UTILIDAD DEL ÍNDICE DE ESTEATOSIS HEPÁTICA VERSUS LA ECOGRAFÍA HEPÁTICA PARA PREDECIR HÍGADO GRASO NO ALCOHÓLICO EN PACIENTES CON DIABETES MELLITUS TIPO 2, DEL CLUB DE DIABETES DEL HOSPITAL DR. GUSTAVO DOMÍNGUEZ Z EN LA CIUDAD DE SANTO DOMINGO.

DISERTACIÓN PREVIA A LA OBTENCIÓN DEL TITULO DE ESPECIALISTA EN MEDICINA INTERNA

Md. BÓSQUEZ SALAZAR RUTH MARILÚ

Directora Dra. Valeria Araujo
Director metodológico Dr. Álvaro Villacres

Quito, 2015
AGRADECIMIENTO

A Dios.

Por darme la sabiduría y fuerza para culminar esta etapa académica.

A mis padres.

Por apoyarme en todo momento, por los valores que me han inculcado y por haberme dado la oportunidad de tener una excelente educación en el transcurso de mi vida. Sobre todo por ser un excelente ejemplo de vida a seguir.

A mi Directora y Lectora de este trabajo de investigación, Dra. Valeria Araujo y Dra. Rosa Terán.

Por su guía, comprensión, paciencia, entrega y valiosos consejos a lo largo del proceso de investigación.

A mi metodólogo, Dr. Álvaro Villacres.

Por brindarme su asesoría.

Al Hospital Dr. Gustavo Domínguez Z, en especial al Dr. Marcelo Herrera, Dra. Mercy Oleas e Ing. Patricio Cabrera.

Por ofrecerme la información requerida para lograr los objetivos trazados en este proyecto.
Tabla de contenido

INTRODUCCION: .. 1

Capítulo II: REVISIÓN BIBLIOGRÁFICA .. 4

1. PATOGÉNESIS: ... 4
 1.1 Resistencia a la insulina ... 4
 1.2 Metabolismo de los lípidos ... 5
 1.3 Los mediadores inflamatorios y fibróticos en NAFLD.. 5

2. MANIFESTACIONES CLÍNICAS: .. 7

3. LABORATORIO: .. 7
 3.1 Transaminas – Fosfatasa Alcalina – Gamma-Glutamiltranspeptidasa.- 7
 3.2 Ferritina.- ... 8
 3.3 Perfil Lipídico.- ... 9

4. OBESIDAD: - ... 9

5. DIAGNÓSTICO POR BIOPSIA ... 10

6. DIAGNÓSTICO POR IMAGEN ... 11

7. INDICE DE ESTEATOSIS HEPATICA ... 11

Capítulo III. METOLOGIA .. 12

1. OPERACIONALIZACION DE LAS VARIABLES .. 12

2. MUESTRA .. 20

3. TIPO DE ESTUDIO .. 21

4. CRITERIOS DE INCLUSION ... 21

5. CRITERIOS DE EXCLUSION .. 21

6. RECOLECCION DE INFORMACION .. 21

7. DIAGNOSTICO E INTERVENCIÓN.. 22

8. PLAN DE ANALISIS ESTADISTICO ... 22

Capítulo IV. RESULTADOS .. 24

1. Descripción de los pacientes estudiados .. 24

2. Prevalencia de la enfermedad de hígado graso no alcohólico (EHGNA) 25

3. Capacidad del índice de esteatosis hepática, para el diagnóstico de EHGNA.......... 26

4. Características clínicas y antropométricas de los pacientes con y sin EHGNA........ 27

5. Hallazgos de laboratorio en los pacientes con y sin EHGNA.................................... 29

6. Factores clínicos y de laboratorio asociados con la EHGNA .. 32
<table>
<thead>
<tr>
<th>Tabla</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabla 1</td>
<td>26</td>
</tr>
<tr>
<td>Tabla 2</td>
<td>27</td>
</tr>
<tr>
<td>Tabla 3</td>
<td>28</td>
</tr>
<tr>
<td>Tabla 4</td>
<td>30</td>
</tr>
<tr>
<td>Tabla 5</td>
<td>31</td>
</tr>
<tr>
<td>Tabla 6</td>
<td>32</td>
</tr>
</tbody>
</table>
RESUMEN

La enfermedad del hígado graso no alcohólico (EHGNA) es secundaria a la acumulación de grasa, principalmente triglicéridos, en los hepatocitos, con una prevalencia entre el 10 y 75 %; la presencia de diabetes mellitus tipo 2, obesidad central e hiperlipidemia aumenta el riesgo y la gravedad de esta enfermedad, constituyendo un factor predictor de riesgo de síndromes coronarios agudos, eventos cerebrovasculares isquémicos, así como también de carcinoma hepatocelular en un 13%.

El gold estándar para su diagnóstico es la biopsia hepática la cual es un método invasivo, por lo que se realizó un estudio analítico de corte transversal, con una muestra de 125 pacientes diabéticos tipo 2, para determinar la sensibilidad y especificidad del Índice de Esteatosis Hepática para diagnosticar Hígado graso no alcohólico comparado con la Ecografía Hepática.

La capacidad diagnóstica del Índice de Esteatosis Hepática (HSI) se evaluó mediante pruebas de predictibilidad, considerando como “patrón oro” al resultado de la ecografía hepática. Los resultados de sensibilidad, especificidad, valor predictivo positivo y valor predictivo negativo se acompañaron del cálculo de sus respectivos IC95%.

De los 107 pacientes calificados en el HSI como positivos para EHGNA, solamente 63 fueron confirmados como casos de EHGNA en la ecografía. Por lo tanto, el HSI tuvo una sensibilidad del 90.0% (IC95%= 80.8% – 95.1%) pero con una probabilidad del 58.9% para calificar correctamente como positivo a un caso de EHGNA. La probabilidad para descartar correctamente un caso de EHGNA fue solo del 61.1%, debido a una baja especificidad 20.0%.
La hepatomegalia, HDL disminuidos, GGT elevada, glucosa en ayunas >130mg/dl son marcadores clínicos y de laboratorio de alta asociación con el hígado graso en los pacientes diabéticos.

Concluyendo que el HSI es un método no invasivo y económico para predecir hígado graso no alcoholico con una sensibilidad del 90%, pero no para descartarlo, por su baja especificidad 20%.
ABSTRACT

The disease NAFLD is secondary to the accumulation of fat, especially triglycerides in hepatocytes, with a prevalence between 10 and 75%; presence of diabetes mellitus type 2, central obesity and hyperlipidemia increases the risk and severity of this disease, being a predictor of risk factor of acute coronary syndromes, ischemic cerebrovascular events, as well as hepatocellular carcinoma by 13%.

The gold standard for diagnosis is liver biopsy which is an invasive method, so that an analytical cross-sectional study was conducted with a sample of 125 type 2 diabetic patients, to determine the sensitivity and specificity of Fatty Liver Index for diagnosing nonalcoholic fatty liver compared with Hepatic ultrasound.

The diagnostic potential of HSI was assessed by tests of predictability, considering as "gold standard" to the outcome of liver ultrasonography. The overall sensitivity, specificity, positive predictive value and negative predictive value calculation were accompanied by their respective 95% CI.

Of the 107 qualified in the HSI as positive for NAFLD patients, only 63 were confirmed as cases of NAFLD on ultrasound. Therefore, the HSI had a sensitivity of 90.0% (95% CI 80.8% - 95.1%) but with a probability of 58.9% to qualify correctly as positive to a case of NAFLD. Discard probability to correctly NAFLD a case was only 61.1%, because a low specificity 20.0%.

Hepatomegaly, decreased HDL, elevated GGT, fasting glucose> 130 mg / dl are clinical and laboratory high association with fatty liver markers in diabetic patients.

Concluding that the HSI is a noninvasive and inexpensive method for predicting NAFLD with a sensitivity of 90%, but not to discard its low specificity 20%
INTRODUCCION:

La enfermedad del hígado graso no alcohólico (EHGNA) abarca un espectro de condiciones patológicas que van desde la esteatosis simple a la esteatohepatitis no alcohólica (EHNA), fibrosis avanzada y cirrosis. \(^{(1)}\) La esteatosis simple se caracteriza por la infiltración grasa simple con mínima inflamación, mientras que la EHNA histológicamente define por la presencia de inflamación lobular, inflamación portal, celular globar y la fibrosis. \(^{(11)}\)

La Enfermedad del hígado graso no alcohólico afecta del 10 al 24 % de la población general en varios países, \(^{(5)}\) en un estudio realizado en el sur de China con 3543 pacientes la prevalencia de esta enfermedad fue del 15%. \(^{(44)}\) La prevalencia de obesidad en diferentes estudios de pacientes con EHNA varía entre el 30 y 100 %, la de diabetes tipo 2 entre el 10 y 75 % y la de dislipidemia entre el 20 y 92 %. \(^{(2)}\)

Los factores de riesgo asociados frecuentemente a EHGNA son la obesidad, la diabetes tipo 2 y la dislipidemia. La Hipertensión Arterial y especialmente hipertensión sistólica es un predictor independiente de EHGNA. \(^{(3)}\)

La enfermedad de hígado graso no alcohólico aparece en sujetos de todas las edades. La prevalencia en adultos se incrementa con la edad, específicamente entre los 40 y 50 años. El estudio NHANES III (Third National Health and Nutrition Examination Survey) señala ser menor en los ancianos, aunque es más temprana en pacientes del género masculino (40 años) que en el femenino (60 años). \(^{(14)}\)

Estudios en EE.UU. indican que la frecuencia de hígado graso no alcohólico varía significativamente con el origen étnico (45% de los hispanos, el 33% en los blancos, el 24% de los negros). \(^{(3)}\)
Hay diferentes sugerencias sobre el nivel de consumo de alcohol que se puede distinguir de forma fiable entre el hígado graso alcohólico y el hígado graso no alcohólico. Muchos centros aceptan que el nivel máximo permitido de consumo de alcohol para la definición de hígado graso no alcohólico es de 2 bebidas estándar al día (140g etanol / semana) para los hombres y una bebida estándar al día (70 g de etanol / semana) para las mujeres. (3)

Existen 2 tipos de EHGNA una primaria que está asociada con condiciones relacionadas con síndrome metabólico, como son obesidad, diabetes tipo II e hiperlipidemia, y otra secundaria la cual ocurre después de cirugía intestinal relacionada con obesidad, rápida pérdida de peso en los obesos, nutrición parenteral total, tratamiento con drogas como amiodarona, lipodistrofia, enfermedad de Wilson, Hepatitis C. (4)

Dada la estrecha asociación entre la EHGNA y los marcadores de enfermedad cardiovascular subclínica, no es sorprendente que los pacientes con diagnostico ecográfico de EHGNA tengan mayor prevalencia de enfermedad cardiovascular clínicamente manifiesta, comparados con los sujetos control sin esteatosis. (1) (47) En un estudio de aproximadamente 3.000 pacientes no seleccionados con diabetes tipo 2, la prevalencia de enfermedad cerebrovascular, coronaria y vascular periférica fue notablemente más elevada en los pacientes con EHGNA que en los pacientes sin EHGNA, independientemente de los factores de riesgo tradicionales, la duración de la diabetes, el grado de control glucémico, el uso de hipolipemiantes, hipoglucemiantes, antihipertensivos o medicamentos antiplaquetarios y, los componentes del síndrome metabólico. (1)
En una cohorte de base comunitaria de 2.088 trabajadores, la presencia de EHENA en la ecografía se asoció en forma independiente con un aumento de la prevalencia de cardiopatía isquémica. (1)

Mientras que la esteatosis simple en ausencia de fibrosis se considera que es una condición relativamente benigna, (2) (21) la presencia de fibrosis predice tanto la progresión de la enfermedad como complicaciones relacionadas con el hígado en un periodo de más de 10 años. La disminución de la supervivencia en este subgrupo se debe principalmente a causas cardiovasculares, aunque hay un aumento significativo de muertes relacionadas por causa hepáticas. (22)

EHNA también lleva un aumento del riesgo de carcinoma hepatocelular (HCC) (22) y hasta ahora se ha observado un aumento de la incidencia de HCC en la diabetes mellitus tipo 2, (23) y es probable que sea debido a la alta prevalencia de EHNA. (22)

En un reciente estudio en los EE.UU., se encontró que EHNA representa al menos el 13% de los casos totales de HCC. (24)
Capítulo II: REVISIÓN BIBLIOGRÁFICA

1. PATOGÉNESIS:

Todavía no es entendido por qué la esteatosis simple se desarrolla en algunos pacientes, mientras que la esteatohepatitis y progresión de la enfermedad se desarrollan en otros, las diferencias en la distribución de la grasa corporal o sistemas antioxidantes, posiblemente en el contexto de una predisposición genética, pueden ser una de las explicaciones.\(^5\)

Una retención neta de los lípidos dentro de los hepatocitos, principalmente en forma de triglicéridos, es un requisito previo para el desarrollo de la enfermedad del hígado graso no alcohólico. Las anomalías metabólicas principales que conducen a la acumulación de lípidos no son bien entendidos, pero podrían consistir en las alteraciones en las vías de absorción, la síntesis, la degradación, o la secreción en el metabolismo de los lípidos hepáticos resultante de la resistencia a la insulina. \(^5\)

1.1 Resistencia a la insulina

La patogénesis de la resistencia a la insulina es compleja y es probable que incluya muchos polimorfismos genéticos que influyen en la secreción y acción de la insulina, así como los factores ambientales que promueven la obesidad y la inmovilidad. \(^6\) La disminución en la capacidad celular de responder a la acción de la insulina produce una hiperinsulinemia compensatoria. En el tejido adiposo actúa sobre la lipasa sensible a hormonas (LSH) favoreciendo la lipólisis con la consecuente liberación de ácidos grasos libres (AGL) al hígado. En el musculo esquelético disminuye la absorción de glucosa, mientras que en el hepatocito la hiperinsulinemia aumenta la gluconeogénesis, disminuye la glucogenosíntesis y
aumenta la captación de los AGL, altera el transporte de triglicéridos como VLDL e inhibe su beta-oxidación. Estas alteraciones en el metabolismo de las grasas son la base de la aparición de esteatosis hepática (7)(46).

La resistencia a la insulina provoca concentraciones elevadas de ferritina sérica, mayor expresión de los receptores de transferrina y aumento de hierro hepático, lo que contribuye a la generación de radicales hidroxilo y a la acumulación de radicales libres de oxígeno (RLO); sin embargo, su papel en la patogenia de la EHGNA aún no está aclarado. (46)

1.2 Metabolismo de los lípidos

Los lípidos son normalmente exportados desde el hígado a las lipoproteínas de muy baja densidad (VLDL), que están formadas por la proteína microsomal de transferencia de triglicéridos (MTP) y la incorporación de triglicéridos en la apolipoproteína B (apo B). Una reducción en la actividad de MTP y de la síntesis y secreción de la apo B puede perjudicar las exportaciones de lípidos hepáticos y favorecer la acumulación de triglicéridos hepáticos. (8)

1.3 Los mediadores inflamatorios y fibróticos en NAFLD

Adipocitocinas (factor de necrosis tumoral-α [TNF-α], leptina y adiponectina), ácidos grasos libres, la disfunción mitocondrial, la endotoxina bacteriana y trastornos vasculares han sido implicados en el desarrollo de la inflamación y la fibrosis hepática en pacientes con hígado graso no alcohólico. (9) Estos factores pueden ser directamente hepatotóxico o generar radicales de oxígeno con posterior peroxidación de los lípidos, la inducción de citocinas y daño hepático.
TNF-α promueve la resistencia a la insulina y la inflamación del hígado. Estos niveles están aumentados en los pacientes con hígado graso no alcohólico, tal vez secundaria a endotoxinas o los polimorfismos del TNF-α. (7) Se han identificado dos receptores para adiponectina: tipo I en el musculoesquelético, y tipo II en el hígado cuya disminución se ha asociado a un mayor grado de esteatosis en sujetos con niveles de adiponectina similares, aunque encontrándose una mayor expresión de sus receptores con la progresión de EHGNA. (48) La obesidad (principalmente visceral) y el sobrepeso se han asociado a niveles bajos de adiponectina, debido a la inhibición por parte del TNF-α; este desequilibrio puede ser uno de los mecanismos fisiopatológicos de la EHGNA y la regulación de las vías que controlan su producción y señalización pudiera representar una diana terapéutica prometedora. (49)

La leptina es otra citocina cuya primera resistencia se describió a nivel hipotalámico en los núcleos de control de la saciedad, y en la actualidad la resistencia a la insulina está asociada con una resistencia a la leptina a nivel periférico, en el musculoesquelético. En los pacientes con EHGNA, las concentraciones séricas de leptina se encuentran elevadas y se relacionan con el grado de esteatosis. (50)

Como resultado de la resistencia a la insulina, los niveles séricos de ácidos grasos libres aumentan en pacientes EHNA y pueden estar directamente hepatotóxico o producir daños en las especies reactivas de oxígeno. El estrés oxidativo puede ser exacerbado aún más por las lesiones ultraestructurales mitocondriales, que perjudican la función de la cadena respiratoria.

Como la lesión hepática progresa, los hepatocitos cargados de grasa y fibrosis perisinusoidal pueden perjudicar el flujo sanguíneo hepático microvascular. Este efecto puede disminuir el oxígeno y el intercambio de nutrientes y así estimular una
respuesta inflamatoria microvascular y un ciclo creciente de daño hepático e insuficiencia vascular.\(^{(7)}\)

2. MANIFESTACIONES CLÍNICAS:

La mayoría de los pacientes con enfermedad de hígado graso no alcohólico son asintomáticos (50-75 %) o presentan síntomas inespecíficos como astenia, malestar general o dolor en hipocondrio derecho (30-40 %)\(^{(10)}\)\(^{(40)}\). En el examen físico es frecuente la hepatomegalia (55-85 %).\(^{(44)}\)

3. LABORATORIO:

3.1 Transaminas – Fosfatasa Alcalina – Gamma-Glutamiltranspeptidasa.-

Las anormalidades de laboratorio son a menudo el único signo de enfermedad de hígado graso no alcohólica.\(^{(10)}\) Los niveles séricos ligeramente elevados de TGO, TGP, o ambos son los más comunes y, a menudo la única alteración de laboratorio que se encuentra en los pacientes con enfermedad de hígado graso no alcohólico.\(^{(5)}\) La elevación de transaminasas es poco frecuente y en general de menos de 4 veces el valor normal, rara vez superándolo en 10-15 veces, pero sus niveles no se correlacionan con el grado de Esteato-Hepatitis o de fibrosis.\(^{(46)}\) La relación de AST / ALT por lo general es menor a 1 (en la enfermedad hepática alcohólica, esta relación típicamente debe ser mayor que 2), pero puede aumentar a medida que la gravedad de la daño hepático incremente, además la fosfatasa alcalina (FA) puede estar elevada hasta dos veces el límite superior de normalidad y gama glutamiltranspeptidasa (γ GT) también puede estar elevada.\(^{(10)}\)\(^{(7)}\)\(^{(11)}\)
Muchos estudios poblacionales\(^{(30)}\)\(^{(31)}\) que utilizaron los niveles séricos elevados de las enzimas hepáticas como sustituto de los marcadores de EHNGA\(^{(5)}\)\(^{(32)}\) han demostrado que esta enfermedad se asocia con un riesgo más elevado de enfermedad cardiovascular.\(^{(1)}\) En una revisión y un metaanálisis de 11 estudios prospectivos confirmaron que el nivel sérico elevado de la γ-glutamiltranspeptidasa es un predictor independiente, a largo plazo, de eventos cardiovasculares tanto en hombres como en mujeres.\(^{(33)}\) Algunos estudios\(^{(34)}\)\(^{(35)}\) han confirmado que un aumento del nivel de alanina aminotransferasa sérica es menos predictivo de eventos cardiovasculares que el aumento de la γ-glutamiltransferasa sérica, reconocida como un marcador no solo de EHNGA sino también del estrés oxidativo.\(^{(32)}\)\(^{(36)}\)

3.2 Ferritina.

Aunque la mayoría de situaciones de sobrecarga férrica están relacionadas con la ingesta excesiva de alcohol, hemopatías, hemocromatosis hereditarias, porfirias y hepatopatías por el virus de la hepatitis C, varios trabajos avalan que también pueden asociarse a hígado graso no alcohólico. La elevación de la ferritina con una saturación normal de la transferrina se presentan asociadas a inflamación, neoplasias, hepatopatías y etilismo, por tanto la hiperferritinemia no refleja necesariamente un incremento del hierro hepático, sino que puede ser tan sólo un efecto inespecífico de la necroinflamación,\(^{(13)}\) por lo que, si la ferritina está elevada con saturación normal de transferrina, debemos descartar EHNA\(^{(11)}\).

La evidencia ha demostrado que el aumento de los niveles de ferritina se asocia con el síndrome metabólico, la resistencia a la insulina, y un mayor contenido de hierro y de grasa hepática.\(^{(15)}\)\(^{(16)}\) Se ha observado que los niveles de ferritina en los
pacientes con EHGNA se elevaron en un 20% y 50%, y la saturación de transferrina elevada (> 55%) está presente en 5% -10%. (7) (12)

Recientemente, en un estudio multicéntrico en 628 pacientes adultos con enfermedad de hígado graso no alcohólico evaluaron la relación entre los niveles de ferritina sérica (definido por la elevación de > 1.5 veces el límite superior de normalidad) y la gravedad de EHNA, el cual concluye que la ferritina es un predictor independiente de daño hepático en pacientes con hígado graso no alcohólico, y es útil para identificar pacientes con EHGNA en riesgo de la esteatohepatitis no alcohólica y fibrosis avanzada. (15) (16)

3.3 Perfil Lipídico.-

La hiperlipidemia, es un factor de riesgo conocido para infiltración grasa hepática; la hipertrigliceridemia e hiperlipidemia mixta se asocian frecuentemente con infiltración grasa, y la alteración en los lípidos con el grado de esteatosis. (14)

4. OBESIDAD.-

Para calificar a una persona en cuanto a su peso, debe obtenerse el índice de masa corporal (IMC) considerándose obesidad corporal según la OMS cuando el IMC es >30kg/m²; (46) y la obesidad central que según criterios de ATP III se caracteriza por una circunferencia de la cintura > 88 cm en la mujer y > 102 cm en el varón. (51) En los pacientes con hígado graso no alcohólico se observa que los factores más importantes son el índice de masa corporal y la circunferencia de la cintura, pues con frecuencia se vinculan con síndrome metabólico, resistencia a la insulina. (52)
En la actualidad se piensa que el riesgo de hígado graso no alcohólico en pacientes con IMC mayor de 30 kg/m2 es de 70 a 80%, mientras que el de esteatohepatitis no alcohólica es de 15 a 20%.\(^{(53)}\) \(^{(54)}\)

La distribución de la grasa parece ser más importante que la cantidad total, pues la visceral, más no la total, ha demostrado ser un factor pronóstico de esteatosis hepática. \(^{(55)}\) \(^{(56)}\) \(^{(57)}\). Aún más, la lipólisis visceral es poco resistente a la supresión de insulina, porque proporciona una fuente de ácidos grasos potencialmente hepatotóxicos en estados hiperinsulinémicos. \(^{(46)}\)

Al disminuir la grasa visceral disminuye la resistencia a la insulina. \(^{(56)}\) Cuando una persona gana peso, el tejido adiposo se vuelve disfuncional y aparecen alteraciones en la morfología y actividad metabólica de los adipocitos (los viscerales son particularmente afectados). En estas condiciones, la obesidad se asocia con infiltración marcada del tejido adiposo por los macrófagos, cuyos cambios inhiben la capacidad del tejido adiposo para controlar los ácidos grasos plasmáticos no esterificados y contribuye a la función endocrina aberrante, con múltiples consecuencias en términos de disfunción metabólica, resistencia a la insulina y riesgo de enfermedad cardiovascular. \(^{(58)}\)

5. DIAGNOSTICO POR BIOPSIA

La biopsia hepática es el método diagnóstico gold standard para las lesiones histológicas de EHGNAb y también es esencial para el pronóstico de EHNA y para determinar el efecto del tratamiento médico, sin embargo es un método invasivo, tiene inconvenientes tales como el error de muestreo, alto costo, complicaciones leves como dolor abdominal en un 20%, y complicaciones graves en un 0.3%, por lo tanto, es necesario establecer un método para detectar de manera eficiente EHNA. \(^{(37)}\)
6. DIAGNOSTICO POR IMAGEN

La ecografía y la TC y la RM son fiables para la detección de cambios de moderados a severos grasos en el hígado.\(^{(7)}\) Una revisión sistemática y metaanálisis de 49 estudios (4720 participantes), concluye que la ecográfica es un método fiable, preciso en comparación con la histología (gold estándar), con una sensibilidad de 84.8%, especificidad de 93.6%, para el diagnóstico de hígado graso, así como también debido a su bajo costo, seguridad y accesibilidad.\(^{(38)}\)\(^{(5)}\)\(^{(17)}\)\(^{(18)}\)\(^{(19)}\)

7. INDICE DE ESTEATOSIS HEPATICA

El Índice de Esteatosis Hepática (HSI), el cual se realizó en un estudio transversal con 10.724 pacientes de los cuáles 5.362 presentaron EHGNA y mediante un análisis multivariable indicó que la relación AST/ALT, IMC, y la diabetes mellitus son factores de riesgo independentes. Utilizando estas variables, se obtuvo una fórmula de un modelo de regresión logística: \(\text{HSI} = 8 \times (\text{relación ALT / AST}) + \text{IMC} \times (2, \text{si es mujer}; 2, \text{si tiene diabetes mellitus}) \), en el cual con valores <30,0 se descartó EHGNA con una sensibilidad 93% y se confirmó cuando presentaban un valor > 36,0 con una especificidad del 92,4%, respectivamente. Este estudio concluye que el HSI es una herramienta de evaluación simple, eficaz en el diagnóstico de EHGNA.\(^{(39)}\)
Capítulo III. METOLOGÍA

1. OPERACIONALIZACIÓN DE LAS VARIABLES

Variable independiente.

✓ Triglicéridos
✓ Colesterol
✓ Obesidad
✓ Perímetro Abdominal
✓ Sexo
✓ Hemoglobina glucosilada
✓ Hipertensión Arterial
✓ Diabetes Mellitus tipo 2
✓ Dislipidemia

Variable dependiente.

✓ Hígado Graso no Alcohólico
Variables moderadoras.

✓ Ferritina
✓ Transaminasas (TGO-TGP)
✓ Hepatomegalia
✓ Dolor Abdominal
✓ Fosfatasa Alcalina
✓ Gamma Glutamiltranspeptidasa (γ GT)
✓ Medicamentos

V. Dependiente

HIGADO GRASO NO ALCOHOLICO

V. Independiente

Moderadora
<table>
<thead>
<tr>
<th>VARIABLE</th>
<th>OPERACIÓN CONCEPTUAL</th>
<th>DIMENSION</th>
<th>TIPO DE VARIABLE</th>
<th>ESCALA</th>
<th>INDICADOR</th>
<th>CODIFICACIÓN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sexo</td>
<td>Hace referencia a una clasificación de individuos o cosas en las que los mismos pueden ser ordenados según sus rasgos o características particulares que los caractericen.</td>
<td>Sexo del encuestado</td>
<td>Independiente</td>
<td>Nominal-Dicotómica</td>
<td>Femenino</td>
<td>0: Femenino 1: Masculino</td>
</tr>
<tr>
<td>Ferritina</td>
<td>Es una proteína que se encuentra dentro de las células y que sirve para almacenar el hierro.</td>
<td>Niveles séricos normales de ferritina</td>
<td>Moderadora</td>
<td>Continua</td>
<td>ng/ml</td>
<td>Número entero</td>
</tr>
<tr>
<td>Transaminasas (TGO-TGP)</td>
<td>Enzimas que catalizan la transferencia de un grupo amino a los aminoácidos a los cetoácidos. Indicadores sensibles de lesión hepática.</td>
<td>Niveles séricos normales de transaminasas en U/L</td>
<td>Moderadora</td>
<td>Continua</td>
<td>U/L</td>
<td>Número entero</td>
</tr>
<tr>
<td>VARIABLE</td>
<td>OPERACIÓN CONCEPTUAL</td>
<td>DIMENSION</td>
<td>TIPO DE VARIABLE</td>
<td>ESCALA</td>
<td>INDICADOR</td>
<td>CODIFICACIÓN</td>
</tr>
<tr>
<td>----------</td>
<td>----------------------</td>
<td>-----------</td>
<td>------------------</td>
<td>--------</td>
<td>-----------</td>
<td>--------------</td>
</tr>
<tr>
<td>Hemoglobina Glicosilada (HbA1C)</td>
<td>Es una heteroproteína de la sangre que resulta de la unión de la hemoglobina (Hb) con glucidos unidos a cadenas carbonadas con funciones ácidas en el carbono 3 y el 4.</td>
<td>Valores séricos normales de HbA1C en %</td>
<td>Independiente</td>
<td>Continua</td>
<td>%</td>
<td>Número entero</td>
</tr>
<tr>
<td>Triglicéridos</td>
<td>Son un tipo de lípidos, formados por una molécula de glicerol que tiene esterificados sus tres hidroxílicos por tres ácidos grasos, ya sean saturados e insaturados.</td>
<td>Valores séricos normales de triglicéridos en mg/dl</td>
<td>V. Independiente</td>
<td>Continua</td>
<td>mg/dL</td>
<td>Número entero</td>
</tr>
<tr>
<td>Colesterol</td>
<td>El colesterol es un esterol (lípido) que se encuentra en los tejidos corporales y en el plasma sanguíneo.</td>
<td>Valores séricos normales de colesterol en mg/dl</td>
<td>V. Independiente</td>
<td>Continua</td>
<td>mg/dL</td>
<td>Número entero</td>
</tr>
<tr>
<td>VARIABLE</td>
<td>OPERACIÓN CONCEPTUAL</td>
<td>DIMENSION</td>
<td>TIPO DE VARIABLE</td>
<td>ESCALA</td>
<td>INDICADOR</td>
<td>CODIFICACIÓN</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
<td>--</td>
<td>------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>--------------</td>
</tr>
<tr>
<td>Obesidad</td>
<td>Según la OMS define como obesidad cuando el IMC (índice de masa corporal, el cálculo entre la estatura y el peso del individuo) es igual o superior a 30 kg/m².</td>
<td>IMC normal</td>
<td>V. Independiente</td>
<td>Continua</td>
<td>kg/m².</td>
<td>Número entero</td>
</tr>
<tr>
<td>Perímetro Abdominal</td>
<td>Es la medición de la distancia alrededor del abdomen en un punto específico, por lo general a nivel del ombligo</td>
<td>Perímetro abdominal normal en centímetros</td>
<td>V. Independiente</td>
<td>Continua</td>
<td>cm</td>
<td>Número entero</td>
</tr>
<tr>
<td>Hígado Graso no Alcohólico</td>
<td>Es una afección definida por una acumulación excesiva de grasa en forma de triglicéridos en el hígado</td>
<td>Ecografía hepática normal</td>
<td>V. Dependiente</td>
<td>Nominal-Dicotómica</td>
<td>Hígado Graso</td>
<td>0: SI 1: NO</td>
</tr>
<tr>
<td>VARIABLE</td>
<td>OPERACIÓN CONCEPTUAL</td>
<td>DIMENSION</td>
<td>TIPO DE VARIABLE</td>
<td>ESCALA</td>
<td>INDICADOR</td>
<td>CODIFICACIÓN</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>----------------------------------</td>
<td>-----------------------</td>
<td>----------------</td>
<td>--------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Dolor Abdominal en hipocondrio derecho & molestias inespecíficas</td>
<td>Es un síntoma que se produce en el área abdominal.</td>
<td>Ausencia de Dolor abdominal en cuadrante superior derecho</td>
<td>V. Moderadora</td>
<td>Nominal-Dicotómica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hepatomegalia</td>
<td>La hepatomegalia es el aumento del tamaño del hígado, por sobre los límites estimados como normales</td>
<td>Ecografía hepática normal</td>
<td>V. Moderadora</td>
<td>Nominal-Dicotómica</td>
<td>Hepatomegalia</td>
<td></td>
</tr>
<tr>
<td>Fosfatasa Alcalina</td>
<td>Es una enzima hidrolasa que se encuentra presente en casi todos los tejidos del organismo, siendo particularmente alta en huesos, hígado, placenta, intestinos y riñón.</td>
<td>Valores séricos normales de fosfatasa UI/L</td>
<td>V. Moderadora</td>
<td>Continua</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VARIABLE</td>
<td>OPERACIÓN CONCEPTUAL</td>
<td>DIMENSION</td>
<td>TIPO DE VARIABLE</td>
<td>ESCALA</td>
<td>INDICADOR</td>
<td>CODIFICACIÓN</td>
</tr>
<tr>
<td>---------------------------</td>
<td>--</td>
<td>---</td>
<td>------------------</td>
<td>--------------</td>
<td>-----------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Gamma-glutamiltranspeptidasa</td>
<td>Es una enzima de origen hepático que participa en la transferencia de aminoácidos a través de las membranas celulares. La mayor parte de ella se encuentra a nivel hepático y en las vías biliares.</td>
<td>Valores séricos normales de γ GT UI/L</td>
<td>V. Moderadora</td>
<td>Continua</td>
<td>UI/L</td>
<td>Números Enteros</td>
</tr>
<tr>
<td>Índice de Esteatosis Hepática</td>
<td>Es una fórmula de un modelo de regresión logística: $(HSI) = 8 \times (relación ALT / AST) + IMC$ (2, si es mujer; 2, si tiene diabetes mellitus).</td>
<td></td>
<td>V. Moderadora</td>
<td>Continua</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V. Moderadora</td>
<td></td>
<td>V. Independiente</td>
<td>Continua</td>
<td></td>
<td>0: No Hígado Graso 1: Sí Hígado Graso</td>
</tr>
<tr>
<td>Hipertensión Arterial (HTA)</td>
<td>La HTA se define como una PAS ≥ 140 mmHg o una PAD ≥ 90 mmHg,</td>
<td></td>
<td>V. Independiente</td>
<td>Continua</td>
<td></td>
<td>0: Si 1: No</td>
</tr>
<tr>
<td>VARIABLE</td>
<td>OPERACIÓN CONCEPTUAL</td>
<td>DIMENSION</td>
<td>TIPO DE VARIABLE</td>
<td>ESCALA</td>
<td>INDICADOR</td>
<td>CODIFICACIÓN</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td>-----------</td>
<td>------------------</td>
<td>--------</td>
<td>-----------</td>
<td>--------------</td>
</tr>
<tr>
<td>Dislipidemia</td>
<td>Se caracteriza por alteración en la concentración de los lípidos sanguíneos, donde existen concentraciones anormales de colesterol total, C-HDL, C-LDL, y triglicéridos.</td>
<td></td>
<td>V. Independiente</td>
<td></td>
<td></td>
<td>0: Si</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1: No</td>
</tr>
</tbody>
</table>
2. MUESTRA

Total de la población: 1300 pacientes

\[
n = \frac{N \cdot Z^2 \alpha \cdot p \cdot q}{d^2 \cdot (N - 1) + Z^2 \alpha \cdot p \cdot q}
\]

Prevalencia: 10% = 0.10 \quad Z\alpha: 1.96 \quad IC: 95% \quad q: 1-p \quad d: 0.05%

\[
n = \frac{1300 \times (1.96)^2 \times 0.10 \times 0.90}{(0.05)^2 \times (1300 - 1) + (1.96)^2 \times 0.10 \times 0.90}
\]

\[
n = \frac{1300 \times 3.84 \times 0.10 \times 0.90}{0.0025 \times 1299 + 3.84 \times 0.10 \times 0.90}
\]

\[
n = 449.28
\]

\[
3.2475 + 0.3456
\]

\[
n = 449.28
\]

\[
3.5931
\]

125
3. TIPO DE ESTUDIO
Estudio analítico de corte transversal que compara dos pruebas diagnósticas sobre una muestra de pacientes diabéticos tipo 2 del Club de Diabéticos del Hospital Gustavo Domínguez Z.

4. CRITERIOS DE INCLUSION
Diabéticos tipo 2

5. CRITERIOS DE EXCLUSION
1. Consumo de alcohol 20gr/día mujeres y 30grs/día hombres
3. Enfermedad hepática Autoinmune.
5. Diabéticos tipo 1
6. Cirugía de bypass yeyunoileal.
7. Pacientes con nutrición parenteral total.

6. RECOLECCION DE INFORMACION
Después de socializar el trabajo de investigación a los pacientes del Club de Diabéticos del Hospital Gustavo Domínguez, se les invitó a participar en el estudio, una vez que aceptaron y firmaron el consentimiento informado, se realizó un muestreo aleatorio simple para la obtención de la muestra, y se procedió a la recolección de la información mediante un cuestionario con preguntas para valorar los criterios de inclusión y exclusión como el consumo de alcohol, enfermedad
hepática existente, uso de medicamentos, antecedentes de cirugía de bypass entre otros, y obtención de datos de las variables del estudio.

7. DIAGNOSTICO E INTERVENCIÓN

Para la ejecución de esta investigación se requirió la realización de un ECO HEPATICO, mismo que fue realizado con la colaboración del Médico Radiólogo devengante de beca del Hospital Dr. Gustavo Domínguez.

Las pruebas de laboratorio como TGO, TGP, HbA1C, HDL, LDL, Colesterol, Triglicéridos, FA, γ GT, Ferritina se realizaron en el Laboratorio Clínico de rutina del Hospital.

8. PLAN DE ANALISIS ESTADISTICO

En el análisis descriptivo se utilizaron porcentajes para resumir los datos de variables categóricas y en las más relevantes se calculó el intervalo de confianza al 95% (IC95%) de la proporción como medida de inferencia. La descripción de las variables cuantitativas utilizó la media como estimador de tendencia central y la desviación estándar y rango como mediciones de dispersión. En el caso de distribuciones anormales de las frecuencias numéricas, la descripción se efectuó a través de la mediana y cuartiles (Q1: 25% - Q3: 75%).

Se calcularon dos tipos de prevalencia de EHGNA para el total de pacientes investigados. La primera considerando como numerador los pacientes con ese diagnóstico en la ecografía hepática y la segunda considerando aquellos sujetos con puntajes del HSI positivos para EHGNA. Para cada prevalencia también se calculó su IC95% como estimador de la precisión obtenida mediante el método exacto de Wald.
La capacidad diagnóstica del HSI se evaluó mediante pruebas de predictibilidad, considerando como “patrón oro” al resultado de la ecografía hepática. Los resultados de sensibilidad, especificidad, valor predictivo positivo y valor predictivo negativo se acompañaron del cálculo de sus respectivos IC95%. De forma complementaria se calculó la razón de probabilidades (likelihood ratio) pre-test y post-test positiva y negativa del HSI.

Para identificar posibles diferencias en las características clínicas y hallazgos de laboratorio de los pacientes con EHGNA, durante el análisis se conformaron dos grupos según el diagnóstico de la ecografía hepática: casos de EHGNA y testigos (sin EHGNA). Las comparaciones entre estos dos grupos se efectuaron mediante las pruebas de Student t o χ^2 según correspondiera para el tipo de variable y en cada comparación un valor p menor a 0.05 fue considerado como estadísticamente diferente. Durante la aplicación del χ^2 se empleó el test exacto de Fisher y en situaciones de inestabilidad por un reducido número de observaciones se empleó la corrección de Yates. Adicionalmente, en variables cuantitativas que mostraron una distribución de frecuencias anormal, se identificó la presencia de “outliers” mediante el test de Grubb. Los valores extremos fueron eliminados y comparaciones adicionales fueron efectuadas.

La posible asociación de la EHGNA con variables clínicas y alteraciones en las pruebas de laboratorio se estimó mediante la confrontación de los dos grupos de estudio (casos de EHGNA vs. testigos) a través del test de Mantel-Hanzel. La magnitud de la asociación causal se determinó mediante el cálculo del odds ratio (OR) y su respectivo IC95%, expresando de forma complementaria el nivel de significancia estadística ($p<0.05$) mediante la prueba de χ^2 basada en un grado de libertad. En aquellas asociaciones significativas, se calcularon los límites exactos del IC95% para mayor precisión de la inferencia causal.
Capítulo IV. RESULTADOS

1. Descripción de los pacientes estudiados

Fueron investigados un total de 125 pacientes que en su mayoría fueron de sexo femenino (86.4%). En el grupo estudiado la edad media (± desviación estándar) fue 63.0 ± 11.1 años, con un rango comprendido entre los 37 y 93 años. El 58.4% (n=73) de los pacientes tenían antecedentes de HTA y de estos sujetos un número de 38 (52.1%) no tenían controlado sus nivel de presión arterial. El índice de masa corporal (IMC) en todo el grupo varió entre 20.0 y 56.0 kg/m²; existiendo una prevalencia de sobrepeso en el 31.2% y de obesidad en el 43.2% de los pacientes. Por su parte, el perímetro de cintura mostró una variación entre 75 y 130 cm; con una prevalencia de obesidad abdominal del 78.4% conforme la definición del consenso ATP III y hasta del 92.8% considerando los valores establecidos por la Federación Internacional de Diabetes.

El 37.6% de los pacientes recibían tratamiento para su diabetes con sulfonilureas. Los exámenes de glucosa basal mostraron una media de 168.2 ± 64.8 mg/dL, existiendo una anormalidad de la misma (≥131 mg/dL) en el 64.8%. Los resultados de HbA1c tuvieron una media de 7.6% ± 1.6% con un amplio rango comprendido entre 5.0% y 12.0%. Un total de 79 pacientes tuvieron valores iguales o superiores a 7.0%, con lo cual la prevalencia de mal control metabólico fue 63.2% (IC95%= 54.4% - 71.1%). En los estudios de perfil lipídico, los valores promedio de colesterol, HDL-colesterol, LDL-colesterol y triglicéridos fueron 205.3 ± 43.5 mg/dL, 50.6 ± 12.5 mg/dL, 124.8 ± 36.1 mg/dL y 175.1 ± 78.1 mg/dL, respectivamente. En total las frecuencias de alteraciones lipídicas encontradas en los pacientes fueron: hipercolesterolemia (54.4%), HDL disminuido (16.0%), LDL elevado (94.4%) e hipertrigliceridemia (60.0%).
En las pruebas de función hepática hubo una amplia variación interindividual, donde los valores de TGP tuvieron un rango entre 1 y 119 UI/L y los de TGO entre 8 y 93 UI/L. El 20.8% de los pacientes mostraron una TGP elevada (1.5N) y el 12.0% una TGO elevada (1.6N). A su vez, la gamma-glutamiltranspeptidasa (γ GT) varió entre 15 y 529 UI/L, identificándose cifras elevadas en el 33.6% de los sujetos (1.8N). La fosfatasa alcalina (rango 57 a 749 UI/L) y la ferritina (rango 5 a 1956 ng/mL) se encontraron elevadas en el 53.6% (1.3N) y 16.8% de los sujetos (1.2N), respectivamente.

2. **Prevalencia de la enfermedad de hígado graso no alcohólico (EHGNA)**

En el índice de esteatosis hepática (HSI) aplicado sobre la totalidad de pacientes, se obtuvo un puntaje promedio de 42.4 ± 6.3, con un rango entre 31 y 69 puntos. Un total de 107 sujetos tuvieron puntajes iguales o superiores a 36.0, siendo calificados como positivos para enfermedad de hígado graso no alcohólico (EHGNA). Otros 18 pacientes tuvieron puntajes intermedios (mayores a 31 y menores a 36), calificados solamente como probables y considerados negativos en el análisis. Ningún paciente tuvo puntajes menores a 30. Así, conforme el HSI positivo, la prevalencia de EHGNA fue 85.6% (IC95%= 78.3% – 90.7%).

Por otra parte, en el estudio de ecografía hepática, un total de 70 pacientes fueron calificados como portadores de EHGNA, con lo cual la prevalencia confirmada de este trastorno fue 56.0% (IC95%= 47.2% – 64.4%). La gravedad en estos casos fue calificada como leve (n=57; 81.4%), moderada (n=12; 17.1%) y severa (n=1; 1.4%). La ecografía también identificó la presencia de hepatomegalia en 17 pacientes. De los 70 casos confirmados de EHGNA, un número de 16 (22.9%) tuvieron este hallazgo ecográfico, siendo principalmente de tipo leve (n=13; 18.6%) y moderada
Aunque 16 de los casos de EHGNA refirieron presentar dolor en el hipocondrio derecho, solo 4 tenían hepatomegalia.

3. **Capacidad del índice de esteatosis hepática, para el diagnóstico de EHGNA.**

De los 107 pacientes calificados en el HSI como positivos para EHGNA, solamente 63 fueron confirmados como casos de EHGNA en la ecografía. Por lo tanto, el HSI tuvo una sensibilidad del 90.0% (IC95%= 80.8% – 95.1%) pero con una probabilidad del 58.9% para calificar correctamente como positivo a un caso de EHGNA. La probabilidad para descartar correctamente un caso de EHGNA mediante el HSI fue solo del 61.1%, debido a una especificidad de apenas el 20.0%; **tabla 1**. Además, la magnitud del cambio de probabilidades pre- a post-test fue de 1.13 en caso de presentar un resultado positivo en el HSI y 0.5 en caso de un resultado negativo.

Tabla 1

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Estimador</th>
<th>IC95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensibilidad</td>
<td>90.0</td>
<td>80.8 – 95.1</td>
</tr>
<tr>
<td>Especificidad</td>
<td>20.0</td>
<td>11.6 – 32.4</td>
</tr>
<tr>
<td>Valor predictivo positivo</td>
<td>58.9</td>
<td>49.4 – 67.7</td>
</tr>
<tr>
<td>Valor predictivo negativo</td>
<td>61.1</td>
<td>38.6 – 79.7</td>
</tr>
<tr>
<td>Likelihood ratio positivo</td>
<td>1.13</td>
<td>0.96 – 1.31</td>
</tr>
<tr>
<td>Likelihood ratio negativo</td>
<td>0.5</td>
<td>0.20 – 1.20</td>
</tr>
</tbody>
</table>

EHGNA: Enfermedad de hígado graso no alcohólico.

Fuente: Base de datos del estudio. **Elaboración**: Autora.

Aunque el puntaje del HSI fue significativamente mayor en los casos ecográficos de EHGNA que en los sujetos “testigos” sin la patología (44.0 ± 7.0 vs. 40.3 ± 4.8
puntos; p<0.01), la frecuencia de puntajes positivos en el HSI no fue estadísticamente diferente entre los casos de EHGNA y los testigos (90.0% vs. 80.0%; p=ns).

La frecuencia de dolor en el hipocondrio derecho tampoco fue estadísticamente diferente entre los grupos con y sin EHGNA (22.9% vs. 18.2%; p=ns), pero la presencia de hepatomegalia fue claramente más común en los casos, pues apenas un sujeto del grupo sin EHGNA tuvo ese hallazgo ecográfico (22.9% vs. 1.8%; p<0.001);

Tabla 2

<table>
<thead>
<tr>
<th>Hallazgo</th>
<th>Grupo total [n=125 (%)]</th>
<th>Con EHGNA [n=70 (%)]</th>
<th>Testigos [n=55 (%)]</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSI puntos (media ± DS)</td>
<td>42.4 ± 6.3</td>
<td>44.0 ± 7.0</td>
<td>40.3 ± 4.8</td>
<td><0.01</td>
</tr>
<tr>
<td>HSI positivo para EHGNA</td>
<td>107 (85.6)</td>
<td>63 (90.0)</td>
<td>44 (80.0)</td>
<td>Ns</td>
</tr>
<tr>
<td>Dolor en HCD</td>
<td>26 (20.8)</td>
<td>16 (22.9)</td>
<td>10 (18.2)</td>
<td>Ns</td>
</tr>
<tr>
<td>Hepatomegalia</td>
<td>17 (13.6)</td>
<td>16 (22.9)</td>
<td>1 (1.8)</td>
<td><0.001</td>
</tr>
<tr>
<td>Leve</td>
<td>14 (11.2)</td>
<td>13 (18.6)</td>
<td>1 (1.8)</td>
<td><0.01</td>
</tr>
<tr>
<td>Moderada</td>
<td>3 (2.4)</td>
<td>3 (4.3)</td>
<td>---</td>
<td>NA</td>
</tr>
</tbody>
</table>

Datos se presentan como número (porcentaje), salvo que se indique lo contrario.

EHGNA: Enfermedad de hígado graso no alcohólico.
HSI: Índice de Esteatosis Hepática.
HCD: Hipocondrio derecho.

p: nivel de significancia estadística (según χ^2 o t); comparación EHGNA vs. Testigos.
Ns: no estadísticamente significativo. **NA**: no analizable.

Fuente: Base de datos del estudio. **Elaboración**: Autora.

4. **Características clínicas y antropométricas de los pacientes con y sin EHGNA**

En la comparación entre las características clínicas generales de los pacientes con EHGNA y aquellos sin la patología, no se encontraron diferencias estadísticas respecto al sexo, edad, antecedentes de HTA y cifras actuales de presión arterial; **tabla 3**. La frecuencia de una HTA no controlada fue similar entre los casos y
testigos tanto en el total de individuos con esta condición (37.1% vs. 41.8%; p=ns), como en aquellos sujetos (n=38) con nuevo diagnóstico de HTA (50.0% vs. 54.3%; p=ns). El empleo de sulfonilureas como tratamiento para la diabetes fue significativamente más frecuente en los casos de EHGNA (47.1% vs. 25.5%; p=0.01).

Por otra parte, en los casos se identificó un mayor peso corporal que en los pacientes sin EHGNA (68.8 ± 13.2 vs. 64.4 ± 10.7 Kg; p=0.05). De igual forma, el IMC fue significativamente más alto en los casos de EHGNA (30.6 ± 6.2 vs. 27.6 ± 4.2 Kg/m²; p<0.01). Se encontraron diferencias estadísticamente significativas en la prevalencia general de obesidad marcada por el IMC (51.4% vs. 32.7%; p=0.03), pero no hubo significancia estadística según el grado de obesidad. El perímetro de cintura fue similar en ambos grupos de pacientes. Se observó una mayor prevalencia de obesidad abdominal en los casos de EHGNA que en los testigos, pero sin que la diferencia fuera estadísticamente significativa, tanto al emplear los criterios del ATPIII (81.4% vs. 74.5%; p=ns) como de la Federación Internacional de Diabetes (95.7% vs. 89.1%; p=ns).

Tabla 3

<table>
<thead>
<tr>
<th>Característica</th>
<th>Grupo total [n=125 (%)]</th>
<th>Con EHGNA [n=70 (%)]</th>
<th>Testigos [n=55 (%)]</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sexo femenino</td>
<td>108 (86.4)</td>
<td>63 (90.0)</td>
<td>45 (81.8)</td>
<td>Ns</td>
</tr>
<tr>
<td>Edad (media ± DS)</td>
<td>63.03 ± 11.1</td>
<td>62.5 ± 11.0</td>
<td>63.6 ± 11.3</td>
<td>Ns</td>
</tr>
<tr>
<td>Edad ≥60 años</td>
<td>80 (64.0)</td>
<td>44 (62.9)</td>
<td>36 (65.5)</td>
<td>Ns</td>
</tr>
<tr>
<td>TAS (mmHg)</td>
<td>127.0 ± 10.2</td>
<td>125.9 ± 18.6</td>
<td>128.4 ± 18.6</td>
<td>Ns</td>
</tr>
<tr>
<td>TAD (mmHg)</td>
<td>77.2 ± 10.2</td>
<td>76.9 ± 9.7</td>
<td>77.7 ± 10.9</td>
<td>Ns</td>
</tr>
<tr>
<td>Antecedentes de HTA</td>
<td>73 (58.4)</td>
<td>38 (54.3)</td>
<td>35 (63.6)</td>
<td>Ns</td>
</tr>
<tr>
<td>HTA no controlada</td>
<td>49 (39.2)</td>
<td>26 (37.1)</td>
<td>23 (41.8)</td>
<td>Ns</td>
</tr>
<tr>
<td>Uso de sulfonilureas</td>
<td>47 (37.6)</td>
<td>33 (47.1)</td>
<td>14 (25.5)</td>
<td>0.01</td>
</tr>
<tr>
<td>Peso (Kg)</td>
<td>66.9 ± 12.3</td>
<td>68.8 ± 13.2</td>
<td>64.4 ± 10.7</td>
<td>0.05</td>
</tr>
<tr>
<td>IMC (kg/m²)</td>
<td>29.3 ± 5.6</td>
<td>30.6 ± 6.2</td>
<td>27.6 ± 4.2</td>
<td><0.01</td>
</tr>
<tr>
<td>IMC categorías</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>32 (25.6)</td>
<td>13 (18.6)</td>
<td>19 (34.5)</td>
<td>0.04</td>
</tr>
<tr>
<td>Obesidad corporal</td>
<td>54 (43.2)</td>
<td>36 (51.4)</td>
<td>18 (32.7)</td>
<td>0.03</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>Perímetro cintura (cm)</td>
<td>98.9 ± 10.9</td>
<td>100.9 ± 11.0</td>
<td>99.4 ± 10.2</td>
<td>Ns</td>
</tr>
<tr>
<td>Obeso abdominal (def.1)</td>
<td>98 (78.4)</td>
<td>57 (81.4)</td>
<td>41 (74.5)</td>
<td>Ns</td>
</tr>
<tr>
<td>Obeso abdominal (def.2)</td>
<td>116 (92.8)</td>
<td>67 (95.7)</td>
<td>49 (89.1)</td>
<td>Ns</td>
</tr>
</tbody>
</table>

Datos se presentan como número (porcentaje) o como media ± desviación estándar, según corresponda para el tipo de variable.

EHGNA: Enfermedad de hígado graso no alcohólico (determinada por ecografía hepática).
TAS: Tensión arterial sistólica. **TAD**: Tensión arterial diástólica. **HTA**: Hipertensión arterial. **IMC**: Índice de masa corporal. Obeso abdominal definido conforme criterios (definición 1) del ATPIII y (definición 2) de la Federación Internacional de Diabetes.
p: nivel de significancia estadística (según χ^2 o t); comparación EHGNA vs. Testigos.
Ns: no estadísticamente significativo.

Fuente: Base de datos del estudio. **Elaboración**: Autora.

5. Hallazgos de laboratorio en los pacientes con y sin EHGNA

Los distintos hallazgos de las pruebas de laboratorio realizadas a los pacientes se exponen en la tabla 4 y su alteración clínica en la tabla 5. Las cifras de glucosa basal estuvieron más elevadas en los casos de EHGNA que en el grupo testigo (175.6 ± 58.2 vs. 158.9 ± 71.8 mg/dL; $p=\text{ns}$) y aunque no hubo diferencias estadísticamente significativas en estos promedios, la proporción de pacientes con cifras de glucosa alterada fue superior en el grupo con EHGNA (74.3% vs. 52.7%; $p=0.01$); tabla 5. La media de HbA1c fue similar entre ambos grupos de sujetos, así como la prevalencia de mal control metabólico (65.7% vs. 60.0%; $p=\text{ns}$). Respecto al perfil lipídico se observó mayores niveles plasmáticos de triglicéridos en el grupo con EHGNA, pero sin diferencias estadísticas (185.9 ± 72.1 vs. 161.3 ± 83.9 mg/dL; $p=0.08$). Por el contrario, en el grupo testigo la concentración de HDL colesterol fue significativamente superior (48.0 ± 12.0 vs. 53.9 ± 12.6 mg/dL; $p<0.01$). Las cifras de colesterol total y LDL colesterol fueron similares; tabla 4. Las proporciones de pacientes con hipercolesterolemia, HDL disminuido, LDL elevado e
hipertrigliceridemia tampoco tuvieron diferencias estadísticas, aunque algunos hallazgos fueron más comunes en los casos de EHGNA; **tabla 5**.

Tabla 4

<table>
<thead>
<tr>
<th>Marcador laboratorial</th>
<th>Grupo total [n=125 (%)]</th>
<th>Con EHGNA [n=70 (%)]</th>
<th>Testigos [n=55 (%)]</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucosa basal (mg/dL)</td>
<td>168.2 ± 64.8</td>
<td>175.6 ± 58.2</td>
<td>158.9 ± 71.8</td>
<td>Ns</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>7.6 ± 1.6</td>
<td>7.5 ± 1.4</td>
<td>7.6 ± 1.7</td>
<td>Ns</td>
</tr>
<tr>
<td>Colesterol total (mg/dL)</td>
<td>205.3 ± 43.5</td>
<td>203.1 ± 42.9</td>
<td>208.2 ± 44.6</td>
<td>Ns</td>
</tr>
<tr>
<td>HDL colesterol (mg/dL)</td>
<td>50.6 ± 12.5</td>
<td>48.0 ± 12.0</td>
<td>53.9 ± 12.6</td>
<td><0.01</td>
</tr>
<tr>
<td>LDL colesterol (mg/dL)</td>
<td>124.8 ± 36.1</td>
<td>125.5 ± 37.1</td>
<td>123.9 ± 35.0</td>
<td>Ns</td>
</tr>
<tr>
<td>Triglicéridos (mg/dL)</td>
<td>175.1 ± 78.1</td>
<td>185.9 ± 72.1</td>
<td>161.3 ± 83.9</td>
<td>Ns</td>
</tr>
<tr>
<td>Fosfatasa alcalina (UI/L)</td>
<td>271.5 ± 105.8</td>
<td>274.7 ± 106.5</td>
<td>267.5 ± 105.8</td>
<td>Ns</td>
</tr>
<tr>
<td>TGP (UI/L)</td>
<td>30.6 ± 19.2</td>
<td>33.2 ± 20.9</td>
<td>27.4 ± 16.4</td>
<td>Ns</td>
</tr>
<tr>
<td>TGO (UI/L)</td>
<td>26.4 ± 14.8</td>
<td>27.6 ± 15.3</td>
<td>24.8 ± 14.2</td>
<td>Ns</td>
</tr>
<tr>
<td>γ GT (UI/L)</td>
<td>49.9 ± 70.0</td>
<td>55.1 ± 66.4</td>
<td>44.6 ± 74.6</td>
<td>Ns</td>
</tr>
<tr>
<td>Ferritina (ng/mL)</td>
<td>197.9 ± 218.0</td>
<td>177.1 ± 129.0</td>
<td>224.3 ± 294.3</td>
<td>Ns</td>
</tr>
</tbody>
</table>

Datos se presentan como media ± desviación estándar.

EHGNA: Enfermedad de hígado graso no alcohólico (determinada por ecografía hepática).

p: nivel de significancia estadística (según t); comparación EHGNA vs. Testigos.

Ns: no estadísticamente significativo.

Fuente: Base de datos del estudio. **Elaboración**: Autora.

Los resultados de las pruebas de función hepática no fueron estadísticamente diferentes entre los sujetos, aunque los casos de EHGNA mostraron valores de fosfatasa alcalina, TGP y TGO discretamente más altos; **tabla 4**. La γ GT varió...
entre 15 y 404 UI/L en los casos de EHGNA (mediana= 35; Q1-Q3= 25–58 UI/L) y
entre 15 y 528 UI/L en los testigos (mediana= 26; Q1-Q3= 20–36 UI/L); sin
diferencias estadísticas en las concentraciones medias (55.1 vs. 44.6 UI/L; p=ns),
incluso al eliminar un “outlier” extremo en el grupo testigo (54.1 vs 35.5 UI/L;
p=0.06). No obstante, la frecuencia de pacientes con valores de γ GT elevados
sobre lo normal fue significativamente mayor en los casos de EHGNA (41.4% vs.
23.6%; p=0.03); tabla 5.

Finalmente, no se encontraron diferencias estadísticas en las concentraciones de
ferritina plasmática, la cual varió ampliamente en los casos (rango de 5 a 559
ng/mL) y en los sujetos sin EHGNA (rango de 12 a 1956 ng/mL). Al excluir del
análisis un valor extremo en el grupo testigo, tampoco se encontraron diferencias
estadísticas en la media plasmática de ferritina (177.0 ± 128.9 vs. 192.2 ± 175.1
ng/mL; p=ns).

Tabla 5

<table>
<thead>
<tr>
<th>Tipo de alteración</th>
<th>Grupo total [n=125 (%)]</th>
<th>Con EHGNA [n=70 (%)]</th>
<th>Testigos [n=55 (%)]</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucosa basal alterada</td>
<td>81 (64.8)</td>
<td>52 (74.3)</td>
<td>29 (52.7)</td>
<td>0.01</td>
</tr>
<tr>
<td>Mal control metabólico</td>
<td>79 (63.2)</td>
<td>46 (65.7)</td>
<td>33 (60.0)</td>
<td>Ns</td>
</tr>
<tr>
<td>Hipercolesterolemia</td>
<td>68 (54.4)</td>
<td>37 (52.9)</td>
<td>31 (56.4)</td>
<td>Ns</td>
</tr>
<tr>
<td>HDL disminuido</td>
<td>20 (16.0)</td>
<td>14 (20.0)</td>
<td>6 (10.9)</td>
<td>Ns</td>
</tr>
<tr>
<td>LDL elevado</td>
<td>118 (94.4)</td>
<td>67 (95.7)</td>
<td>51 (92.7)</td>
<td>Ns</td>
</tr>
<tr>
<td>Hipertrigliceridemia</td>
<td>75 (60.0)</td>
<td>47 (67.1)</td>
<td>28 (50.9)</td>
<td>Ns</td>
</tr>
<tr>
<td>Fosfatasa alcalina elevada</td>
<td>67 (53.6)</td>
<td>39 (55.7)</td>
<td>28 (50.9)</td>
<td>Ns</td>
</tr>
<tr>
<td>TGP elevada</td>
<td>26 (20.8)</td>
<td>17 (24.3)</td>
<td>9 (16.4)</td>
<td>Ns</td>
</tr>
<tr>
<td>TGO elevada</td>
<td>15 (12.0)</td>
<td>9 (12.9)</td>
<td>6 (10.9)</td>
<td>Ns</td>
</tr>
<tr>
<td>γ GT elevada</td>
<td>42 (33.6)</td>
<td>29 (41.4)</td>
<td>13 (23.6)</td>
<td>0.03</td>
</tr>
<tr>
<td>Ferritina elevada</td>
<td>21 (16.8)</td>
<td>11 (15.7)</td>
<td>10 (18.2)</td>
<td>Ns</td>
</tr>
</tbody>
</table>

Datos se presentan como número (porcentaje).

EHGNA: Enfermedad de hígado graso no alcohólico (determinada por ecografía hepática).

p: nivel de significancia estadística (según χ²); comparación EHGNA vs. Testigos.
6. Factores clínicos y de laboratorio asociados con la EHGNA

De un total de 20 factores clínicos y de laboratorio considerados como posiblemente relacionados con el trastorno objeto del estudio, cinco se asociaron estadísticamente con la EHGNA diagnosticada mediante ecografía hepática: presencia de obesidad corporal determinada mediante el IMC, un hallazgo ecográfico de hepatomegalia, el uso de sulfonilureas para el tratamiento de la diabetes, valores alterados en la glucosa basal y cifras de GGT elevadas; tabla 6.

La mayor magnitud de asociación se encontró para la presencia de hepatomegalia, pero la precisión del estimator tuvo una amplia variación (OR= 16.0; IC95%= 2.05 – 124.9; p<0.001). Sin embargo, no hubo una clara relación entre el antecedente de dolor en el hipocondrio derecho referido por el paciente y la EHGNA (OR= 1.33; IC95%= 0.51 – 3.54; p=ns).

De forma similar, aunque existió el doble de probabilidades de que los pacientes con EHGNA tuvieran una concentración elevada de glucosa basal (OR= 2.59; IC95%= 1.14 – 5.90; p=0.01), un estado de mal control metabólico de la diabetes no se asoció con la patología (OR= 1.28; IC95%= 0.58 – 2.83; p=ns).

Tabla 6

<table>
<thead>
<tr>
<th>Factor clínico</th>
<th>Con EHGNA [n=70 (%)]</th>
<th>Testigos [n=55 (%)]</th>
<th>OR (IC95%)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sexo Femenino</td>
<td>63 (90.0)</td>
<td>45 (81.8)</td>
<td>2.00 (0.64 – 6.38)</td>
<td>Ns</td>
</tr>
<tr>
<td>Edad ≥60 años</td>
<td>44 (62.9)</td>
<td>36 (65.5)</td>
<td>0.89 (0.40 – 1.99)</td>
<td>Ns</td>
</tr>
<tr>
<td>Antecedentes de HTA</td>
<td>38 (54.3)</td>
<td>35 (63.6)</td>
<td>0.68 (0.31 – 1.49)</td>
<td>Ns</td>
</tr>
<tr>
<td>HTA no controlada</td>
<td>26 (37.1)</td>
<td>23 (41.8)</td>
<td>0.82 (0.37 – 1.80)</td>
<td>Ns</td>
</tr>
<tr>
<td>Obesidad corporal</td>
<td>36 (51.4)</td>
<td>18 (32.7)</td>
<td>2.18 (1.05 – 4.53)</td>
<td>0.03</td>
</tr>
<tr>
<td>Obeso abdominal (def. 1)</td>
<td>57 (81.4)</td>
<td>41 (74.5)</td>
<td>1.50 (0.59 – 3.83)</td>
<td>Ns</td>
</tr>
<tr>
<td>Obeso abdominal (def. 2)</td>
<td>67 (95.7)</td>
<td>49 (89.1)</td>
<td>2.73 (0.57 – 14.6)</td>
<td>Ns</td>
</tr>
<tr>
<td>Condición</td>
<td>Grupo 1 (porcentaje)</td>
<td>Grupo 2 (porcentaje)</td>
<td>Odds Ratio (IC95%)</td>
<td>Significancia</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>----------------------</td>
<td>----------------------</td>
<td>--------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Dolor en HCD</td>
<td>16 (22.9)</td>
<td>10 (18.2)</td>
<td>1.33 (0.51 – 3.54)</td>
<td>Ns</td>
</tr>
<tr>
<td>Hepatomegalia</td>
<td>16 (22.9)</td>
<td>1 (1.8)</td>
<td>16.0 (2.05 – 124.9)</td>
<td><0.001</td>
</tr>
<tr>
<td>Uso de sulfonilureas</td>
<td>33 (47.1)</td>
<td>14 (25.5)</td>
<td>2.61 (1.21 – 5.62)</td>
<td>0.01</td>
</tr>
<tr>
<td>Glucosa basal alterada</td>
<td>52 (74.3)</td>
<td>29 (52.7)</td>
<td>2.59 (1.14 – 5.90)</td>
<td>0.01</td>
</tr>
<tr>
<td>Mal control metabólico</td>
<td>46 (65.7)</td>
<td>33 (60.0)</td>
<td>1.28 (0.58 – 2.83)</td>
<td>Ns</td>
</tr>
<tr>
<td>Hipercolesterolemia</td>
<td>37 (52.9)</td>
<td>31 (56.4)</td>
<td>0.87 (0.40 – 1.88)</td>
<td>Ns</td>
</tr>
<tr>
<td>HDL disminuido</td>
<td>14 (20.0)</td>
<td>6 (10.9)</td>
<td>2.04 (0.66 – 6.51)</td>
<td>Ns</td>
</tr>
<tr>
<td>LDL elevado</td>
<td>67 (95.7)</td>
<td>51 (92.7)</td>
<td>1.75 (0.31 – 10.4)</td>
<td>Ns</td>
</tr>
<tr>
<td>Hipertrigliceridemia</td>
<td>47 (67.1)</td>
<td>28 (50.9)</td>
<td>1.97 (0.90 – 4.36)</td>
<td>Ns</td>
</tr>
<tr>
<td>Fosfatasa elevada</td>
<td>39 (55.7)</td>
<td>28 (50.9)</td>
<td>1.21 (0.56 – 2.62)</td>
<td>Ns</td>
</tr>
<tr>
<td>TGP elevado</td>
<td>17 (24.3)</td>
<td>9 (16.4)</td>
<td>1.64 (0.62 – 4.44)</td>
<td>Ns</td>
</tr>
<tr>
<td>TGO elevado</td>
<td>9 (12.9)</td>
<td>6 (10.9)</td>
<td>1.20 (0.36 – 4.14)</td>
<td>Ns</td>
</tr>
<tr>
<td>γ GT elevado</td>
<td>29 (41.4)</td>
<td>13 (23.6)</td>
<td>2.29 (1.04 – 5.00)</td>
<td>0.03</td>
</tr>
<tr>
<td>Ferritina elevada</td>
<td>11 (15.7)</td>
<td>10 (18.2)</td>
<td>0.84 (0.30 – 2.37)</td>
<td>Ns</td>
</tr>
</tbody>
</table>

Datos de los grupos se presentan como número (porcentaje) y del estimador de asociación como números absolutos.

EHGNA: Enfermedad de hígado graso no alcohólico (determinada por ecografía hepática).

OR: Odds ratio. **IC95%**: intervalo de confianza al 95% para el OR. **p**: nivel de significancia estadística (según χ^2). **Ns**: no estadísticamente significativo.

La obesidad corporal (OR= 2.18), el uso de sulfonilureas (OR= 2.61) y las cifras elevadas de γ GT (OR= 2.29) en el paciente, también duplicaron significativamente la probabilidad de una EHGNA. Por otra parte, la presencia de una obesidad abdominal (definida conforme los criterios de la Federación Internacional de Diabetes), tener valores disminuidos del HDL y ser del sexo femenino, mostraron una tendencia de asociación del doble, pero sin alcanzar niveles estadísticamente significativos. Este tipo de tendencia de asociación no significativa, pero de menor magnitud, se encontró también para las concentraciones elevadas de fosfatasa alcalina, TGP, TGO, LDL y triglicéridos. Otros factores investigados, como la edad del paciente igual o mayor a 60 años, una condición de HTA no controlada, la
hipercolesterolemia y las cifras elevadas de ferritina, no mostraron tener una relación con la presencia de EHGNA.

Capítulo V. DISCUSIÓN

Uno de los objetivos del estudio fue valorar si el índice de Esteatosis hepática (HSI) es un método confiable en el diagnóstico de Hígado Graso no alcohólico en los pacientes Diabéticos tipo 2, reportando una alta sensibilidad del 90%, lo que nos indica que quienes tienen un HSI mayor de 36 tienen hígado graso y debido a que no existe ningún impacto negativo en el tratamiento se considera deben recibirlo; concluyendo que el HSI es un método no invasivo y económico para diagnosticar la presencia de hígado graso no alcohólico con una precisión razonable.

Sin embargo, su especificidad es baja (20%), lo que nos impide aseverar que quienes tienen un índice menor de 36 no tengan hígado graso, en los cuales se requiere realizar una ecografía hepática para descartar la presencia de esta enfermedad, debido a que la ecografía es un método diagnóstico que tiene una especificidad del 93%.

Además, cuando el HSI se encuentre menor de 36 se debería realizar otras variables clínicas y de laboratorio que son estadísticamente significativas con relación al hígado graso según nuestro estudio, como son: hepatomegalia, glucosa en ayunas elevada, y GT incrementada y HDL disminuida; mismas que de
encontrarse alteradas, junto con la ecografía hepática nos permitirían mayor precisión en el diagnóstico.

La baja especificidad estaría en relación a que el índice utiliza un análisis de regresión logística basado en variables como IMC, la cual realizada en una cohorte de población coreana, que no presenta las mismas características antropométricas de la población ecuatoriana, por lo que se requieren realizar nuevos trabajos de investigación para validar nuestras propias variables.

La prevalencia de EHGNA según nuestro estudio en los pacientes con diabetes tipo 2 por ecografía hepática fue de 56% y con el HSI positivo fue 85.6%, encontrándose en el rango de otros estudios cuya prevalencia varía entre el 10% al 75%. (2)

Otro objetivo del estudio fue evaluar a la ferritina como un marcador de EHGNA, por cuanto la evidencia ha demostrado que el aumento de la ferritina sérica se asocia con el síndrome de resistencia a la insulina, mayor contenido de hierro y de grasa hepática. (15) Los resultados de este estudio no demostraron asociación significativa entre la enfermedad de hígado graso y los valores elevados de ferritina, por lo que no se puede avalar su utilidad como marcador diagnóstico; probablemente esto se justifique a que los niveles elevados de ferritina están presentes en pacientes con lesión hepática avanzada (fibrosis hepática), (16) sujetos que fueron excluidos para este estudio.

La presencia de EHGNA tuvo una asociación estadísticamente significativa con la presencia de obesidad corporal (OR= 2.18; IC95%= 1.05 – 4.53; p: 0.03)) la cual fue definida mediante el IMC. A pesar de que se encontró una mayor prevalencia de obesidad abdominal en los pacientes con hígado graso, esta asociación no fue
estadísticamente significativa y podría estar relacionado a que la población de sujetos estudiados fueron diabéticos tipo 2 en los cuales se consideraría como causa de la diabetes grados avanzados de resistencia a la insulina, por obesidad. Se ha reportado que los pacientes obesos tienen toxicidad por citocinas, efectos hepáticos de hipoxemia sistémica y estrés oxidativo microsomal CYP 2 el cual tiene una función importante en la patogénesis de hígado graso no alcohólico (14). Una segunda explicación de porqué la obesidad corporal y no la central fue el mejor predictor de hígado graso es que los puntos de corte utilizados para la definición de la circunferencia de la cintura anormal según ATP III no son lo suficientemente sensibles como para detectar hígado graso no alcohólico. Los puntos de corte más bajos pueden ser más útiles para la definición de obesidad central.

La mayor magnitud de asociación en este estudio se encontró para la presencia de hepatomegalia principalmente de tipo leve con un (OR= 16.0; IC95%= 2.05 – 124.9; p<0.001) considerando además que se excluyó pacientes con otras causas de hepatopatía, se concluye que la hepatomegalia es un signo clínico altamente compatible con hígado graso no alcohólico.

Cuando se evaluó el perfil lipídico se encontró que la concentración de HDL colesterol fue significativamente superior (48.0 ± 12.0 vs. 53.9 ± 12.6 mg/dL; p<0.01) en los pacientes sin EHGNA. Es conocido que esta lipoproteína de alta densidad es un factor de riesgo independiente para enfermedad coronaria y eventos cardiovasculares y que las medidas no farmacológicas implementadas para incrementar los niveles de HDL son perder el exceso de peso, controlar la diabetes, combatir el sedentarismo y dejar de fumar, características compatibles con el grupo de pacientes que no presentan hígado graso que nos justificarían la presencia de valores elevados de HDL. (59)
En los pacientes con hígado graso, las aminotransferasas que son indicadores sensibles de lesión de la célula hepática, pueden ser la única anomalía de laboratorio presente, elevándose sus niveles hasta 4 veces lo normal. Sin embargo, TGO y TGP pueden ser normales en algunos pacientes con EHNA, como lo reflejó nuestro estudio donde se evidenció una TGP elevada a (1.6N) y una TGO elevada a (1.5N), que a pesar de encontrarse valores superiores en los pacientes con EHNGA ésto no fue estadísticamente significativo. Además la proporción TGO/TGP según la literatura es útil desde el punto de vista diagnóstico, refiriendo que una relación > 2 es sugestivo de la hepatopatía por alcohol y mientras que una proporción <1 puede ocurrir en pacientes con EHNGA, como lo demostró nuestro estudio donde el 90% de los pacientes con diagnóstico ecográfico de hígado graso presentó una relación <1. Ésta relación, conforme se encuentra descrita en la literatura nos permitirá en la práctica clínica establecer el diagnóstico diferencial entre hepatopatía alcohólica y EHNGA.

Por lo general, las enzimas colestásicas como la fosfatasa alcalina pueden estar elevadas en los pacientes con EHNA por lo menos 2 a 3 veces lo normal, lo que no se evidenció en nuestro estudio, reportando una elevación sólo hasta (1.3N). Otra enzima colestásica que se encuentra elevada es la y GT, que en este estudio a pesar de no encontrar diferencias estadísticamente significativas en sus concentraciones medias entre los pacientes con hígado graso y el grupo testigo (55.1 vs. 44.6 U/L; p=ns), si hubo una mayor elevación de la misma en los pacientes con hígado graso (41.4% vs. 23.6%; p=0.03).

Otras variables que se encontraron asociadas a la presencia de EHNGA son los valores alterados en la glucosa basal >130mg/dl (según las recomendaciones de
ADA 2014 [70 – 130mg/dl]); y el uso de sulfonilureas para el tratamiento de diabetes tipo 2.

Una posible explicación fisiopatológica de por qué el uso de sulfonilureas está asociado a la presencia de hígado graso sería porque estos antidiabéticos orales incrementan la secreción de insulina, lo que provoca un incremento de peso, siendo éste un factor independiente de hígado graso. (45)

Capítulo VI. CONCLUSIONES

1. La prevalencia de EHGNA en los pacientes con diabetes tipo 2 por ecografía hepática fue de 56% y con el HSI positivo fue 85.6%.

2. El HSI es un método no invasivo y económico para predecir hígado graso no alcohólico con una sensibilidad del 90%, pero no para descartarlo por su baja especificidad 20%.

3. La hepatomegalia, HDL disminuidos, y GT elevada, glucosa en ayunas >130mg/dl son marcadores clínicos y de laboratorio de alta asociación con el hígado graso en los pacientes diabéticos en los cuales se descarte otra etiología de daño hepático o hepatopatía crónica y sirve para orientar el estudio ecográfico cuando el HSI es <36.

4. La ferritina es un marcador inflamatorio que está incrementado en fibrosis hepática y sirve para detectar estados avanzados de enfermedad hepática.
5. La EHGNA tiene una asociación estadísticamente significativa con la presencia de obesidad corporal definida mediante el IMC.

6. La mayor magnitud de asociación entre EHGNA se encontró con hepatomegalia leve.

7. Los niveles disminuidos de HDL colesterol fue significativamente superior en los pacientes sin EHGNA.

8. Las cifras de glucosa basal estuvieron más elevadas en los casos con EHGNA.

9. Valores de γ GT elevados sobre lo normal fue significativamente mayor en los casos de EHGNA.

10. La relación AST/ALT < 1 es un método útil en el diagnóstico de hígado graso no alcohólico.

Capítulo VII. LIMITACIONES

En el desarrollo de la investigación se presentaron las siguientes limitaciones:

1. La ecografía es un método diagnóstico operador dependiente.

2. Dificultades técnicas del eco hepático en los pacientes obesos.

3. Se utilizó como referencia variables antropométricas diferentes a la población ecuatoriana.
Capítulo VII. RECOMENDACIONES

Una vez concluida la tesis, se considera interesante investigar sobre otros aspectos relacionados con EHGNA:

1. Realizar nuevos estudios para validar el HSI como prueba diagnóstica en EHGNA mediante un análisis de regresión logística con variables antropométricas de la población ecuatoriana.

2. Estudios para confirmar la asociación entre niveles de ferritina elevados en pacientes con Fibrosis Hepática diagnosticados mediante biopsia.

42. Valenti L, Dongiovanni P, Fargion S. Diagnostic and therapeutic implications of the association between ferritin level and severity of nonalcoholic fatty liver disease. World J Gastroenterol 2012 August 7; 18(29): 3782-3786.

ANEXOS:

ENCUESTA PARA VALORAR LA UTILIDAD DEL ÍNDICE DE ESTEATOSIS HEPÁTICA VERSUS LA ECOGRAFÍA HEPÁTICA PARA PREDECIR HÍGADO GRASO NO ALCOHÓLICO EN PACIENTES CON DIABETES MELLITUS TIPO 2, DEL CLUB DE DIABETES DEL HOSPITAL DR. GUSTAVO DOMÍNGUEZ Z EN LA CIUDAD DE SANTO DOMINGO.

<table>
<thead>
<tr>
<th>COMORBILIDADES</th>
<th>TIEMPO TRANSCURRIDO</th>
<th>TRATAMIENTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIABETES</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SI</td>
<td>NO</td>
</tr>
<tr>
<td>----------</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>HTA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DISLIPIDEMIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SULFONILUREAS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CONSUMO DE ALCOHOL:</th>
<th>SI</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>CANTIDAD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIEMPO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIPO DE ALCOHOL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DOLOR ABDOMINAL</th>
<th>SI</th>
<th>NO</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEPATOMEGALIA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXAMEN FISICO</td>
<td>VALOR</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>TENSION ARTERIAL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PESO</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TALLA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PERIMETRO ABDOMINAL</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>LABORATORIO</th>
<th>VALOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>TGO/TGP</td>
<td></td>
</tr>
<tr>
<td>GGT</td>
<td></td>
</tr>
<tr>
<td>FOSFATASA ALCALINA</td>
<td></td>
</tr>
<tr>
<td>HBA1C</td>
<td></td>
</tr>
<tr>
<td>COLESTEROL TOTAL</td>
<td></td>
</tr>
<tr>
<td>TRIGLICERIDOS</td>
<td></td>
</tr>
<tr>
<td>HDL/LDL</td>
<td></td>
</tr>
<tr>
<td>FERRITINA</td>
<td></td>
</tr>
<tr>
<td>SATURACION</td>
<td></td>
</tr>
</tbody>
</table>
La presente investigación es conducida por la Dra. Ruth Bósquez, de la Universidad Católica del Ecuador. La meta de este estudio es valorar la UTILIDAD DEL ÍNDICE DE ESTEATOSIS HEPÁTICA VERSUS LA ECOGRAFÍA HEPÁTICA PARA PREDECIR HÍGADO GRASO NO ALCOHÓLICO EN PACIENTES CON DIABETES MELLITUS TIPO 2, DEL CLUB DE DIABETES DEL HOSPITAL DR. GUSTAVO DOMÍNGUEZ Y EN LA CIUDAD DE SANTO DOMINGO.

Si usted accede a participar en este estudio, se le pedirá responder preguntas de un cuestionario, toma de tensión arterial, peso, talla, perímetro abdominal. Esto tomará aproximadamente 15 minutos de su tiempo. Además se procederá a la realización de exámenes de sangre como (glucosa, TGO, TGP, HbA1C, HDL, LDL, colesterol, triglicéridos, ferritina), un eco hepático mismo que serán realizados en la Institución y por el personal que labora en el Hospital.

La participación en este estudio es estrictamente voluntaria. La información que se recoja será confidencial y no se usará para ningún otro propósito fuera de los de esta investigación. Sus respuestas al cuestionario serán codificadas usando un número de identificación y por lo tanto, serán anónimas.
Si tiene alguna duda sobre este proyecto, puede hacer preguntas en cualquier momento durante su participación en él. Igualmente, puede retirarse del proyecto en cualquier momento sin que eso lo perjudique en ninguna forma. Si alguna de las preguntas durante la entrevista le parecen incómodas, tiene usted el derecho de hacérselo saber al investigador o de no responderlas.

Desde ya le agradecemos su participación.

Acepto participar voluntariamente en esta investigación, conducida por Dra. Ruth Bósquez, de la Universidad Católica del Ecuador. He sido informado (a) de que la meta de este estudio es valorar la UTILIDAD DEL ÍNDICE DE ESTEATOSIS HEPÁTICA VERSUS LA ECOGRAFÍA HEPÁTICA PARA PREDECIR HÍGADO GRASO NO ALCOHÓLICO EN PACIENTES CON DIABETES MELLITUS TIPO 2, DEL CLUB DE DIABETES DEL HOSPITAL DR. GUSTAVO DOMÍNGUEZ Z EN LA CIUDAD DE SANTO DOMINGO.

Nombre del Participante

Fecha

(en letras de imprenta)

<table>
<thead>
<tr>
<th>Análisis descriptivo e inferencial principal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prevalencia hígado graso no alcohólico (EHGNA)</td>
</tr>
<tr>
<td>Según Ecografía</td>
</tr>
<tr>
<td>Según HSI positivo</td>
</tr>
</tbody>
</table>

EHGNA: Enfermedad de hígado graso no alcohólico.
Datos se presentan como número (porcentaje).
IC95%: intervalo de confianza al 95% para la proporción.

Análisis descriptivo y comparativo primario
Frecuencia y comparación de datos diagnósticos, para grupo total y subgrupos principales (con hígado graso [EHGNA] y testigos [sin hígado graso]) según resultado de Ecografía.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Grupo total [n=125 (%)]</th>
<th>EHGNA [n=70 (%)]</th>
<th>Testigos [n=55 (%)]</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Severidad EHGNA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leve</td>
<td>57 (45.6)</td>
<td>57 (81.4)</td>
<td>---</td>
<td>NA</td>
</tr>
<tr>
<td>Moderado</td>
<td>12 (9.6)</td>
<td>12 (17.1)</td>
<td>---</td>
<td>NA</td>
</tr>
<tr>
<td>Severo</td>
<td>1 (0.8)</td>
<td>1 (1.4)</td>
<td>---</td>
<td>NA</td>
</tr>
<tr>
<td>Hepatomegalia en Eco</td>
<td>17 (13.6)</td>
<td>16 (22.9)</td>
<td>1 (1.8)</td>
<td><0.001</td>
</tr>
<tr>
<td>Severidad hepatomeg.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leve</td>
<td>14 (11.2)</td>
<td>13 (18.6)</td>
<td>1 (1.8)</td>
<td><0.01</td>
</tr>
<tr>
<td>Moderado</td>
<td>3 (2.4)</td>
<td>3 (4.3)</td>
<td>---</td>
<td>NA</td>
</tr>
<tr>
<td>Indice (HSI – puntos)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(media ± DS)</td>
<td>42.4 ± 6.3</td>
<td>44.0 ± 7.0</td>
<td>40.3 ± 4.8</td>
<td><0.01</td>
</tr>
<tr>
<td>(rango)</td>
<td>31 – 69</td>
<td>31 – 69</td>
<td>31 – 50</td>
<td></td>
</tr>
<tr>
<td>HSI positivo EHGNA</td>
<td>107 (85.6)</td>
<td>63 (90.0)</td>
<td>44 (80.0)</td>
<td>Ns</td>
</tr>
<tr>
<td>HSI probable (negativo)</td>
<td>18 (14.4)</td>
<td>7 (10.0)</td>
<td>11 (20.0)</td>
<td>Ns</td>
</tr>
</tbody>
</table>

EHGNA: Enfermedad de hígado graso no alcohólico (determinada por ecografía hepática).

HSI: Índice de Esteatosis Hepática

Datos se presentan como número (porcentaje), salvo que se indique lo contrario.

\(p \): nivel de significancia estadística (según \(\chi^2 \) o t); comparación EHGNA vs. Testigos.

Ns: no estadísticamente significativo. **NA**: no analizable.

[---]: no procede comparación o dato ausente (cero)
Análisis para prueba diagnóstica

Tabla de contingencia y resultados de predictibilidad de prueba diagnóstica para EHGNA, según resultado de Ecografía (patrón oro) y puntaje de HSI (>36).

<table>
<thead>
<tr>
<th>EHGNA</th>
<th>ECO positivo</th>
<th>ECO negativo</th>
<th>Subtotales</th>
</tr>
</thead>
<tbody>
<tr>
<td>HSI positivo</td>
<td>63</td>
<td>44</td>
<td>107</td>
</tr>
<tr>
<td>HSI negativo</td>
<td>7</td>
<td>11</td>
<td>18</td>
</tr>
<tr>
<td>Subtotales</td>
<td>70</td>
<td>55</td>
<td>125</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>%</th>
<th>IC95%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensibilidad</td>
<td>90.0</td>
<td>80.8 – 95.1</td>
</tr>
<tr>
<td>Especificidad</td>
<td>20.0</td>
<td>11.6 – 32.4</td>
</tr>
<tr>
<td>Valor predictivo pos</td>
<td>58.9</td>
<td>49.4 – 67.7</td>
</tr>
<tr>
<td>Valor predictivo neg</td>
<td>61.1</td>
<td>38.6 – 79.7</td>
</tr>
<tr>
<td>Likelihood ratio* positivo</td>
<td>1.13</td>
<td>0.96 – 1.31</td>
</tr>
<tr>
<td>Likelihood ratio* negativo</td>
<td>0.5</td>
<td>0.20 – 1.20</td>
</tr>
</tbody>
</table>

EHGNA: Enfermedad de hígado graso no alcohólico (determinada por ecografía hepática).

HSI: Índice de Esteatosis Hepática

S: Porcentaje de aquellos con la enfermedad que tienen el test positivo.

E: Porcentaje de aquellos sin la enfermedad que tiene el test negativo.

VPP: Probabilidad de que una persona con test positivo tenga efectivamente la enfermedad.

VPN: Probabilidad de que una persona con el test negativo efectivamente no tenga la enfermedad.

(*) Razón de probabilidades de tener un determinado resultado del test en la población con la condición clínica vs. tener el mismo resultado en la población sin la condición.

LRP: Magnitud del cambio de la probabilidad pre a post test en caso de presentar un test positivo.

LRN: Magnitud del cambio de la probabilidad pre a post test en caso de presentar un test negativo.
Análisis descriptivo y comparativo general

Frecuencia y comparación de datos generales, clínicos y antropométricos, para grupo total y subgrupos principales (con hígado graso [EHGNA] y testigos [sin hígado graso]) según resultado de Ecografía.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Grupo total [n=125 (%)]</th>
<th>EHGNA [n=70 (%)]</th>
<th>Testigos [n=55 (%)]</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sexo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masculino</td>
<td>17 (13.6)</td>
<td>7 (10.0)</td>
<td>10 (18.2)</td>
<td>Ns</td>
</tr>
<tr>
<td>Femenino</td>
<td>108 (86.4)</td>
<td>63 (90.0)</td>
<td>45 (81.8)</td>
<td>Ns</td>
</tr>
<tr>
<td>Edad (años)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(media ± DS)</td>
<td>63.03 ± 11.1</td>
<td>62.5 ± 11.0</td>
<td>63.6 ± 11.3</td>
<td>Ns</td>
</tr>
<tr>
<td>(rango)</td>
<td>37 – 93</td>
<td>37 – 93</td>
<td>40 – 84</td>
<td></td>
</tr>
<tr>
<td>Mayor de 60 años</td>
<td>80 (64.0)</td>
<td>44 (62.9)</td>
<td>36 (65.5)</td>
<td>Ns</td>
</tr>
<tr>
<td>TAS (mmHg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(media ± DS)</td>
<td>127.0 ± 10.2</td>
<td>125.9 ± 18.6</td>
<td>128.4 ± 18.6</td>
<td>Ns</td>
</tr>
<tr>
<td>(rango)</td>
<td>90 – 170</td>
<td>90 – 170</td>
<td>90 – 170</td>
<td></td>
</tr>
<tr>
<td>TAD (mmHg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(media ± DS)</td>
<td>77.2 ± 10.2</td>
<td>76.9 ± 9.7</td>
<td>77.7 ± 10.9</td>
<td>Ns</td>
</tr>
<tr>
<td>(rango)</td>
<td>60 – 100</td>
<td>60 – 90</td>
<td>60 – 100</td>
<td></td>
</tr>
<tr>
<td>Antecedentes de HTA</td>
<td>73 (58.4)</td>
<td>38 (54.3)</td>
<td>35 (63.6)</td>
<td>Ns</td>
</tr>
<tr>
<td>HTA no controlada</td>
<td>49 (39.2)</td>
<td>26 (37.1)</td>
<td>23 (41.8)</td>
<td>Ns</td>
</tr>
<tr>
<td>HTA no controlada con Dg previo</td>
<td>38 (52.1)</td>
<td>19 (50.0)</td>
<td>19 (54.3)</td>
<td>Ns</td>
</tr>
<tr>
<td>Peso (Kg)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(media ± DS)</td>
<td>66.9 ± 12.3</td>
<td>68.8 ± 13.2</td>
<td>64.4 ± 10.7</td>
<td>0.05</td>
</tr>
<tr>
<td>(rango)</td>
<td>45 – 118</td>
<td>45 – 118</td>
<td>45 – 95</td>
<td></td>
</tr>
<tr>
<td>IMC (kg/m²)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(media ± DS)</td>
<td>29.3 ± 5.6</td>
<td>30.6 ± 6.2</td>
<td>27.6 ± 4.2</td>
<td><0.01</td>
</tr>
<tr>
<td>(rango)</td>
<td>20 – 56</td>
<td>21 – 56</td>
<td>20 – 39</td>
<td></td>
</tr>
<tr>
<td>IMC categorías</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Normal</td>
<td>32 (25.6)</td>
<td>13 (18.6)</td>
<td>19 (34.5)</td>
<td>0.04</td>
</tr>
<tr>
<td>Sobrepeso</td>
<td>39 (31.2)</td>
<td>21 (30.0)</td>
<td>18 (32.7)</td>
<td>Ns</td>
</tr>
<tr>
<td>Obesidad I</td>
<td>33 (26.4)</td>
<td>19 (27.1)</td>
<td>14 (25.5)</td>
<td>Ns</td>
</tr>
<tr>
<td>Obesidad II</td>
<td>16 (12.8)</td>
<td>12 (17.1)</td>
<td>4 (7.3)</td>
<td>Ns</td>
</tr>
<tr>
<td>Obesidad III</td>
<td>5 (4.0)</td>
<td>5 (7.1)</td>
<td>---</td>
<td>NA</td>
</tr>
<tr>
<td>Obesidad corporal</td>
<td>54 (43.2)</td>
<td>36 (51.4)</td>
<td>18 (32.7)</td>
<td>0.03</td>
</tr>
<tr>
<td>Perímetro cintura (cm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(media ± DS)</td>
<td>98.9 ± 10.9</td>
<td>100.9 ± 11.0</td>
<td>99.4 ± 10.2</td>
<td>Ns</td>
</tr>
<tr>
<td>(rango)</td>
<td>75 – 130</td>
<td>79 – 125</td>
<td>75 – 130</td>
<td></td>
</tr>
<tr>
<td>Obeso abdomen. ATP II</td>
<td>98 (78.4)</td>
<td>57 (81.4)</td>
<td>41 (74.5)</td>
<td>Ns</td>
</tr>
<tr>
<td>Obeso abdomen. FID</td>
<td>116 (92.8)</td>
<td>67 (95.7)</td>
<td>49 (89.1)</td>
<td>Ns</td>
</tr>
</tbody>
</table>

EHGNA: Enfermedad de hígado graso no alcohólico (determinada por ecografía)
Datos se presentan como número (porcentaje), salvo que se indique lo contrario.

p: nivel de significancia estadística (según χ^2 o t); comparación EHGNA vs. Testigos.

Ns: no estadísticamente significativo. **NA**: no analizable.

[---]: no procede comparación o dato ausente (cero)

Frecuencia y comparación de datos clínicos y laboratoriales, para grupo total y subgrupos principales (con hígado graso y testigos [sin hígado graso]) según resultado de Ecografía.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Grupo total [n=125 (%)]</th>
<th>EHGNA [n=70 (%)]</th>
<th>Testigos [n=55 (%)]</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dolor hipocondrio der</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(media ± DS)</td>
<td>168.2 ± 64.8</td>
<td>175.6 ± 58.2</td>
<td>158.9 ± 71.8</td>
<td>Ns</td>
</tr>
<tr>
<td>(rango)</td>
<td>74 – 326</td>
<td>74 – 326</td>
<td>76 – 317</td>
<td></td>
</tr>
<tr>
<td>Uso sulfonilureas</td>
<td>5 (4.0)</td>
<td>4 (5.7)</td>
<td>1 (1.8)</td>
<td>Ns</td>
</tr>
<tr>
<td>Hemoglob. glicos. (%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(media ± DS)</td>
<td>7.6 ± 1.6</td>
<td>7.5 ± 1.4</td>
<td>7.6 ± 1.7</td>
<td>Ns</td>
</tr>
<tr>
<td>(rango)</td>
<td>5.0 – 12.0</td>
<td>5.0 – 10.0</td>
<td>5 – 12</td>
<td></td>
</tr>
<tr>
<td>Mal control metab.</td>
<td>79 (63.2)</td>
<td>46 (65.7)</td>
<td>33 (60.0)</td>
<td>Ns</td>
</tr>
<tr>
<td>Glucosa basal (mg/dL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(media ± DS)</td>
<td>120.2 ± 64.8</td>
<td>125.6 ± 64.8</td>
<td>115.9 ± 71.8</td>
<td>Ns</td>
</tr>
<tr>
<td>(rango)</td>
<td>75 – 326</td>
<td>107 – 326</td>
<td>75 – 317</td>
<td></td>
</tr>
<tr>
<td>Triglicéridos (mg/dL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(media ± DS)</td>
<td>175.1 ± 78.1</td>
<td>185.9 ± 72.1</td>
<td>161.3 ± 83.9</td>
<td>Ns (0.08)</td>
</tr>
<tr>
<td>(rango)</td>
<td>27 – 518</td>
<td>73 – 443</td>
<td>27 – 518</td>
<td></td>
</tr>
<tr>
<td>Triglicéridos elevados</td>
<td>75 (60.0)</td>
<td>47 (67.1)</td>
<td>28 (50.9)</td>
<td>Ns (0.06)</td>
</tr>
<tr>
<td>HDL (mg/dL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(media ± DS)</td>
<td>120.2 ± 64.8</td>
<td>125.6 ± 64.8</td>
<td>115.9 ± 71.8</td>
<td>Ns</td>
</tr>
<tr>
<td>(rango)</td>
<td>75 – 326</td>
<td>107 – 326</td>
<td>75 – 317</td>
<td></td>
</tr>
<tr>
<td>LDL (mg/dL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(media ± DS)</td>
<td>175.1 ± 78.1</td>
<td>185.9 ± 72.1</td>
<td>161.3 ± 83.9</td>
<td>Ns (0.08)</td>
</tr>
<tr>
<td>(rango)</td>
<td>27 – 518</td>
<td>73 – 443</td>
<td>27 – 518</td>
<td></td>
</tr>
<tr>
<td>Fosfatasa alc (UI/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(media ± DS)</td>
<td>271.5 ± 105.8</td>
<td>274.7 ± 106.5</td>
<td>267.5 ± 105.8</td>
<td>Ns</td>
</tr>
<tr>
<td>Variable</td>
<td>Grupo total [n=125 (%)]</td>
<td>EHGNA [n=70 (%)]</td>
<td>Testigos [n=55 (%)]</td>
<td>p</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>---------</td>
</tr>
<tr>
<td>ß GT (UI/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(media ± DS)</td>
<td>49.9 ± 70.0</td>
<td>55.1 ± 66.4</td>
<td>44.6 ± 74.6</td>
<td>Ns</td>
</tr>
<tr>
<td>(rango)</td>
<td>15 – 528</td>
<td>15 – 404</td>
<td>15 – 528</td>
<td></td>
</tr>
<tr>
<td>(mediana [pct 25-75])</td>
<td>---</td>
<td>35 [25 - 58]</td>
<td>26 [20 - 36]</td>
<td></td>
</tr>
<tr>
<td>ß GT elevado</td>
<td>42 (33.6)</td>
<td>29 (41.4)</td>
<td>13 (23.6)</td>
<td>0.03</td>
</tr>
<tr>
<td>Ferritina (ng/mL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(media ± DS)</td>
<td>197.9 ± 218.0</td>
<td>177.1 ± 129.0</td>
<td>224.3 ± 294.3</td>
<td>Ns</td>
</tr>
<tr>
<td>(rango)</td>
<td>5 – 1956</td>
<td>5 – 559</td>
<td>12 – 1956</td>
<td></td>
</tr>
<tr>
<td>(mediana [pct 25-75])</td>
<td>---</td>
<td>---</td>
<td>138 [72 - 266]</td>
<td></td>
</tr>
<tr>
<td>Ferritina elevada</td>
<td>21 (16.8)</td>
<td>11 (15.7)</td>
<td>10 (18.2)</td>
<td>Ns</td>
</tr>
</tbody>
</table>

Datos laboratoriales… (continuación)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Grupo total [n=125 (%)]</th>
<th>EHGNA [n=70 (%)]</th>
<th>Testigos [n=54 (%)]</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>ß GT (UI/L)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(media ± DS)</td>
<td>46.0 ± 55.3</td>
<td>54.1 ± 66.3</td>
<td>35.5 ± 34.3</td>
<td>Ns (0.06)</td>
</tr>
<tr>
<td>(rango)</td>
<td>15 – 403</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferritina (ng/mL)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(media ± DS)</td>
<td>183.6 ± 150.3</td>
<td>177.0 ± 128.9</td>
<td>192.2 ± 175.1</td>
<td>Ns</td>
</tr>
<tr>
<td>(rango)</td>
<td>4.6 – 141.8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EHGNA: Enfermedad de hígado graso no alcohólico (determinada por ecografía hepática).

Datos se presentan como número (porcentaje), salvo que se indique lo contrario.

p: nivel de significancia estadística (según \(\chi^2 \) o \(t \)); comparación EHGNA vs. Testigos.

Ns: no estadísticamente significativo. **NA**: no analizable.

[---]: no procede comparación o dato ausente (cero)
Análisis principal de asociación

Posibles factores relacionados con el hígado graso no alcohólico (positivo en Ecografía)

<table>
<thead>
<tr>
<th>Variable</th>
<th>EHGNA [n=70 (%)]</th>
<th>Testigos [n=55 (%)]</th>
<th>OR (IC95%)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sexo Femenino</td>
<td>63 (90.0)</td>
<td>45 (81.8)</td>
<td>2.00 (0.64 – 6.38)</td>
<td>Ns</td>
</tr>
<tr>
<td>Mayor de 60 años</td>
<td>44 (62.9)</td>
<td>36 (65.5)</td>
<td>0.89 (0.40 – 1.99)</td>
<td>Ns</td>
</tr>
<tr>
<td>Antecedentes de HTA</td>
<td>38 (54.3)</td>
<td>35 (63.6)</td>
<td>0.68 (0.31 – 1.49)</td>
<td>Ns</td>
</tr>
<tr>
<td>HTA no controlada</td>
<td>26 (37.1)</td>
<td>23 (41.8)</td>
<td>0.82 (0.37 – 1.80)</td>
<td>Ns</td>
</tr>
<tr>
<td>HTA no controlada Dg previo</td>
<td>19 (50.0)</td>
<td>19 (54.3)</td>
<td>0.84 (0.30 – 2.34)</td>
<td>Ns</td>
</tr>
<tr>
<td>Obesidad corporal</td>
<td>36 (51.4)</td>
<td>18 (32.7)</td>
<td>2.18 (1.05 – 4.53)</td>
<td>0.03</td>
</tr>
<tr>
<td>Obeso abdom. ATPIII</td>
<td>57 (81.4)</td>
<td>41 (74.5)</td>
<td>1.50 (0.59 – 3.83)</td>
<td>Ns</td>
</tr>
<tr>
<td>Obeso abdom. FID</td>
<td>67 (95.7)</td>
<td>49 (89.1)</td>
<td>2.73 (0.57 – 14.63)</td>
<td>Ns</td>
</tr>
<tr>
<td>Dolor hipocondrio der.</td>
<td>16 (22.9)</td>
<td>10 (18.2)</td>
<td>1.33 (0.51 – 3.54)</td>
<td>Ns</td>
</tr>
<tr>
<td>Uso sulfonilureas</td>
<td>33 (47.1)</td>
<td>14 (25.5)</td>
<td>2.61 (1.21 – 5.62)</td>
<td>0.01</td>
</tr>
<tr>
<td>Mal control metabólico</td>
<td>46 (65.7)</td>
<td>33 (60.0)</td>
<td>1.28 (0.58 – 2.83)</td>
<td>Ns</td>
</tr>
<tr>
<td>Glucosa anormal</td>
<td>52 (74.3)</td>
<td>29 (52.7)</td>
<td>2.59 (1.14 – 5.90)</td>
<td>0.01</td>
</tr>
<tr>
<td>Hipercolesterolemia</td>
<td>37 (52.9)</td>
<td>31 (56.4)</td>
<td>0.87 (0.40 – 1.88)</td>
<td>Ns</td>
</tr>
<tr>
<td>Triglicéridos elevados</td>
<td>47 (67.1)</td>
<td>28 (50.9)</td>
<td>1.97 (0.90 – 4.36)</td>
<td>Ns</td>
</tr>
<tr>
<td>HDL disminuido</td>
<td>14 (20.0)</td>
<td>6 (10.9)</td>
<td>2.04 (0.66 – 6.51)</td>
<td>Ns</td>
</tr>
<tr>
<td>LDL elevado</td>
<td>67 (95.7)</td>
<td>51 (92.7)</td>
<td>1.75 (0.31 – 10.4)</td>
<td>Ns</td>
</tr>
<tr>
<td>Fosfatasa alc. elevada</td>
<td>39 (55.7)</td>
<td>28 (50.9)</td>
<td>1.21 (0.56 – 2.62)</td>
<td>Ns</td>
</tr>
<tr>
<td>TGP elevado</td>
<td>17 (24.3)</td>
<td>9 (16.4)</td>
<td>1.64 (0.62 – 4.44)</td>
<td>Ns</td>
</tr>
<tr>
<td>TGO elevado</td>
<td>9 (12.9)</td>
<td>6 (10.9)</td>
<td>1.20 (0.36 – 4.14)</td>
<td>Ns</td>
</tr>
<tr>
<td>γ GT elevado</td>
<td>29 (41.4)</td>
<td>13 (23.6)</td>
<td>2.29 (1.04 – 5.00)</td>
<td>0.03</td>
</tr>
<tr>
<td>Ferritina elevada</td>
<td>11 (15.7)</td>
<td>10 (18.2)</td>
<td>0.84 (0.30 – 2.37)</td>
<td>Ns</td>
</tr>
<tr>
<td>Hepatomegalia en Eco</td>
<td>16 (22.9)</td>
<td>1 (1.8)</td>
<td>16.0 (2.05 – 124.9)</td>
<td><0.001</td>
</tr>
</tbody>
</table>

EHGNA: Enfermedad de hígado graso no alcohólico (determinada por ecografía hepática).

Datos de grupos se presentan como número (porcentaje).

OR: odds ratio (como estimador de riesgo).

IC95%: intervalo de confianza al 95% para el OR.

p: nivel de significancia estadística (según χ^2).

OR se interpreta como las probabilidades de un resultado positivo en ecografía para EHGNA, según la presencia del factor de riesgo y en relación a la ausencia del mismo.