Helbling.
Estudio Dolor neonatal. HGOIA. Quito. 2015

Tabla 26. Diferencia de la intensidad de dolor entre la escala de CRIES y el Estándar de Oro (escala de PIPP) en todos los pacientes postquirúrgicos

<table>
<thead>
<tr>
<th></th>
<th>Valor</th>
<th>gl</th>
<th>Sig. asintótica (2 caras)</th>
<th>Significación exacta (2 caras)</th>
<th>Significación exacta (1 cara)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-cuadrado de Pearson</td>
<td>12,778*</td>
<td>1</td>
<td>.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrección de continuidad</td>
<td>10,069</td>
<td>1</td>
<td>.002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Razón de verosimilitud</td>
<td>13,091</td>
<td>1</td>
<td>.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prueba exacta de Fisher</td>
<td></td>
<td></td>
<td></td>
<td>.001</td>
<td>.001</td>
</tr>
<tr>
<td>N de casos válidos</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Base de datos, SPSS 22
Realizada por Daniela Grijalva y Bárbara Helbling.
Estudio Dolor neonatal. HGOIA. Quito. 2015
Tabla 27. Asociación entre la intensidad de dolor con la escala de CRIES y el Estándar de Oro (escala de PIPP) en los pacientes postquirúrgicos

<table>
<thead>
<tr>
<th></th>
<th>Valor</th>
<th>Intervalo de confianza de 95 %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Inferior</td>
</tr>
<tr>
<td>Odds ratio para CRIES (Sin Dolor – Leve / Moderado - Severo)</td>
<td>24,000</td>
<td>3,335</td>
</tr>
<tr>
<td>Para cohorte PIPP = Sin Dolor – Leve</td>
<td>4,286</td>
<td>1,226</td>
</tr>
<tr>
<td>Para cohorte PIPP = Moderado – Severo</td>
<td>.179</td>
<td>.060</td>
</tr>
<tr>
<td>N de casos válidos</td>
<td>31</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Base de datos, SPSS 22
Realizada por Daniela Grijalva y Bárbara Helbling.
Estudio Dolor neonatal. HGOIA. Quito. 2015

Tabla 28. Relación de la intensidad de dolor valorada con la escala de CRIES y el Estándar de Oro (escala de PIPP) en los pacientes no quirúrgicos

<table>
<thead>
<tr>
<th>PIPP</th>
<th>Sin Dolor – Leve</th>
<th>Moderado - Severo</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>CRIES</td>
<td>Recuento</td>
<td>% del total</td>
<td>Recuento</td>
</tr>
<tr>
<td>Sin Dolor – Leve</td>
<td>17</td>
<td>33.3%</td>
<td>5</td>
</tr>
<tr>
<td>Moderado - Severo</td>
<td>2</td>
<td>3.9%</td>
<td>27</td>
</tr>
<tr>
<td>Total</td>
<td>19</td>
<td>37.3%</td>
<td>32</td>
</tr>
</tbody>
</table>

Fuente: Base de datos, SPSS 22
Realizada por Daniela Grijalva y Bárbara Helbling.
Estudio Dolor neonatal. HGOIA. Quito. 2015
Tabla 29. Diferencia de la intensidad de dolor entre la escala de CRIES y el Estándar de Oro (escala de PIPP) en los pacientes no quirúrgicos

<table>
<thead>
<tr>
<th></th>
<th>Valor</th>
<th>gl</th>
<th>Sign. asintótica (2 caras)</th>
<th>Significación exacta (2 caras)</th>
<th>Significación exacta (1 cara)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-cuadrado de Pearson</td>
<td>26,506</td>
<td>1</td>
<td>.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrección de continuidad</td>
<td>23,580</td>
<td>1</td>
<td>.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Razón de verosimilitud</td>
<td>29,213</td>
<td>1</td>
<td>.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prueba exacta de Fisher</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N de casos válidos</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Fuente: Base de datos, SPSS 22
Realizada por Daniela Grijalva y Bárbara Helbling.
Estudio Dolor neonatal. HGOIA. Quito. 2015*

Tabla 30. Asociación entre la intensidad de dolor con la escala de CRIES y el Estándar de Oro (escala de PIPP) en los pacientes no quirúrgicos

<table>
<thead>
<tr>
<th></th>
<th>Valor</th>
<th>Intervalo de confianza de 95 %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Inferior</td>
</tr>
<tr>
<td>Odds ratio para CRIES (Sin Dolor – Leve / Moderado - Severo)</td>
<td>45,900</td>
<td>7,988</td>
</tr>
<tr>
<td>Para cohorte PIPP = Sin Dolor – Leve</td>
<td>11,205</td>
<td>2,886</td>
</tr>
<tr>
<td>Para cohorte PIPP = Moderado – Severo</td>
<td>.244</td>
<td>.112</td>
</tr>
<tr>
<td>N de casos válidos</td>
<td>51</td>
<td></td>
</tr>
</tbody>
</table>

*Fuente: Base de datos, SPSS 22
Realizada por Daniela Grijalva y Bárbara Helbling.
Estudio Dolor neonatal. HGOIA. Quito. 2015*
Tabla 31. Relación entre la edad gestacional y la intensidad de dolor valorada por la escala de CRIES en todos los pacientes estudiados

<table>
<thead>
<tr>
<th>Edad Gestacional</th>
<th>Sin Dolor - Leve</th>
<th>Moderado - Severo</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>A término</td>
<td>Recuento</td>
<td>% del total</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>29,00%</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>37,70%</td>
<td></td>
</tr>
<tr>
<td>Pretérmino</td>
<td>Recuento</td>
<td>% del total</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>14,50%</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>18,80%</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>Recuento</td>
<td>% del total</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>43,50%</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>39</td>
<td>56,50%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>69</td>
<td>100,00%</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Base de datos, SPSS 22
Realizada por Daniela Grijalva y Bárbara Helbling.
Estudio Dolor neonatal. HGOIA. Quito. 2015

Tabla 32. Diferencia en la percepción del dolor según la escala de CRIES entre todos los recién nacidos a término y pretérmino estudiados

<table>
<thead>
<tr>
<th></th>
<th>Valor</th>
<th>gl</th>
<th>Sig. asintótica (2 caras)</th>
<th>Significación exacta (2 caras)</th>
<th>Significación exacta (1 cara)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-cuadrado de Pearson</td>
<td>.000</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Corrección de continuidad b</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Razón de verosimilitud</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Prueba exacta de Fisher</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0,6</td>
</tr>
<tr>
<td>N de casos válidos</td>
<td>69</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Base de datos, SPSS 22
Realizada por Daniela Grijalva y Bárbara Helbling.
Estudio Dolor neonatal. HGOIA. Quito. 2015
Tabla 33. Asociación entre la edad gestacional y la intensidad de dolor valorada con la escala de CRIES en todos los pacientes estudiados

<table>
<thead>
<tr>
<th>Valor</th>
<th>Intervalo de confianza de 95 %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inferior</td>
</tr>
<tr>
<td>Odds ratio para Edad Gestacional (A Término - Pretérmino)</td>
<td>1,000</td>
</tr>
<tr>
<td>Para cohorte CRIES = Sin Dolor – Leve</td>
<td>1,000</td>
</tr>
<tr>
<td>Para cohorte CRIES = Moderado - Severo</td>
<td>1,000</td>
</tr>
<tr>
<td>N de casos válidos</td>
<td>69</td>
</tr>
</tbody>
</table>

Fuente: Base de datos, SPSS 22
Realizada por Daniela Grijalva y Bárbara Helbling.
Estudio Dolor neonatal. HGOIA. Quito. 2015

Tabla 34. Relación entre el género y la intensidad de dolor valorada con la escala de CRIES en todos los pacientes estudiados

<table>
<thead>
<tr>
<th>Género</th>
<th>Sin Dolor – Leve</th>
<th>Moderado - Severo</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Recuento % del total</td>
<td>Recuento % del total</td>
<td>Recuento % del total</td>
</tr>
<tr>
<td>Femenino</td>
<td>14</td>
<td>22</td>
<td>36</td>
</tr>
<tr>
<td>Masculino</td>
<td>16</td>
<td>17</td>
<td>33</td>
</tr>
<tr>
<td>Total</td>
<td>30</td>
<td>39</td>
<td>69</td>
</tr>
</tbody>
</table>

Fuente: Base de datos, SPSS 22
Realizada por Daniela Grijalva y Bárbara Helbling.
Estudio Dolor neonatal. HGOIA. Quito. 2015
Tabla 35. Diferencia según el género en la intensidad del dolor valorada con la escala de CRIES en todos los pacientes estudiados

<table>
<thead>
<tr>
<th></th>
<th>Valor</th>
<th>gl</th>
<th>Sig. asintótica (2 caras)</th>
<th>Significación exacta (2 caras)</th>
<th>Significación exacta (1 cara)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-cuadrado de Pearson</td>
<td>.645</td>
<td>1</td>
<td>.422</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrección de continuidad</td>
<td>.314</td>
<td>1</td>
<td>.575</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Razón de verosimilitud</td>
<td>.646</td>
<td>1</td>
<td>.422</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prueba exacta de Fisher</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N de casos válidos</td>
<td>69</td>
<td></td>
<td></td>
<td></td>
<td>.472</td>
</tr>
</tbody>
</table>

*Fuente: Base de datos, SPSS 22
Realizada por Daniela Grijalva y Bárbara Helbling.
Estudio Dolor neonatal. HGOIA. Quito. 2015

Tabla 36. Asociación entre el género y la intensidad de dolor valorada con la escala de CRIES en todos los pacientes estudiados

<table>
<thead>
<tr>
<th></th>
<th>Valor</th>
<th>Intervalo de confianza de 95 %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Inferior</td>
</tr>
<tr>
<td>Odds ratio para Genero (F / M)</td>
<td>.676</td>
<td>.260</td>
</tr>
<tr>
<td>Para cohorte CRIES = Sin Dolor – Leve</td>
<td>.802</td>
<td>.468</td>
</tr>
<tr>
<td>Para cohorte CRIES = Moderado - Severo</td>
<td>1.186</td>
<td>.778</td>
</tr>
<tr>
<td>N de casos válidos</td>
<td>69</td>
<td></td>
</tr>
</tbody>
</table>

*Fuente: Base de datos, SPSS 22
Realizada por Daniela Grijalva y Bárbara Helbling.
Estudio Dolor neonatal. HGOIA. Quito. 2015
Tabla 37. Relación entre el tipo de parto y la intensidad de dolor valorada por la escala de CRIES en todos los pacientes estudiados

<table>
<thead>
<tr>
<th>Tipo de parto</th>
<th>Recuento</th>
<th>% del total</th>
<th>Sin Dolor – Leve</th>
<th>Moderado - Severo</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cesárea</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recuento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% del total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Céfalovaginal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recuento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% del total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recuento</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% del total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Base de datos, SPSS 22
Realizada por Daniela Grijalva y Bárbara Helbling.
Estudio Dolor neonatal. HGOIA. Quito. 2015

Tabla 38. Diferencia según el tipo de parto y la intensidad del dolor valorada por la escala de CRIES en todos los pacientes estudiados

<table>
<thead>
<tr>
<th>Valor</th>
<th>Gl</th>
<th>Sig. asintótica (2 caras)</th>
<th>Significación exacta (2 caras)</th>
<th>Significación exacta (1 cara)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-cuadrado de Pearson</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrección de continuidadb</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Razón de verosimilitud</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prueba exacta de Fisher</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N de casos válidos</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Base de datos, SPSS 22
Realizada por Daniela Grijalva y Bárbara Helbling.
Estudio Dolor neonatal. HGOIA. Quito. 2015
Tabla 39. Asociación entre el tipo de parto y la intensidad de dolor valorada con la escala de CRIES en todos los pacientes estudiados

<table>
<thead>
<tr>
<th>Odds ratio para Tipo de parto (Cesárea / Céfalovaginal)</th>
<th>Valor</th>
<th>Intervalo de confianza de 95 %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Para cohorte CRIES = Sin Dolor – Leve</td>
<td>.917</td>
<td>.322 – 2.612</td>
</tr>
<tr>
<td>Para cohorte CRIES = Moderado - Severo</td>
<td>.952</td>
<td>.532 – 1.705</td>
</tr>
</tbody>
</table>

| N de casos válidos | 69 |

*Fuente: Base de datos, SPSS 22
Realizada por Daniela Grijalva y Bárbara Helbling.
Estudio Dolor neonatal. HGOIA. Quito. 2015*

Tabla 40. Relación entre la analgesia y la intensidad de dolor valorada con la escala de CRIES en pacientes postquirúrgicos

<table>
<thead>
<tr>
<th>Analgesia</th>
<th>Sin Dolor – Leve</th>
<th>Moderado - Severo</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Con Analgesia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% del total</td>
<td>25,80%</td>
<td>32,30%</td>
<td>58,10%</td>
</tr>
<tr>
<td>Recuento</td>
<td>8</td>
<td>10</td>
<td>18</td>
</tr>
<tr>
<td>Sin Analgesia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>% del total</td>
<td>41,90%</td>
<td>0,00%</td>
<td>41,90%</td>
</tr>
<tr>
<td>Recuento</td>
<td>13</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td>31</td>
</tr>
<tr>
<td>% del total</td>
<td>67,70%</td>
<td>32,30%</td>
<td>100,00%</td>
</tr>
</tbody>
</table>

*Fuente: Base de datos, SPSS 22
Realizada por Daniela Grijalva y Bárbara Helbling.
Estudio Dolor neonatal. HGOIA. Quito. 2015*
Tabla 41. Diferencia entre el tipo de analgesia y la intensidad del dolor valorada con la escala de CRIES en pacientes postquirúrgicos

<table>
<thead>
<tr>
<th></th>
<th>Valor</th>
<th>Gl</th>
<th>Sig. asintótica (2 caras)</th>
<th>Significación exacta (2 caras)</th>
<th>Significación exacta (1 cara)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-cuadrado de Pearson</td>
<td>10,661a</td>
<td>1</td>
<td>.001</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Corrección de continuidadb</td>
<td>8,271</td>
<td>1</td>
<td>.004</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Razón de verosimilitud</td>
<td>14,255</td>
<td>1</td>
<td>.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prueba exacta de Fisher</td>
<td></td>
<td></td>
<td></td>
<td>.001</td>
<td>.001</td>
</tr>
<tr>
<td>N de casos válidos</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Base de datos, SPSS 22
Realizada por Daniela Grijalva y Bárbara Helbling.
Estudio Dolor neonatal. HGOIA. Quito. 2015

Tabla 42. Relación entre la analgesia y la intensidad de dolor valorada con la escala de CRIES en pacientes no quirúrgicos

<table>
<thead>
<tr>
<th></th>
<th>CRIES</th>
<th>Sin Dolor – Leve</th>
<th>Moderado - Severo</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analgesia</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Con Analgesia</td>
<td>Recuento</td>
<td>2</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>% del total</td>
<td></td>
<td>3,9%</td>
<td>15,7%</td>
<td>19,6%</td>
</tr>
<tr>
<td>Sin Analgesia</td>
<td>Recuento</td>
<td>20</td>
<td>21</td>
<td>41</td>
</tr>
<tr>
<td>% del total</td>
<td></td>
<td>39,2%</td>
<td>41,2%</td>
<td>80,4%</td>
</tr>
<tr>
<td>Total</td>
<td>Recuento</td>
<td>22</td>
<td>29</td>
<td>51</td>
</tr>
<tr>
<td>% del total</td>
<td></td>
<td>43,1%</td>
<td>56,9%</td>
<td>100,0%</td>
</tr>
</tbody>
</table>

Fuente: Base de datos, SPSS 22
Realizada por Daniela Grijalva y Bárbara Helbling.
Estudio Dolor neonatal. HGOIA. Quito. 2015
Tabla 43. Diferencia de la intensidad del dolor según la escala de CRIES y analgesia en pacientes no quirúrgicos

<table>
<thead>
<tr>
<th>Valor</th>
<th>Gli</th>
<th>Sig. asintótica (2 caras)</th>
<th>Significación exacta (2 caras)</th>
<th>Significación exacta (1 cara)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chi-cuadrado de Pearson</td>
<td>2,715a</td>
<td>1</td>
<td>0,099</td>
<td></td>
</tr>
<tr>
<td>Corrección de continuidadb</td>
<td>1,668</td>
<td>1</td>
<td>0,196</td>
<td></td>
</tr>
<tr>
<td>Razón de verosimilitud</td>
<td>2,915</td>
<td>1</td>
<td>0,088</td>
<td></td>
</tr>
<tr>
<td>Prueba exacta de Fisher</td>
<td></td>
<td></td>
<td></td>
<td>0,157</td>
</tr>
<tr>
<td>N de casos válidos</td>
<td>51</td>
<td></td>
<td></td>
<td>0,096</td>
</tr>
</tbody>
</table>

Fuente: Base de datos, SPSS 22
Realizada por Daniela Grijalva y Bárbara Helbling.
Estudio Dolor neonatal. HGOIA. Quito. 2015

Tabla 44. Asociación entre la analgesia y la intensidad de dolor valorada con la escala de CRIES en pacientes postquirúrgicos

<table>
<thead>
<tr>
<th>Valor</th>
<th>Intervalo de confianza de 95 %</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Inferior</td>
</tr>
<tr>
<td>Odds ratio para Analgesia (Con Analgesia / Sin Analgesia)</td>
<td>,263</td>
</tr>
<tr>
<td>Para cohorte CRIES = Sin Dolor – Leve</td>
<td>,410</td>
</tr>
<tr>
<td>Para cohorte CRIES = Moderado - Severo</td>
<td>1,562</td>
</tr>
<tr>
<td>N de casos válidos</td>
<td>51</td>
</tr>
</tbody>
</table>

Fuente: Base de datos, SPSS 22
Realizada por Daniela Grijalva y Bárbara Helbling.
Estudio Dolor neonatal. HGOIA. Quito. 2015
CAPITULO V. DISCUSION

Gracias a las crecientes investigaciones en la neurofisiología y al desarrollo de escalas para la evaluación del dolor en neonatos, es que hoy en día no queda duda de que los humanos somos capaces de percibir dolor incluso desde la vida intrauterina. La escala de CRIES es una escala utilizada globalmente para evaluar el dolor postquirúrgico neonatal, por lo que decidimos estudiar sus capacidades métricas y aplicabilidad a pacientes no quirúrgicos. Consideramos que la escala de CRIES tiene una estructura más simple que la de PIPP evaluando parámetros similares.

El objetivo principal de este estudio fue establecer la validez de la escala de CRIES tomando como Estándar de Oro la escala de PIPP, siendo ésta la más implementada a nivel mundial.

Los resultados obtenidos en la presente investigación respecto a la escala de CRIES son los siguientes: Sensibilidad: 81%, especificidad: 84%, VPP: 89% y VPN: 73%.

Para los pacientes no quirúrgicos las capacidades métricas fueron las que se mencionan a continuación: Sensibilidad: 84%, especificidad: 89%, VPP: 93%, VPN: 77%; para los netamente quirúrgicos los siguientes: Sensibilidad: 72%, especificidad: 90%, VPP: 80%, VPN: 85%.

La mayor sensibilidad y VPP de la escala de CRIES se muestran en los pacientes no quirúrgicos. Sin embargo, la sensibilidad de la escala (S: 84%) se considera baja por ser menor al 95% al igual que el VPP (93%). Este hallazgo es contradictorio debido a que
dicha escala es utilizada a nivel mundial exclusivamente para la evaluación del dolor postquirúrgico neonatal.

Por el contrario, la mayor especificidad y VPN se obtuvieron cuando se calculó la validez de la prueba únicamente en pacientes quirúrgicos. También en este caso consideramos que ambos valores son bajos (Especificidad: 90%, VPN: 85%).

En ambos grupos estudiados la especificidad es más alta que la sensibilidad, por lo que se deduce que la escala es mejor para detectar los pacientes que no tienen dolor.

Tomando en cuenta todos los resultados obtenidos se deriva que la escala de CRIES no es lo suficientemente sensible ni específica para detectar el dolor neonatal tanto en pacientes quirúrgicos como en no quirúrgicos. Esto quiere decir que la probabilidad de obtener un resultado positivo cuando el individuo siente dolor es baja (sensibilidad), así como la probabilidad de obtener un resultado negativo cuando el individuo no siente dolor (especificidad). Además, consideramos que la probabilidad de padecer dolor si se obtiene un resultado positivo en el test (VPP) y la probabilidad de que un sujeto con un resultado negativo en la escala esté realmente sin dolor son insuficientes para establecer la validez diagnóstica de la escala estudiada, siendo ambos menores al 95% en todos los grupos estudiados.

En el presente estudio, se valoraron un total de 69 neonatos, de los cuales el 73.9% corresponde al grupo de no quirúrgicos y el 26.1% al de quirúrgicos. La relación entre género y percepción del dolor es controversial. La mayoría de estudios afirma que no existe una diferencia significativa entre géneros en cuanto a la percepción
del dolor. Por su parte, en los estudios de Holstí et al., 2004, 2006; y Gibbins et al., 2008, afirman que existe una diferencia significativa entre los mismos. Por otro lado, Bartocci et al., 2006, encontraron una diferencia significativa, demostrando que el sexo masculino mostró una respuesta incrementada al dolor, presentando una mayor actividad cortical bilateral durante la venopunción, en comparación con el sexo femenino.\[50\] La muestra del presente estudio estuvo conformada por 52.2% de pacientes de sexo femenino y 47.8% de sexo masculino; los resultados revelados concuerdan con la afirmación de la mayoría de autores, no se encontró una asociación entre estas variables (\(p \geq 0.05\)).

En el estudio de Flores Muñoz (2006), se habla que los mecanismos de inhibición descendente del dolor se encuentran inmaduros en el recién nacido, lo que produce un estado de hipersensibilidad ante estímulos dolorosos, incluso se habla de que a menor edad gestacional, menor es el umbral del dolor.

Valeri y Linhares, 2012, mencionan dieciséis estudios en los que se analizó el efecto de la edad gestacional en la percepción del dolor; catorce estudios (Holstí et al., 2004, 2005, 2006; Grunau et al., 2005; Evans et al., 2005; Allegaert et al., 2005; Bartocci et al., 2006; Hermann et al., 2006; Rautava et al., 2007; Gibbins et al., 2008a; Goffaux et al., 2008; Williams et al., 2009; Walker et al., 2009; Hohmeister et al., 2009) encontraron una relación estadísticamente significativa, mientras que dos autores (Stevens et al., 2007; Gibbins et al., 2008) no hallaron diferencias en la respuesta al estímulo doloroso entre los RNaT y los RNpT.
Los autores que encontraron diferencias entre los dos grupos coinciden en que los neonatos menores de 30 semanas EG presentan una respuesta exagerada a los estímulos dolorosos frente a los mayores a esta edad. Este hallazgo concuerda con los de otros estudios que determinaron que los sistemas de autorregulación comienzan a desarrollarse a partir de las treinta semanas de edad gestacional.

En esta investigación no se encontró una diferencia estadísticamente significativa respecto a la percepción del dolor y la edad gestacional, lo que atribuimos al escaso porcentaje de RNpT (33.3%) comparado con los RNaT (66.7%), o a que definitivamente no existe una relación entre las dos variables.

En el estudio publicado en el 2011 por Rivara Dávila, se menciona que el parto céfalo vaginal favorece a la estabilidad de ciertos parámetros fisiológicos, como la frecuencia cardiaca y saturación de oxígeno, además de tener efectos positivos en cuanto a la sensibilidad al dolor. Sin embargo, no se han encontrado datos que lo confirmen, al igual que en este estudio, donde no se obtuvo una relación entre tipo de parto y la intensidad del dolor.

La AAP y la CPS, establecieron en el año 2006 recomendaciones que indican las escalas analgésicas a seguir, comenzando por las no farmacológicas (succión no nutritiva, soluciones dulces, plan canguro, lactancia materna), continuando con analgésicos/anestésicos tópicos, AINES, opioides y en última instancia sedantes. En la muestra tomada en el HGOIA, no se evidenció la implementación de medidas no farmacológicas; el 59.4% de los sujetos estudiados no recibió ningún tipo de analgesia, 17.4% recibieron paracetamol, 8.7% fentanilo, y al 14.5% restante se le administró
analgesia combinada (paracetamol + fentanilo). Se analizó por separado la analgesia administrada a los grupo quirúrgicos y no quirúrgicos, encontrando una relación estadísticamente significativa en el grupo de pacientes postquirúrgicos (p < 0.05).
CAPÍTULO VI. CONCLUSIONES Y RECOMENDACIONES

6.1. Conclusiones

- Se demostró que la escala de CRIES tiene la misma capacidad métrica que la escala de PIPP para la valoración del dolor en recién nacidos luego de un procedimiento invasivo. Se obtuvo un valor de $p = 0.000$ para la relación entre la escala de CRIES y la de PIPP.

- La escala de CRIES para evaluación de la percepción del dolor presenta una sensibilidad del 81.39%, especificidad del 84.61%, VPP: 89.74% y VPN: 73.33%, estadísticamente significativo con $p = 0.000$.

- Al igual que en la mayoría de estudios publicados, se encontró que no existe diferencia estadísticamente significativa entre el género y el tipo de parto respecto a la percepción del dolor.

- Contrariamente a los hallazgos de la mayoría de estudios, en el presente no encontramos una diferencia estadísticamente significativa respecto a la edad gestacional y la percepción del dolor.

- En el grupo de pacientes postquirúrgicos, la analgesia recibida tuvo una asociación estadísticamente significativa ($p < 0.05$) respecto a la intensidad de dolor, hallazgo que no aplica a los pacientes no quirúrgicos, donde la relación no tuvo significancia estadística ($p > 0.05$).
6.2 Recomendaciones

- Realizar nuevas investigaciones que se centren específicamente en la percepción del dolor de los RNpT (<30 semanas) y que además tomen en cuenta la habituación al dolor, la EG al momento de la evaluación y la EG al nacimiento.

- Realizar un seguimiento adecuado tanto de los RNpT como de los RNaT para determinar si hay diferencias en las repercusiones de la exposición temprana a estímulos dolorosos a lo largo de la infancia y vida adulta.

- Efectuar estudios similares con una muestra más amplia aplicada a pacientes netamente quirúrgicos.

- Implementar dentro de los servicios de neonatología una escala analgésica que incluya tanto medidas no farmacológicas como farmacológicas.

- Fomentar el uso de medidas no farmacológicas tanto en pacientes postquirúrgicos como no quirúrgicos.

- Educar al personal de salud de las áreas de neonatología acerca del dolor en recién nacidos.

- Fomentar la aplicación de las escalas de evaluación de dolor en el personal de salud.
REFERENCIAS BIBLIOGRÁFICAS

25. Flores M.A. Neurofisiología del dolor en el feto y el Recién Nacido. Foro de Investigación y Tratamiento del Dolor para la Comunidad Médica. [Internet]. 2006

ANEXOS

Anexo 1. Consentimiento Informado

Este Formulario de Consentimiento Informado se dirige a las madres o representantes legales de los recién nacidos ingresados al área de Neonatología del HGOIA que se les invita a participar en la investigación “Validación de la escala de CRIES para la valoración del dolor asociado a procedimientos invasivos en los recién nacidos en el servicio de neonatología del Hospital Gineco-Obstétrico Isidro Ayora durante el periodo de Junio a Septiembre del 2015” Grijalva Játiva María Daniela, Helbling Woodson Bárbara María

Hospital Gineco-Obstétrico Isidro Ayora

Introducción
Somos Daniela Grijalva y Bárbara Helbling, egresadas de la carrera de Medicina de la Pontificia Universidad Católica. Estamos investigando sobre la validez de la escala de CRIES para la valoración del dolor percibido por los recién nacidos luego de un procedimiento doloroso. Le vamos a dar información e invitarte a participar de esta investigación. Su participación es voluntaria. Si no entiende algo del estudio, luego de la información que ha recibido, síntase libre de hacernos saber cualquier duda que tenga.

Propósito
Todos los recién nacidos hospitalizados dentro de los servicios de Neonatología, son sometidos diariamente a varios procedimientos dolorosos. En este estudio proponemos validar la escala de CRIES, la cual es útil para valorar la intensidad del dolor percibida por los recién nacidos. La información obtenida será analizada para determinar la necesidad de dar medicamentos para calmar el dolor a este grupo de pacientes según el grado de dolor.

Tipo de Intervención de Investigación
Para la realización de esta investigación, es necesario la aplicación de dos escalas para la valoración del dolor en recién nacidos (CRIES y PIPP), las cuales utilizan como parámetros signos vitales, expresión, periodos de sueño y edad gestacional.

Riesgos
El presente estudio no conlleva ningún riesgo.

Beneficios
La información recaudada probablemente nos ayude a que generaciones futuras se beneficien de medidas analgésicas para la realización de los procedimientos invasivos según su riesgo/beneficio.

Confidencialidad
La identidad de aquellos que participen en la investigación no será revelada en ningún momento.

Derecho a negarse o retirarse
Si no desea que su hijo/a participe en la investigación tiene derecho a negarse a participar. Esto no afectará en ninguna forma cómo sea tratado su hijo/a en esta institución.

A Quién Contactar
Si tiene cualquier pregunta puede hacerlas ahora o más tarde, incluso después de haberse iniciado el estudio. Puede contactar cualquiera de las siguientes personas: Bárbara Helbling, Daniela Grijalva.

Esta propuesta ha sido revisada y aprobada por el comité de evaluación ética del Hospital Gineco Obstétrico Isidro Ayora, cuya tarea es asegurarse de que se protege de daños a los participantes en la investigación. Si usted desea averiguar más sobre este comité, contacte Dra. Linda Arturo, Coordinadora PAGC, Av. Gran Colombia No. 14-56 y Sodiro, Telf.: 2234520-224502

FORMULARIO DE CONSENTIMIENTO
Mi hijo/a ha sido invitado/a a participar en el proyecto de investigación que pretende validar la escala de CRIES para la valoración del dolor asociado a procedimientos invasivos en los recién nacidos en el servicio de neonatología. He sido informado de que no existen riesgos. Sé que puede que no haya beneficios para mi hijo/a y que no se nos recompensará por la participación en el mismo.

He leído la información proporcionada o me ha sido leída. He tenido la oportunidad de preguntar sobre ella y se me ha contestado satisfactoriamente las preguntas que he realizado.

Consiento voluntariamente que mi hijo/a participe en esta investigación y entiendo que tengo el derecho de retirar a mi hijo/a de la investigación en cualquier momento sin que me afecte en ninguna manera su cuidado médico.

Nombre del representante del participante__________________________
Firma del representante del participante ________________________
Fecha ___________________________

Fuente: Consentimiento informado OMS.
Modificado por: Daniela Grijalva, Bárbara Helbling, 2015
Anexo 2. Hoja de recolección de datos

<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>INDICADOR</th>
<th>CRIES</th>
<th>PIPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOLOR</td>
<td>Leve</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Moderado</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Severo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frecuencia Cardíaca</td>
<td>0-4 lpm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-14 lpm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>15-24 lpm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>>25 lpm</td>
<td></td>
<td>B:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P:</td>
</tr>
<tr>
<td>SATURACIÓN DE O2</td>
<td>0-2.4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5-4.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5-7.4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>>7.5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMPORTAMIENTO</td>
<td>Despierto y activo</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>Despierto e inactivo</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dormido y activo</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dormido e inactivo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENTRECÉJO FRUNCIDO</td>
<td>0-3 seg</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>3-12 seg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12-21 seg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>>21 seg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OJOS APRETADOS</td>
<td>0-3 seg</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>3-12 seg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12-21 seg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>>21 seg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SURCO NASOLABIAL</td>
<td>0-3 seg</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>3-12 seg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12-21 seg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>>21 seg</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDAD GESTACIONAL</td>
<td>≥ 36 sem</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>32-35.6 sem</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>28-31.6 sem</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>≤ 27.6 sem</td>
<td></td>
<td>x</td>
</tr>
<tr>
<td>FIO2 PARA SATO2 >95%</td>
<td>21%</td>
<td></td>
<td>B:</td>
</tr>
<tr>
<td></td>
<td>22-30%</td>
<td></td>
<td>P:</td>
</tr>
<tr>
<td></td>
<td>>30%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FC Y TA SISTÓLICA</td>
<td>Igual a la cifra basal</td>
<td></td>
<td>B:</td>
</tr>
<tr>
<td></td>
<td>Aumento menor al 20% de la basal</td>
<td></td>
<td>P:</td>
</tr>
<tr>
<td></td>
<td>Aumento mayor al 20% de la basal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LLANTO</td>
<td>No llora, tranquilito</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Llanto consolable</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Llanto intenso, no consolable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXPRESIÓN</td>
<td>Normal, sin muecas, neutra</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Muecas</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Muecas y gemidos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PERIODOS DE SUEÑO</td>
<td>Normales, contínuamente dormido</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Se despierta frecuentemente</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Constantemente despert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEXO</td>
<td>Masculino</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Femenino</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FECHA</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NOMBRE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HCL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DG</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SALA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROCEDIMIENTO</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Postquirúrgico

<table>
<thead>
<tr>
<th>FECHA</th>
<th>FC</th>
<th>SATO2</th>
<th>FIO2</th>
</tr>
</thead>
</table>

Realizado por: Daniela Grijalva, Bárbara Helbling. 2015
Anexo 3. Escalas para valoración de dolor neonatal

<table>
<thead>
<tr>
<th>Escala</th>
<th>Población Objetivo</th>
<th>Tipo de Dolor</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIPP</td>
<td>RN a término y pretérmino</td>
<td>Agudo</td>
</tr>
<tr>
<td>CRIES</td>
<td>RN a término y pretérmino</td>
<td>Prolongado</td>
</tr>
<tr>
<td>Prolongado</td>
<td>Postquirúrgico</td>
<td></td>
</tr>
<tr>
<td>Neonatal Infant Pain - Scale (NIPS)</td>
<td>RN a término y pretérmino</td>
<td>Agudo</td>
</tr>
<tr>
<td>ABC pain scale</td>
<td>RN a término y pretérmino</td>
<td>Agudo</td>
</tr>
<tr>
<td>Neonatal Pain Analyzer - (ABC analyzer)</td>
<td>RN a término</td>
<td>Agudo</td>
</tr>
<tr>
<td>Distress Scale for Ventilated Newborn - Infants (DSVNI)</td>
<td>RN sometidos a ventilación mecánica</td>
<td>Agudo</td>
</tr>
<tr>
<td>Liverpool Infant Distress Scale (LIDS)</td>
<td>RN a término</td>
<td>Prolongado</td>
</tr>
<tr>
<td>Behavioral Indicators of Infant Pain (BIIP)</td>
<td>RN pretérmino</td>
<td>Agudo</td>
</tr>
<tr>
<td>Echelle Douleur Inconfort Nouveau-né (EDIN)</td>
<td>RN pretérmino</td>
<td>Prolongada</td>
</tr>
<tr>
<td>Bernese Pain Scale for Neonates (BPSN)</td>
<td>RN a término y pretérmino</td>
<td>Agudo</td>
</tr>
<tr>
<td>Prolongada</td>
<td>Ventilación mecánica, postquirúrgico</td>
<td></td>
</tr>
<tr>
<td>Neonatal Pain, Agitation and Sedation Scale (N-PASS)</td>
<td>RN a término y pretérmino</td>
<td>Prolongada</td>
</tr>
<tr>
<td>Ventilación mecánica, postquirúrgico</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pain Assessment in Neonates (PAIN)</td>
<td>RN a término y pretérmino</td>
<td>Agudo</td>
</tr>
</tbody>
</table>

Modificado por: Daniela Grijalva, Bárbara Helbling, 2015