Hipotermia asociada a temblor en pacientes post-quirúrgicos en el área de recuperación del Hospital Pablo Arturo Suarez Octubre a diciembre 2018.

DISERTACION PREVIA A LA OBTENCION DEL TITULO DE
ESPECIALISTA EN ANESTESIOLOGIA REANIMACION Y TERAPIA DEL DOLOR

Autoras:
Md. Claudia Silvana Gallegos Mazza
Md. Marcela Fabiola Jarrín Jaramillo

Director:
DR. PATRICIO GUERRERO

Tutora Metodológica:
DRA. MARÍA FERNANDA RIVADENEIRA

QUITO, 2019
AGRADECIMIENTO

Nuestro agradecimiento principal es a Dios quien ha guiado nuestro camino con sabiduría y nos permite hoy culminar este sueño.

A nuestras familias que cada día han estado ahí apoyándonos, aconsejándonos y dándonos fuerza durante esta larga travesía.

A la Pontificia Universidad Católica del Ecuador, por abrirnos las puertas durante estos 4 años y fortalecer nuestro espíritu académico que el día de hoy nos permite culminar una gran meta

A nuestro coordinador Dr. Juan Pasquel y todos nuestros profesores, tutores, maestros, y amigos que han aportado un granito de arena para que adquiramos conocimientos, habilidades, destrezas y experiencias que nos van a acompañar durante toda nuestra vida profesional.

A quienes forman el Hospital Pablo Arturo Suárez, gracias por su paciencia enseñanzas y motivación para ser cada día mejores médicos pero sobretodo mejores seres humanos.

También agradecemos de manera muy especial a nuestro director de tesis Dr. Patricio Guerrero y a nuestra asesora metodológica Dra. María Fernanda Rivadeneira por sus conocimientos, tiempo y dedicación que han sido fundamentales para culminar este trabajo de investigación y con ello nuestra especialización.
DEDICATORIA.

El presente trabajo se lo dedico a mi amado esposo Santiago por su apoyo, paciencia y amor incondicional durante estos años, a mi madre Fanny por su gran esfuerzo para poder llegar hasta aquí, a mi hermana Ale por ser mi motivación y mi orgullo y a mi pequeña Zara por acompañarme durante largas noches de estudio.

Claudia

A mis padres por su amor, trabajo y ser un ejemplo de constancia. Gracias por apoyarme en cada paso, y creer en mí incluso cuando yo no lo he hecho

A mi abuela, a la que extraño cada día...

Marcela
CONTENIDO
RESUMEN .. 1

ABSTRACT ... 2

CAPÍTULO I ... 3

1.1 INTRODUCCIÓN .. 3

1.2 JUSTIFICACIÓN .. 8

1.3 PROBLEMA DE INVESTIGACIÓN .. 11

1.4 OBJETIVOS ... 11

1.4.1 OBJETIVO GENERAL ... 11

1.4.2 OBJETIVOS ESPECÍFICOS ... 11

1.5 HIPÓTESIS ... 12

CAPÍTULO II .. 13

MARCO TEORICO .. 13

2.1 FISIOLOGÍA DE LA TERMOREGULACIÓN .. 13

2.1.1 SEÑALES AFERENTES ... 13

2.1.2 CONTROL CENTRAL .. 14

2.1.3 RESPUESTAS EFERENTES ... 14

2.1.4 TERMOGÉNESIS SIN TEMBLOR ... 16

2.2 TERMOREGULACION EN ANESTESIA .. 17

2.2.1 TRANSFERENCIA DEL CALOR ... 18

2.2.2 EFECTOS DE ANESTESIA GENERAL ... 19

2.2.3 EFECTOS DE ANESTESIA NEUROAXIAL .. 21

2.3 TEMBLOR POSTANESTESICO ... 22

2.3.1 ETIOLOGÍA DEL TEMBLOR POSTANESTÉSICO ... 24

2.3.2 CONSECUENCIAS DEL TEMBLOR POSTANESTÉSICO 26

2.4 HIPOTERMIA INTRAOPERATORIA INADVERTIDA ... 27
CAPÍTULO V ... 70
DISCUSIÓN ... 70
CAPÍTULO VI .. 75
CONCLUSIONES Y RECOMENDACIONES DEL ESTUDIO 75
ANEXOS ... 82
REFERENCIAS BIBLIOGRÁFICAS .. 78

LISTA DE GRÁFICOS

Grafico 1. Tiempo Quirúrgico .. 61
Grafico 2. Porcentaje de pacientes que presentaron temperatura menor de 36°, entre
36-37° y mayor a 37° .. 62
Grafico 3. Presencia de temblor postquirúrgico .. 63
Grafico 4. Presencia de Hipotermia inmediata y a la hora de estancia............... 64
Grafico 5. Porcentaje de pacientes que presentaron dolor 65

LISTA DE TABLAS

Tabla 1 Características demográficas .. 59
Tabla 2 Características del procedimiento quirúrgico .. 60
Tabla 3. Asociación entre temblor y características demográficas 65
Tabla 4. Asociación entre temblor y variables del procedimiento quirúrgico 67
Tabla 5. Presencia de temblor postquirúrgico según especialidad 68
Tabla 6. Regresión logística multivariada ... 69
ANEXOS
ANEXO 1. HOJA DE RECOLECCIÓN DE DATOS .. 83
ANEXO 2. CONSENTIMIENTO INFORMADO ... 84
ANEXO 3. APROBACIONES PARA LA REALIZACIÓN DEL PROYECTO DE INVESTIGACIÓN ... 86
ANEXO 4. REGISTRO ANESTÉSICO .. 89
LISTADO DE ABREVIATURAS

5 HT: 5 Hidroxitriptamina

5 HT3: 5 Hidroxitriptamina 3

AHA: Asociación Americana del Corazón

ASA: Sociedad Americana de Anestesiología

ATP: Adenosín trifosfato

HPAS: Hospital Pablo Arturo Suarez

IC: Intervalo de confianza

IMC: Índice de masa corporal

min: minutos

n: Muestra estudiada

NICE: Instituto Nacional para la Excelencia en Salud y Cuidado

NMDA: N - metil D – aspartato

OR: Odds Ratio

T°: Temperatura axilar

TPA: Temblor post-anestésico

UCPA: Unidad de cuidados postanestésicos

WHO: Organización Mundial de la Salud
RESUMEN

Introducción: El temblor postanestésico es una de las complicaciones más frecuentes en el postoperatorio, y se relaciona con un aumento de la morbilidad de los pacientes. En ocasiones se relaciona con hipotermia secundaria a alteraciones de la termorregulación.

Objetivo: Identificar si existe asociación entre hipotermia y temblor postanestésico en pacientes sometidos a Anestesia General y/o neuroaxial en el Hospital Pablo Arturo Suarez Octubre a diciembre 2018

Métodos: Estudio analítico prospectivo en 460 pacientes que fueron intervenidos quirúrgicamente en el hospital Pablo Arturo Suarez quienes cumplieron los criterios de inclusión y autorizaron participar en la investigación.

Resultados: Se incluyeron 213 mujeres (46,3%) y 247 (53,7%) hombres; con una edad promedio de 50-65 años (38,5%), e índice de masa corporal normal en el 52,2%. El 62,8% recibieron anestesia general y 32,8% anestesia neuroaxial. Se identificó dolor en 19,3% de pacientes al llegar a la unidad de cuidados postanestésicos. En UCPA 54,8% de los pacientes presentaron hipotermia. La incidencia de temblor postanestésico fue de 8,3% en la sala de UCPA. Se encontró que los pacientes con hipotermia presentaron 11,13 veces más riesgo de temblor. De la misma manera, pacientes bajo anestesia general tiempo quirúrgico mayor a 120 minutos y dolor tuvieron mayor probabilidad de desarrollar temblor.

Conclusiones: Los pacientes que presentan hipotermia al ingresar en UCPA tienen mayor riesgo de desarrollar temblor, así como los pacientes que recibieron anestesia general, duración quirúrgica mayor a 120 minutos y dolor al llegar a la UCPA.

Palabras Clave: Hipotermia, temblor, cirugía, sala de cuidados postanestésicos
ABSTRACT

Introduction: Post-anesthesia shivering is one of the most frequent complications in the postoperative period, and it is related to an increase in patient morbidity. Occasionally, it can be related with hypothermia due to thermoregulation disorder.

Objective: To identify if there is a correlation between hypothermia and post-anesthetic shivering in patients undergoing General and / or Neuroaxial Anesthesia at Pablo Arturo Suarez Hospital (Quito, Ecuador), from October to December 2018.

Methods: This is a prospective analytical study applied in 460 patients that met the inclusion criteria and undergoing surgery at Pablo Arturo Suarez Hospital all of them agreed to participate in this study.

Results: 213 women (46.3%) and 247 (53.7%) men were included in the study. The age range was 50 to 65 years old. 52.2% of the patients had a normal body mass index. 62.8% of the patients received General Anesthesia and 32.8% of them received Neuraxial Anesthesia. Pain was identified in 19.3% of the patients upon arrival in the Post-Anesthetic Care Unit (PACU). In PACU 54.8% of the patients presented hypothermia. The incidence of post-anesthetic shivering was 8.3% in the PACU ward. It was found that patients with hypothermia presented 11.13 times more risk of shivering. Patients who underwent General Anesthesia for a time lapse superior to 120 minutes were more likely to develop tremor.

Conclusions: Patients who had hypothermia in the PACU have more risk to develop shivering. Just as patients who underwent general anesthesia during a surgical time frame above 120 minutes and pain when arriving to PACU.

Keywords: Hypothermia, shivering, surgery, post anesthesia care unit
CAPÍTULO I

1.1 INTRODUCCIÓN

Es ampliamente aceptado que las complicaciones relacionadas con la cirugía y la administración de anestesia son inevitables. El temblor postanestésico es una de las complicaciones potenciales de la anestesia que puede aumentar la morbilidad del paciente. (Yimer HT, 2015)

La hipotermia intraoperatoria (es decir, disminución de la temperatura central) se desarrolla en casi todos los pacientes quirúrgicos no tratados y resulta de la combinación de un deterioro termorregulador inducido por la anestesia, temperatura ambiente de la sala fría y exposición de cavidades corporales abiertas durante ciertos procedimientos quirúrgicos. El más importante de estos factores es la alteración termorreguladora, ya que los adultos no anestesiados de otra forma resistirían la pérdida de calor quirúrgico a través de la vasoconstricción y los temblores. (Sun Z, 2015)

Durante la hora inicial después de la inducción de la anestesia general o la activación de un bloqueo neuroaxial, la temperatura central disminuye rápidamente, debido a la redistribución desde el centro hacia los tejidos periféricos (Matsukawa T K. A., 1995). Esta rápida reducción inicial de la temperatura central se debe principalmente a la vasodilatación inducida por la anestesia como resultado del deterioro del control central de la termorregulación en lugar de los efectos periféricos directos de los anestésicos. Aunque esta redistribución del calor no altera la temperatura media del cuerpo, sí reduce sustancialmente la temperatura central (Sun Z, 2015).

La hipotermia de redistribución suele ir seguida de una reducción lineal en la temperatura central que resulta de la pérdida de calor que excede la producción de calor
Las principales rutas de pérdida de calor para el medio ambiente suelen ser la radiación y la convección. Una vez que los pacientes se vuelven suficientemente hipotérmicos para activar la vasoconstricción termorreguladora (típicamente a aproximadamente 34.5 °C durante la anestesia general), la temperatura central alcanza una meseta y no disminuye más, independientemente del tamaño de la incisión o la duración de la cirugía. Una vez activada, la vasoconstricción de la derivación arteriovenosa retiene eficazmente el calor metabólico en los tejidos del núcleo, evitando así una mayor disminución de la hipotermia central. Sin embargo, la pérdida de calor de los tejidos periféricos continúa. En consecuencia, el contenido de calor corporal continúa disminuyendo a pesar de que la temperatura central permanece constante (Kurz A S. D., 1995)

Los temblores pueden desarrollarse como una respuesta fisiológica a la hipotermia que se manifiesta como actividad muscular tónica secundaria a un mecanismo de preservación del calor no termorregulador (P., 2003). Tal actividad rítmica involuntaria muscular es en gran parte termorreguladora, y se ve agravada por los anestésicos volátiles. A diferencia del período intraoperatorio, los temblores postoperatorios son comunes en pacientes hipotérmicos y también pueden ocurrir en pacientes con fiebre (De Witte J S. D., 2002) Ocasionalmente, los pacientes también tienen actividad muscular similar a la temblor de baja intensidad que no es termorreguladora (Horn EP S. D., 1998) y es agravada por el dolor (Horn EP S. F., 1999)].

En uno de los más grandes estudios realizados que involucró 1000 pacientes la incidencia global de temblores postanestésicos fue del 14.4% entre estos pacientes, solo el 33% se quejó de sentir frío, la edad demostró ser, con mucho, el factor de riesgo más importante para TPA, representando más del 70% del poder predictivo. (Leopold H. J. Eberhart, Independent Risk Factors for Postoperative Shivering, 2005). La incidencia
puede estar determinada por otros factores, como el tipo de anestesia utilizada, la edad y el sexo del paciente, la duración de la anestesia y la cirugía, y el tipo de cirugía (P., 2003) (Zhang Y, 1999)

El temblor postanestésico (TPA) puede dar como resultado varios efectos adversos para el paciente. El malestar del paciente, debido a la sensación estresante de frialdad y / o el aumento del dolor causado por la contracción muscular en el sitio quirúrgico, es la primera consecuencia clínica del TPA (P., 2003) (Yimer HT, 2015). El mecanismo responsable del aumento del consumo de oxígeno es el escalofrío prolongado de varios grupos musculares, lo que provoca un aumento en las demandas metabólicas. Según la literatura el temblor postanestésico puede aumentar el consumo de oxígeno en un rango de 7% a 700% (P., 2003), también se asocia con resultados pobres del paciente, aumenta la producción de dióxido de carbono, el sangrado, la cicatrización deficiente e interfiere con la monitorización (Mathews S, 2002) (De Witte J S. D., 2002) y se ha demostrado también que el dolor postoperatorio facilita el temblor no termorregulador. (Horn EP S. F., 1999)

Aunque inicialmente se cree que se desarrolló como respuesta fisiológica a la hipotermia, el TPA puede ocurrir en pacientes con temperatura corporal normal en donde no es una respuesta termorreguladora. Las causas exactas responsables de la aparición de escalofríos en pacientes normotérmicos aún no se conocen por completo. (P., 2003) (Jean-Denis, 2004) (Zhang Y, 1999)

Hace más de una década, Crossley (AW., Six months of shivering in a district general hospital. , 1992) utilizó análisis de regresión logística en 2595 pacientes y encontró que varias variables afectan el desarrollo de TPA: mayor duración de la cirugía, sexo masculino, premedicación anticolinérgica, ventilación espontánea, mayor estado de ASA, cirugía general versus cirugía ortopédica, administración de sangre, edad avanzada
y la administración de propofol, alfentanil o morfina fueron los factores de protección más importantes contra TPA. Sin embargo, estos resultados no se han verificado más.

El temblor postanestésico más frecuente es supuestamente el temblor termorregulador normal en respuesta a la hipotermia central y cutánea. (Lienhart A, 1992;) No obstante, el temblor se produce según se informa en ratas normotérmicas, (Nikki P, 1968) pacientes, 3-5 y gatos (Poterack KA, 1991) después de la anestesia. También se ha observado en pacientes normotérmicos durante el trabajo de parto, con y sin analgesia epidural. (Panzer O, 1999) De acuerdo con estas observaciones, recientemente se ha demostrado que el temblor espontáneo en pacientes normotérmicos después de la operación es relativamente común y que una fracción considerable no es termorregulador. (Horn E-P S. D.-J.-C., Non-thermoregulatory shivering in patients recovering from isoflurane or desflurane anesthesia, 1998)

Consideramos que el temblor no es termorregulador cuando ocurre en pacientes que son normotérmicos (temperatura central que iguala o excede los valores iniciales individuales) y periféricamente vasodilatados. Este es un criterio estricto, ya que el umbral de temblor (temperatura central desencadenante) es típicamente 1 ° C menor que la temperatura corporal normal y permanece 1 ° C por debajo del umbral de vasoconstricción, incluso durante la anestesia. (Matsukawa T K. A., 1995)-11

Se desconocen los mecanismos precisos por los cuales los agentes anestésicos afectan el control de la termorregulación. Se ha demostrado que reducen sincrónicamente los umbrales de vasoconstricción y escalofríos a aproximadamente 34.5 °C y disminuyen el umbral de temblores a 1 °C por debajo del umbral de vasoconstricción. (Lopez M, 1993)

Aunque los anestésicos locales utilizados en las técnicas anestésicas neuroaxiales no llegan al cerebro, los pacientes que reciben anestesia neuroaxial se vuelven hipotérmicos en un grado similar al de los que tienen anestesia general. La alteración del control termorregulador mediante anestesia neuroaxial se produce por diversos mecanismos probablemente porque las señales de frío tónico de la parte inferior del cuerpo están siendo bloqueadas la ausencia de estas señales es interpretada por el hipotálamo como indicativo de un estado relativamente cálido. (Chaplan SR, 1992)

Además afectan el control termorregulador central, reduciendo la vasoconstricción y los umbrales de temblores (Joris J, 1994). Los cambios en el umbral de escalofríos son proporcionales a la altura del bloqueo. Debido a que la vasodilatación activa, la sudoración, la vasoconstricción y los escalofríos son defensas autónomas termorreguladoras que están principalmente mediadas neuronalmente, cada una requiere una conducción nerviosa intacta. En contraste con la anestesia neuroaxial, los bloqueos nerviosos periféricos no tienen efectos termorreguladores clínicamente importantes. (Kim JS, 1998)

Los pacientes con técnicas combinadas de anestesia general y neuroaxial tienen el mayor riesgo de hipotermia intraoperatoria debido a los efectos aditivos de cada técnica en el deterioro de la termorregulación (Joris J, 1994). Con técnicas combinadas, la temperatura umbral de vasoconstricción, la velocidad a la que se produce la vasoconstricción y la intensidad máxima de la vasoconstricción se reducen por la suma
de los efectos independientes de cada técnica individual. Por lo tanto, los pacientes se vuelven más fríos antes de que se activen las defensas termorreguladoras y, una vez activadas, las defensas son menos efectivas para evitar más disminuciones en la hipotemía central en comparación con los pacientes que tienen cualquiera de estas técnicas por sí solas (Joris J, 1994).

Muchos medicamentos han demostrado ser efectivos para el tratamiento de temblores postanestésicos. (Horn E-P S. T., 1998) (Horn E-P W. C., 1997) (Delaunay L B. F., 1991) (Kizilirmak S, 1997). Ninguno de estos estudios, sin embargo, distinguió el temblor termorregulador del temblor no termorregulador. De hecho, la mayoría de estos medicamentos han demostrado reducir el umbral de temblores. (Kurz A I. T., 1997;), (Delaunay L B. F., 1993) pero no se conocen qué medicamentos podrían prevenir o tratar el temblor no termorregulador. Sin embargo, datos sugieren que es probable que los analgésicos, incluso los que carecen de acciones termorreguladoras, sean efectivos. La inhibición del temblor por los analgésicos es presumiblemente dependiente de la dosis.

1.2 JUSTIFICACIÓN

El temblor postanestésico (TPA) es una complicación relativamente frecuente en anestesia que puede ser angustiante para los pacientes y ocasionalmente se asocia con secuelas perjudiciales. La combinación de los agentes inductores anestésicos y la exposición al ambiente frío hacen que los pacientes presenten temblor en el periodo transanes, y definitivamente en las áreas de cuidados postanestésicos. (Quintero, Ortega, & Rionda, 2008)

El disconfort, debido a la sensación estresante de frialdad y / o el aumento del dolor causado por la contracción muscular en el sitio quirúrgico, es la primera consecuencia clínica del TPA (Alfonsi, 2003), en consecuencia el temblor puede aumentar el consumo
de oxígeno y la producción de dióxido de carbono que se relaciona con alto riesgo de eventos isquémicos miocárdicos, sobretudo en pacientes con sistemas cardiopulmonares comprometidos, también existe un aumento en las concentraciones plasmáticas de catecolaminas asociada a incrementos en la presión intraocular e intracraneal. (Frank SM.1997) así mismo los temblores pueden impedir las técnicas de monitoreo como la oximetría de pulso (Thermoregulation, 2000). La mayoría de TPA es simplemente escalofrío termorregulador normal que se desencadena por la hipotermia pero también pueden ocurrir en pacientes normotérmicos.

Hace más de una década se encontró que varias variables afectan el desarrollo de TPA entre ellas mayor duración de la cirugía, sexo masculino, premedicación, ventilación espontánea, mayor estado de ASA, cirugía general versus cirugía ortopédica, administración de sangre, edad avanzada, uso de opiáceos, sin embargo ninguna de estas causas, ha sido probada o incluso evaluada sistemáticamente. En un estudio previo, (Horn E-P S. D.-J.-C., Non-thermoregulatory shivering in patients recovering from isoflurane or desflurane anesthesia., 1998) notamos que la probabilidad de temblor no termorregulador postoperatorio parecía aumentar cuando los pacientes tenían dolor, pero resulta difícil extraer factores de riesgo independientes para TPA en el contexto perioperatorio, ya que numerosas variables influyen en el curso postoperatorio de los pacientes, pues las comorbilidades concomitantes, el uso de fármacos específicos, el estadio ASA podrían prevenir o aumentar el riesgo de presentar TPA. Se ha confirmado además que de que la cirugía ortopédica, particularmente la cirugía endoprostética con cemento óseo, es un factor de riesgo independiente para el desarrollo de TPA. (AW., Six months of shivering in a district general hospital., 1992)
La duración más prolongada de la cirugía, procedimientos más invasivos se asociaron con un TPA más frecuente, También se pensó que el sexo masculino contribuía a la incidencia de TPA.

Los escalofríos postanestésicos se pueden tratar mediante el calentamiento de la superficie cutánea, sin embargo, la superficie cutánea contribuye solo en un 20% al control de los escalofríos, por lo que los calentadores de superficie cutánea disponibles aumentan la temperatura media de la piel solo unos pocos grados centígrados. Por consiguiente, el calentamiento cutáneo compensa únicamente pequeñas cantidades de hipotermia central y no será eficaz en la mayoría de los pacientes con temperaturas centrales.

La pregunta que surge entonces es si el temblor en pacientes –puede ser prevenible; sabemos que existen terapias que limitan TPA de forma profiláctica, pero la administración a todos los pacientes sería costosa y tendría posibles efectos secundarios iatrogénicos negativos.

En varios estudios se ha demostrado que la temperatura central tiene solo una ligera influencia en el desarrollo de TPA en comparación con la edad resultaría por tanto imprescindible identificar los factores de riesgo asociados a esta entidad para tomar medidas profilácticas y prevenir un resultado adverso por ejemplo si el dolor es un factor relacionado; un tratamiento de dolor postoperatorio suficiente evitaría en gran medida los temblores así mismo el simple hecho de cubrir a los pacientes con una manta reduciría el TPA (Buggy D, 1994) aumentaría la comodidad del paciente y disminuiría los trastornos fisiológicos asociados con esta actividad.
1.3 PROBLEMA DE INVESTIGACIÓN

La hipotermia perioperatoria inadvertida está asociada a numerosos resultados adversos en el periodo postanestésico. El temblor postanestésico es una complicación importante de la hipotermia y causa incomodidad térmica en los pacientes despiertos. Aunque no es potencialmente mortal, la incomodidad térmica suele ser intensa y puede tener una duración prolongada, y puede traer serias complicaciones además los recuerdos de molestias postoperatorias persisten durante años después de la cirugía.

En este contexto nos hemos realizado la siguiente pregunta de investigación ¿Cuál es la asociación entre hipotermia y temblor postanestésico en pacientes post-quirúrgicos en el área de recuperación del Hospital Pablo Arturo Suarez?

1.4 OBJETIVOS

1.4.1 OBJETIVO GENERAL

Identificar si existe asociación entre hipotermia y temblor postanestésicos en pacientes sometidos a Anestesia General y/o neuroaxial en el Hospital Pablo Arturo Suarez Octubre a Diciembre 2018

1.4.2 OBJETIVOS ESPECÍFICOS

- Determinar la incidencia de temblor postanestésico asociado a hipotermia en los pacientes ASA I y ASA II sometidos a anestesia general y neuroaxial en el hospital Pablo Arturo Suarez de la ciudad de Quito durante el mes de octubre-diciembre del 2018
- Identificar si existe relación entre el tipo de anestesia y la aparición de temblores postanestésicos en el hospital Pablo Arturo Suarez de la ciudad de Quito durante el mes de octubre-diciembre del 2018
- Analizar la relación entre tipo de cirugía y aparición de temblores postanestésicos en el hospital Pablo Arturo Suarez de la ciudad de Quito durante el mes de octubre-diciembre del 2018.

- Analizar la relación entre edad, sexo y aparición de temblores postanestésicos en el hospital Pablo Arturo Suarez de la ciudad de Quito durante el mes de octubre-diciembre del 2018.

- Determinar si existe relación entre dolor y temblores postanestésicos en el hospital Pablo Arturo Suarez de la ciudad de Quito durante el mes de octubre-diciembre del 2018.

- Identificar la relación entre temperatura y aparición de temblores postanestésicos en el hospital Pablo Arturo Suarez de la ciudad de Quito durante el mes de octubre-diciembre del 2018.

1.5 HIPÓTESIS

Existe asociación entre hipotermia y aparición de temblor postoperatorio en pacientes postquirúrgicos sometidos a anestesia general y conductiva en el Hospital Pablo Arturo Suarez de la ciudad de Quito Octubre a Diciembre 2018.
CAPITULO II

MARCO TEORICO

2.1 FISIOLOGÍA DE LA TERMOREGULACIÓN

La temperatura central normal en el ser humano se encuentra entre 36,5°C- 37,5°C + - 0,5°C, la temperatura periférica suele ser 2 – 4°C más fría. El sistema de termorregulación, es el encargado de mantener la temperatura dentro de estos parámetros, con el fin de mantener la homeostasis.

El control de la temperatura se consigue gracias a la integración de un sistema de receptores térmicos centrales y periféricos, un centro de control e integración que se encuentra en el hipotálamo y un sistema que enviará las respuestas eferentes, que pueden ser variadas e incluyen cambios en el tono vascular, generación de calor por temblor y sudoración. (Miller, 2010)

2.1.1 SEÑALES AFERENTES

Existen termorreceptores de calor y frío que se encuentran en la piel y las mucosas. Los termorreceptores de frío y de calor no son iguales. Los receptores específicos de frío, están inervados por fibras A delta, los receptores de calor, por otro lado, están inervados por fibras tipo C, las cuales transmiten también el dolor, razón por la cual los pacientes muchas veces no distinguen entre dolor agudo y calor intenso. (Miller, 2010) (Díaz & Becker, 2010)

La información térmica asciende a través de los tractos espinotalámicos de la medula espinal anterior hacia el hipotálamo, donde se integran las señales para
producir la respuesta eferente que alterará la producción metabólica de calor, o su pérdida según corresponda.

2.1.2 CONTROL CENTRAL

Parte de la regulación térmica puede darse en la médula, sin embargo el centro primario de regulación térmica es el hipotálamo. El hipotálamo anterior conduce toda la información térmica aferente, mientras que el hipotálamo posterior conduce las vías eferentes descendentes efectivas.

La respuesta reguladora del hipotálamo se producirá según la determinación de umbrales de temperatura, el mecanismo por el cual el organismo establece estos umbrales no está del todo dilucidado pero se conoce la participación de varios neurotransmisores: Noradrenalina, dopamina, 5 – hidroxitriptamina, acetilcolina, prostaglandina E1, neuropéptidos. Los umbrales de temperatura son variables según varios factores: Sexo (En el sexo femenino el umbral varía 0,3 - 0,5°C), ritmo circadiano, ciclo menstrual, ejercicio físico, ingesta de alimentos, alcohol, nicotina, infecciones, disfunción tiroidea (Barkha & Ashish, 2017). El rango interumbral, se refiere a aquel intervalo donde la temperatura (ya sea de frío o calor) no desencadenará una respuesta neurovegetativa, el límite superior es el umbral para sudoración y el límite inferior es el umbral para vasoconstricción. , su valor varía de 0,3 -0,4°C

2.1.3 RESPUESTAS EFERENTES

Son todas aquellas respuestas que se producen en orden de prevenir cambios extremos en la temperatura. Cuando la temperatura corporal se encuentra en
valores fuera de los umbrales, se activan mecanismos en respuesta ya sea aumentando la producción metabólica de calor o promoviendo su pérdida. Las respuestas eferentes incluyen: 1) Respuesta conductual 2) Regulación autonómica.

La respuesta conductual es la más efectiva y comprende el acercamiento a fuentes de calor, cambio de vestimenta, cambios de posición para disminuir la pérdida de calor, o aumentar la actividad motora para generar calor. Esta respuesta está mediada en un 50% por la temperatura cutánea.

La regulación autonómica comprende la vasoconstricción, vasodilatación, sudoración y temblor. En respuesta a un aumento excesivo de la temperatura se produce vasodilatación para facilitar la pérdida de calor por conducción desde el compartimiento central a la superficie, y permite la pérdida de calor por evaporación mediante el sudor. Es mediada por óxido nítrico (Barkha & Ashish, 2017). La sudoración se produce por estimulación de fibras colinérgicas, tiene un umbral muy similar al de vasodilatación, su aparición depende también del estado de las glándulas sudoríparas por lo que cuando se realiza un bloqueo nervioso, la sudoración disminuye. (Miller, 2010) (Baptista Macaroff, 2007)

La vasoconstricción se produce en respuesta a la pérdida de calor por convección y radiación, está mediada por los receptores alfa 1 y permite que mejorar el flujo sanguíneo de la vasculatura subcutánea. La vasoconstricción se maximiza antes de que se produzca una respuesta con consumo metabólico como el temblor. (Diaz & Becker, 2010)

Cuando la temperatura central disminuye dramáticamente, se produce un aumento del metabolismo, con el consiguiente aumento en el consumo de oxígeno.
2.1.4 TERMOGÉNESIS SIN TEMBLOR

Existe una forma de termogénesis que se genera principalmente en prematuros, recién nacidos a término e infantes hasta los 2 años. La termogénesis sin temblor, se trata de un aumento en el metabolismo con la consiguiente producción de calor y no se asocia a actividad muscular, se origina en la grasa parda y en menor medida en el hígado, cerebro y en el músculo esquelético. Se conoce que por esta vía se puede llegar a doblar la producción de calor en el niño (Buggy & Crossley, 2000)

La grasa parda es un tejido altamente especializado, le debe su nombre debido al color que toma el citoplasma de los adipocitos por el número abundante de mitocondrias. Los adipocitos tienen la capacidad de desacoplar la fosforilación oxidativa para producir calor en lugar de adenosín trifosfato (ATP). La grasa parda tiene una gran vasculatura y abundante inervación simpática.

La producción de calor por medio de la grasa parda se desarrolla por medio de la activación de los receptores adrenérgicos B3. Las bajas temperaturas estimulan al sistema nervioso simpático y la liberación de noradrenalina que a su vez estimulan a los adipocitos de la grasa parda e inicia un proceso de hidroxilación de triglicéridos y liberación de ácidos grasos, estos últimos son los responsables de la termogénesis sin temblor. La activación de la grasa parda implica un aumento del gasto cardíaco de hasta un 25%. (Luginbuehl & Bissonnette, 2011)

La termogénesis sin temblor, no suele aparecer en adultos, ya que la grasa parda en esta población es mínima. De hecho, la grasa parda, contribuye a la producción de calor en el adulto en un 10 – 15%. Sin embargo, patológicamente se regenera la grasa parda en el adulto como por ejemplo en feocromocitoma, enfermedad de Chagas, tumores benignos de grasa parda.
Se debe tener cuenta que aunque la termogénesis sin temblor es un mecanismo que permite la producción de calor en niños pequeños, no compensa la inmadurez de los mecanismos que impiden la perdida de calor como la vasoconstricción y el temblor. Por lo que deben tenerse precauciones especiales en esta población para evitar la hipotermia (Luginbuehl & Bissonnette, 2011)

2.2 TERMOREGULACION EN ANESTESIA

La anestesia general causa una alteración en la termorregulación. Debido al estado de inconsciencia del paciente, las alteraciones en la respuesta conductual no se evidencian, no así la respuesta autonómica, que se ve alterada bajo anestesia general. La termorregulación se altera de tal manera que el umbral para el calor se eleva, por lo contrario el umbral de frío disminuye por lo que la respuesta esta reducida. El rango interumbral en anestesia general, se amplía hasta 20 veces, de 0,2 a 4°C, el resultado será la incapacidad del paciente a responder a los cambios importantes de temperatura, independientemente de cómo se encuentre la temperatura ambiental. (Tornero, 2015)

De la misma manera, bajo anestesia neuroaxial, la respuesta termorreguladora se ve alterada, la respuesta conductual tampoco se puede modificar, ya que el paciente no tiene la sensación de frío, debido al bloqueo de la conducción de las señales de frío por los anestésicos locales, además se reducen los umbrales para vasoconstricción y temblor. (Sessler, 2019)
2.2.1 TRANSFERENCIA DEL CALOR

La transferencia de calor desde el paciente al entorno ocurre por cuatro vías: radiación, conducción, convección y evaporación. Cualquier objeto que tenga una temperatura sobre 0°C irradia calor, así como a su vez las superficies absorben el calor de su alrededor. El paciente quirúrgico pierde calor principalmente por convección y radiación. (Miller, 2010)

La radiación se refiere a la pérdida de calor mediante ondas dirigidas al medio, se estima que el ser humano pierde un 60% de calor mediante esta vía. Depende del flujo sanguíneo y de las superficies expuestas al medio. En la evaporación la pérdida de calor se da por la conversión del líquido de mucosas, serosa, pulmones, y piel en vapor, representa menos del 10% de pérdida de calor. Se manifiesta por sudoración, sin embargo la diaforesis no suele ser evidente especialmente en anestesia general. Depende de la superficie expuesta y grado de humedad del ambiente. En la conducción se pierde calor cuando la superficie corporal entra en contacto con objetos más fríos. Se pierde 5% de calor por esta vía. Varía por la diferencia de temperatura entre ambas superficies, conducción térmica entre estas.

La pérdida de calor por conducción es pequeña, debido a la almohadilla que cubre las mesas quirúrgicas que actúa como aislante térmico (Diaz & Becker, 2010).

Convección es la transferencia de calor desde el cuerpo hasta las partículas de aire que se contactan con él, estas partículas se calientan y abandonan la superficie corporal, que a su vez es ocupada por partículas de aire más frías. Supone una pérdida de calor de 15%. Varía según la velocidad del flujo de aire, en sala de operaciones esta pérdida aumenta cuando existe flujo laminar que permite el recambio de aire 10 a 15 veces por hora (Barkha & Ashish, 2017)
2.2.2 EFECTOS DE ANESTESIA GENERAL

Un porcentaje importante de pacientes bajo anestesia general presentan hipotermia, ya que la temperatura desciende de 1 a 3 °C debido a varios factores como: Tiempo de exposición quirúrgica, tipo de anestesia, temperatura ambiente.

Los anestésicos intravenosos como el propofol, dexmedetomidina, descienden los umbrales para vasoconstricción y temblor, además aumentan ligeramente el umbral para la sudoración. (Diaz & Becker, 2010)

Opioides como meperidina, morfina, fentanilo, promueven la pérdida de calor por inhibición simpática ocasionando vasodilatación. Además alteran directamente la termorregulación hipotalámica en forma dosis dependiente mediante disminución del umbral para frío y aumento del umbral para calor.

Midazolam por otro lado produce mínima o ninguna alteración sobre la termorregulación. (Diaz & Becker, 2010)

De los anestésicos inhalatorios desflurano, isoflurano disminuyen los umbrales de respuesta al frío, pero la disminución del umbral para la vasoconstricción es menor a comparación con el propofol cuando se usa a dosis bajas, no es así cuando se usa a dosis habitual de 2 mg/kg.

Además de la reducción del umbral y la respuesta, los anestésicos volátiles provocan vasodilatación periférica directa, lo que permite una redistribución del calor desde el compartimento central hacia los tejidos periféricos, un mecanismo que contribuye a la disminución de la temperatura. Asimismo inhiben la vasoconstricción tónica de regulación, no obstante la pérdida de calor por vasodilatación en respuesta a los anestésicos volátiles es leve.

Los anestésicos, en términos generales, disminuyen la tasa metabólica 20 – 30 %. (Miller, 2010)
La pérdida del calor durante la anestesia general, se produce en tres etapas:

Fase exponencial: Se produce en la primera hora después de la inducción de la anestesia, la temperatura disminuye de 1 a 1,5°C, se conoce que la reducción de la temperatura en esta etapa es por redistribución del calor, pero no es una distribución uniforme, el calor corporal circula desde el centro, donde la temperatura es mayor, hacia la periferia, es decir aumenta la temperatura en miembros superiores e inferiores pero a expensas del tórax y abdomen. Aunque la temperatura periférica continuará descendiendo porque el compartimiento central no aportará mayor temperatura.

Fase lineal: Durante la segunda hora de anestesia la temperatura disminuye en forma lenta y lineal. El estado de redistribución se mantiene y la producción de calor es menor, a diferencia de la pérdida que aumenta en esta fase.

Fase meseta: A partir de la tercera hora, es una etapa de meseta, existe un equilibrio entre la producción de calor y la pérdida, los mecanismos compensatorios autónomos finalmente se encargan de mantener la homeostasis. (Tornero, 2015)

Secundario al desarrollo de las fases de pérdida de calor y la activación de los mecanismos de termorregulación, la temperatura no desciende al punto de producir temblor, sin contar el uso de relajantes musculares en anestesia muscular, que evitan la aparición del temblor.
2.2.3 EFECTOS DE ANESTESIA NEUROAXIAL

La anestesia neuroaxial produce un patrón de pérdida de calor similar al de la anestesia general. Altera el control termorregulador ya que disminuye los umbrales que desencadenan vasoconstricción y temblor. (Diaz & Becker, 2010) (Sessler, 2019) La reducción de los umbrales depende del número de segmentos espinales bloqueados. (Barkha & Ashish, 2017).

Se ha encontrado que la termorregulación se ve afectada en la anestesia neuroaxial debido a alteraciones en la información que se envía desde las extremidades inferiores. El anestésico local provoca un bloqueo simpático y motor periférico, la señal viaja hacia el hipotálamo como una señal de calentamiento de miembros inferiores, lo que a su vez provoca la disminución de los umbrales. Esto significa que la respuesta ante temperaturas bajas se activa a temperaturas menores de lo normal, así mismo no es igual de eficiente para evitar la pérdida de calor.

La disminución de los umbrales implica mayor dificultad para evitar la hipotermia, lo que puede ser especialmente grave en pacientes adultos mayores. (Buggy & Crossley, 2000)

El mecanismo de redistribución también se produce en anestesia neuroaxial, la redistribución de producirá en el área bloqueada, pero en contraste con la anestesia general, en anestesia neuroaxial no se da la etapa de meseta, ya que el área bloqueada no tiene una adecuada respuesta del tono vasomotor.

A causa de la alteración en la respuesta conductual, el paciente no percibe el frío ya que la temperatura central disminuye pero la percepción térmica depende en mayor medida de la temperatura cutánea y los receptores se encuentran bloqueados por lo tanto las señales no pueden ser transmitidas al hipotálamo. Es importante acotar que el grado de distribución depende de la temperatura corporal.
previa a la administración del anestésico, ya que se ha observado que la pérdida de calor es menor cuando los pacientes han recibido calentamiento cutáneo previo. (Buggy & Crossley, 2000). Se espera que la temperatura descienda de 0,5 – 1°C después de la inducción anestésica.

La hipotermia inadvertida es frecuente en anestesia neuroaxial, ya que por un lado la monitorización de la temperatura no es habitual en estos casos y por otro lado por la alteración en la respuesta conductual, el paciente no va a referir la sensación de frío.

2.3 TEMBLOR POSTANESTESICO

El temblor es una respuesta muscular involuntaria, oscilatoria en la cara, mandíbula, cabeza que tiene una duración mayor a 15 segundos. (Bermudez Lopez, 2018)

Se presenta con el propósito de aumentar el metabolismo y la producción de calor. Tiene una incidencia de 5 a 65% en anestesia general y de 30 – 33% en anestesia neuroaxial, es más frecuente en hombres aunque ciertos autores consideran que es más frecuente en mujeres (Bermudez Lopez, 2018), afecta más a adultos jóvenes y pocas veces aparece en adultos mayores.

El centro motor para el temblor se ubica en el hipotálamo y recibe aferencias de los receptores del frío, permanece inhibido por impulsos en el área preóptica sensibles al calor y se activa cuando se estimulan las aferencias periféricas, envía la respuesta a manera de impulsos bilaterales a las motoneuronas del asta anterior de la médula, se genera aumento en tono muscular que llega a exceder el umbral por alteración de la sensibilidad del reflejo de estiramiento en el músculo esquelético y se produce el temblor. La sincronización de las motoneuronas durante el temblor esta mediada por la inhibición de las interneuronas inhibitorias de Renshaw. (Bhattacharya, 2003) (Baptista Macaroff, 2007)
La frecuencia en la electromiografía del temblor en los seres humanos es de 200 Hz aproximadamente. Se describen dos patrones de temblor: a) Temblor tónico, que se presenta fisiológicamente y b) Temblor fásico, comparable con el clono patológico.

El temblor tónico, es la respuesta fisiológica termorreguladora, tiene un componente sinusoidal de 4 – 8 ciclos/min.

El temblor fásico, con una frecuencia de 5 – 7 Hz, se caracteriza por un patrón clónico patológico y este se puede ver en la recuperación de anestesia general con gases halogenados, por la pérdida de inhibición en el control de los reflejos espinales, clonus, nistagmo. El isoflurano disminuye el umbral y altera el patrón del temblor postanestésico a un patrón clónico para entrar en un estado de reposo posteriormente.

Ambos patrones se desencadenan como parte del mecanismo termorregulador, debido a que previo a la aparición del temblor se presenta hipotermia central y vasoconstricción. (Baptista Macaroff, 2007)

El umbral de temblor en pacientes no anestesiados es de 35.5°C. El temblor se suele tratar con calentadores para la superficie cutánea, pero la mejoría por lo general es pobre, porque la superficie cutánea contribuye solo en un 20% al control de los escalofríos, ya que aumentan poco la temperatura central sobre todo en pacientes con temperaturas por debajo de 35°C

Se habla también de la aparición de temblor de origen no termorregulador en mujeres en labor de parto. Se ha observado en mujeres hipotérmicas y normotérmicas, varios estudios concluyen que se debe a actividad muscular espontánea, no relacionada con la temperatura (Miller, 2010) (Bermudez Lopez, 2018).
2.3.1 ETIOLOGÍA DEL TEMBLOR POSTANESTÉSICO

Por lo general el temblor se desencadena por hipotermia, que a su vez se produce por factores como el ambiente frío y la disfunción termorreguladora secundaria a la anestesia. Se ha observado que esta última se desvanece de manera abrupta, y da lugar a un aumento del umbral de temblor. Aunque se han propuesto varias causas no existen explicaciones claras de las causas porque varios pacientes presentan temblor a pesar de tener valores normales en la temperatura.

Sin embargo el temblor puede desencadenarse por otras causas además de la hipotermia: Estrés, dolor, disminución de la respuesta simpática, alcalosis respiratoria.

El dolor puede facilitar la aparición de temblor en pacientes que se encuentran en labor de parto. El dolor se transmite a través de fibras similares a las que transmiten las señales de temblor y hacen sinapsis en el asta dorsal, la medula rostral ventromedial regula tanto la analgesia como los estímulos nociceptivos y envía respuestas termorreguladoras al frío y al calor, entre sus funciones se encuentra, modular la intensidad de dolor y temperatura que ascendará por la médula. Adicionalmente de la activación del sistema nervioso simpático en el dolor. (Miller, 2010)

Se ha reportado el aumento de temblor postanestésico con la administración de remifentanil mediante varios mecanismos:

1) Los opioides inhiben la respuesta termorreguladora al disminuir el umbral de respuesta, a diferencia de los otros opioides el remifentanil se elimina rápidamente. Al interrumpir el remifentanil el umbral regresará a la normalidad, más rápido de lo que aumenta la temperatura, lo que desencadena el temblor.
2) El remifentanil en altas dosis produce hiperalgesia, así como facilita la aparición de temblor, hecho que no sucede cuando se utiliza remifentanil en dosis bajas. Aunque no es un mecanismo claro, se cree que se debe activación de los receptores NMDA. Es por esto que el uso de altas dosis de remifentanil en el transoperatorio se relaciona con alto riesgo de desarrollar temblor en sala de recuperación. (Bermudez Lopez, 2018).

3) El síndrome de abstinencia por opioides se puede manifestar mediante la aparición de temblor, como se mencionó, el remifentanil en altas dosis produce tanto hiperalgesia como tolerancia aguda. En estas circunstancias intervienen los receptores de N - metil D- aspartato (NMDA), que se estimulan por acción del remifentanil, de igual por la glicina que suele ser un aditivo del remifentanil. De hecho la administración de ketamina (un clásico antagonista NMDA) en bajas dosis previene la aparición de hiperalgesia y de temblor postanestésico. Se recomienda también el uso de sulfato de magnesio para prevenir la aparición de temblor en sala de recuperación, debido a su acción antagonista no competitiva en el receptor NMDA.

Tanto la anestesia general como anestesia neuroaxial predisponen a la aparición de temblor postanestésico. En anestesia general la incidencia de temblor es de 60% y en anestesia neuroaxial la incidencia de temblor puede llegar hasta el 40 %. Existen varias diferencias entre el temblor secundario a anestesia general y el temblor por anestesia neuroaxial. En anestesia general existe un trastorno de la termorregulación de origen central, en anestesia neuroaxial se altera el mecanismo de termorregulación central y periférica, ya que amplía el intervalo interumbral, por un lado aumenta el umbral para sudoración y por otro disminuye el umbral para la aparición de vasoconstricción y temblor por debajo del nivel del bloqueo.
En anestesia general a partir de 3 a 4 horas se inicia una etapa de meseta para impedir una pérdida mayor en la temperatura, sin embargo en anestesia neuroaxial no se presenta respuesta de vasoconstricción debajo del nivel del bloqueo. Lo que produce una pérdida mayor de calor, el temblor se observa en el área no bloqueada, pero no la generación de calor por este medio no es suficiente para evitar el desarrollo de hipotermia. En procedimientos como la cesárea bajo anestesia neuroaxial la perdida de calor se produce por radiación, por un mecanismo de redistribución del calor central hacia la periferia, debajo del nivel del bloqueo simpático.

Se relaciona la aparición de temblores de difícil control en pacientes fumadores de cannabis, que han recibido anestesia general. Se explica porque los efectos analgésicos del cannabis se ejercen mediante la acción en los receptores CB1 en sinergia con los receptores alfa 2 y receptores de opioides. Se sugiere la intervención del cannabis en los mecanismos termogénicos y no termogénicos en la vía del dolor.

2.3.2 CONSECUENCIAS DEL TEMBLOR POSTANESTÉSICO

Si bien la respuesta termorreguladora de temblor se produce con el fin de aumentar la temperatura central, a menudo se asocia con varias complicaciones.
En primer lugar está la sensación de incomodidad que produce el temblor postanestésico, los pacientes refieren que puede ser incluso más molesto que el dolor. Por otro lado se encuentra el aumento en el consumo de oxígeno 300 a 400% cuando es severo lo que aumenta el riesgo de hipoxemia y podría desencadenar en isquemia.
Adicionalmente produce un aumento en la producción de dióxido de carbono, favorece la aparición de acidosis láctica, aumento en la liberación de catecolaminas y en respuesta aumenta el gasto cardiaco, la presión arterial y frecuencia cardiaca.

Además el temblor postanestésico aumenta la presión intraocular e intracraneal, cuando el temblor es severo aumenta la tasa metabólica hasta en 600%.

El temblor postanestésico está asociado a un aumento de la actividad simpática y adrenérgica con la subsecuente isquemia miocárdica. Retrasa el alta de la unidad de cuidados postanestésicos y el alta hospitalaria por dificultad para controlar el dolor, infección de la herida quirúrgica y sangrado. (Bermudez Lopez, 2018)

Al aumentar el requerimiento metabólico predispone a complicaciones en pacientes con comorbilidades como por ejemplo, pacientes con reserva respiratoria limitada, cortocircuitos intrapulmonares, enfermedades cardiopulmonares severas.

El temblor postanestésico dificulta la monitorización adecuada al crear impedancia en la señal.

2.4 HIPOTERMIA INTRAOPERATORIA INADVERTIDA

Se considera hipotermia intraoperatoria inadvertida, cuando el paciente sometido a cirugía presenta una temperatura menor a 36°C. (McSwain & Yared, 2015) Tiene una incidencia de 6 – 90%. La hipotermia se relaciona con una serie de efectos, tanto beneficiosos como perjudiciales. Se asocia a diversos cambios fisiológicos que incluyen: Cambios cardiovasculares, respiratorios, hepáticos, neurológicos, metabólicos, hematológicos, inmunológicos, alteran la dinámica farmacológica.
Adicionalmente estas alteraciones darán lugar a manifestaciones clínicas importantes que podrían tener repercusiones en el paciente. (Zafren, 2019)

Como se señaló, tanto la anestesia general como la anestesia neuroaxial afectan la respuesta termorreguladora fisiológica. La anestesia general incrementa el umbral de termorregulación para vasodilatación y sudor, en respuesta al calor y disminuye de forma importante el umbral de vasoconstricción y temblor, en respuesta al frío. (Tornero, 2015)

En muchos casos sucede, que se presenta hipotermia al llegar a sala de recuperación postanestésica, a pesar de mantener un adecuado control, con temperaturas mayores a 36°C durante el intraoperatorio.

Después de cirugía los pacientes son trasladados a sala de recuperación cubiertos únicamente con batas quirúrgicas exponiendo al paciente a temperaturas frías, adicionalmente, la interrupción de las medidas para mantener la temperatura (mantas de aire forzado), la aplicación de vendaje o yesos favorecen la pérdida de temperatura. (Langham & Maheshwar, 2009)

La recomendación de la Asociación Americana de Anestesiología sobre este aspecto, es que se mantenga la temperatura > 36°C en los 30 minutos previos a terminar la cirugía o hasta 15 minutos de la llegada a sala de recuperación postanestésica, sí se han utilizado medios de calentamiento activo, con el fin de mantener la normotermia. (Belayneh, 2014)

2.4.1 CLASIFICACIÓN DE LA HIPOTERMIA

La Sociedad Americana de Anestesiología (ASA) y el Instituto Nacional para la Excelencia en Salud y Cuidado (NICE) definen la hipotermia como la temperatura menor a 36°C (Anesthesiologists, 2015), existe también la clasificación de la hipotermia por etapas, que permitirán su reconocimiento y tratamiento adecuado:

2.4.2 FACTORES DE RIESGO PARA EL DESARROLLO DE HIPOTERMIA

Existen varios factores que deben considerarse de riesgo para que los pacientes presenten hipotermia: Edad, aunque no es concluyente se considera que los adultos mayores tienen mayor riesgo. Cirugía prolongada, se considera que cirugías de más de 30 minutos de duración presentan mayor riesgo de desarrollo de hipotermia. Temperatura de sala de operaciones, el ambiente frío amplía el gradiente entre la temperatura central y periférica. De igual manera se consideran factores de riesgo, temperatura baja previa al ingreso a quirófano, clasificación de riesgo anestésico (a mayor grado, mayor riesgo), técnica combinada de anestesia (anestesia general y neuroaxial), cirugía mayor, índice de masa corporal < 18.5. (Riley C. , 2018) (Riley & Andrzejowski, 2018)

2.4.3 CONSECUENCIAS DE LA HIPOTERMIA

Cómo se mencionó antes, la hipotermia ocasiona diversas consecuencias en varios órganos:
A nivel cardiovascular, aumenta la frecuencia cardiaca, presión arterial, los niveles de catecolaminas, aumenta la resistencia vascular periférica, alteraciones en la contractilidad, puede causar disritmias ventriculares, depresión miocárdica sobre todo en pacientes de edad avanzada. En el intraoperatorio se presenta disminución del gasto cardíaco. Se describe aumento del riesgo de isquemia miocárdica ya que la hipotermia incrementa el consumo de oxígeno en un 400%.

En el hígado: Disminuye el flujo sanguíneo y en consecuencia el metabolismo de algunas drogas. La hipotermia al reducir la tasa metabólica, afecta la actividad
enzimática, incluyendo la función del citocromo P450. En consecuencia se reduce el clearance de varias drogas como vasopresores, benzodiacepinas, opioides, anestésicos volátiles, anestésicos intravenosos, relajantes musculares

En el riñón: Aumenta la resistencia vascular, lo que da lugar a disminución del flujo sanguíneo. En la primera etapa de hipotermia se mantiene la función de reabsorción tubular, sin embargo en etapas posteriores disminuye la reabsorción de sodio y potasio. Los niveles de potasio tienden a descender, la temperatura debe recuperarse lentamente para no obtener el efecto contrario. (Lioudmila V. & Wartenberg, 2014)

Además incrementa la excreción de nitrógeno en los días posteriores al procedimiento quirúrgico.

En el sistema endocrino: Se ha visto que la hipotermia reduce la sensibilidad a la insulina, puede provocar disminución de su secreción, y en consecuencia dar lugar a hiperglicemia

En sistema nervioso: Disminuye el flujo sanguíneo cerebral, aumenta resistencia cerebrovascular, retarda el despertar anestésico, altera el estado de consciencia y provoca somnolencia y confusión.

En el metabolismo: Disminución de la tasa metabólica en un 8%, por cada grado de descenso de la temperatura. Disminución de la perfusión tisular que da lugar a acidosis metabólica e hiperglicemia, aumento del consumo de oxígeno cuando se acompaña de temblor.

Alteraciones hematológicas: Aumento de la viscosidad sanguínea, trombocitopenia, disminuye acción de los factores de coagulación. Además altera la función plaquetaria, de manera reversible, principalmente por hipotermia periférica debido a disminución de tromboxano A3. (Sessler, 2019) La coagulopatía por hipotermia no se puede detectar mediante análisis de tiempos de coagulación ya que estos se
realizan a temperatura de 37°C independientemente de la temperatura del paciente. La hipotermia altera la función del activador tisular del plasminógeno, no se conoce el mecanismo, pero la valoración de la tromboelastografía muestra dificultad en la formación del coágulo. Por estas razones de considera que la hipotermia moderada, incrementa la pérdida de sangre durante la cirugía. En un estudio realizado en arthroplastia de cadera, se determinó que la pérdida de 1,6°C de la temperatura central incrementa la pérdida de sangre en un 30% y por lo tanto los requerimientos de trasfusión sanguínea. (Saad & Aladawy, 2013)

La hipotermia deteriora la función inmune, por alteración de los linfocitos, la actividad de los neutrófilos también está reducida lo que predispone a infección de la herida quirúrgica. La fiebre aumenta la movilización de los leucocitos, respuesta que está ausente en la hipotermia. La vasoconstricción disminuye la presión parcial de oxígeno tisular alterando la fagocitosis, quimiotaxis y producción de anticuerpos. (McSwain & Yared, 2015) En estudios experimentales se demostró que la hipotermia en el transoperatorio disminuye la resistencia a Escherichia coli y Staphylococcus aureus.

Adicionalmente la hipotermia prolonga la estadía operatoria en un 20% de los pacientes, independientemente de que presentes infección de la herida quirúrgica, aumenta la cardiotoxicidad de la bupivacaína, afecta la monitorización de potenciales evocados somatosensoriales, suprime la señal del oxímetro de pulso por la intensa vasoconstricción.

La evidencia demuestra que la presencia de hipotermia se relaciona con retraso del alta en la sala de cuidados postanestésicos.
La disminución de la presión parcial de oxígeno desencadena crisis en la anemia de células falciformes, favorece la aparición de crisis de parálisis en parálisis periódica hipopotasémica, enlentece el vaciamiento gástrico y promueve la aparición de íleo.

2.4.4 EFECTOS DE LA HIPOTERMIA EN FARMACOCINÉTICA Y FARMACODINÁMICA

RELAJANTES MUSCULARES: En hipotermia leve, la fuerza en la contracción muscular disminuye entre 10-15%. En casos de hipotermia moderada y severa la acción del vecuronio se prolonga hasta el doble del tiempo de acción, la acción del atracurio también se prolonga en el tiempo. La farmacocinética del rocuronio, de igual manera, se afecta en hipotermia, es parcialmente metabolizado por la enzima CYP2D6 y CYP2C19, en hipotermia severa 30°C se reduce el clearance en el plasma alrededor de un 50%, esto sucede por la disminución de la tasa metabólica.

ANESTÉSICOS INHALATORIOS: Aunque no se evidencien consecuencias clínicas, en hipotermia leve, durante la tercera fase (meseta), aumenta la solubilidad de los anestésicos halogenados, lo que significa que cierta presión parcial, la concentración del anestésico será más alta. Esta podría ser otra causa por la que el tiempo de recuperación anestésica se prolonga, ya que la eliminación del gas anestésico es por vía inhalatoria.

ANESTÉSICOS INTRAVENOSOS: Cuando la temperatura central desciende a 34°C, aumenta la concentración plasmática del propofol en un 30%, es se explica a un menor clearance entre compartimento central y periférico.

OPIOIDES: En la fase termorreguladora de equilibrio se observa un aumento del 5% en la concentración plasmática de Fentanilo, así como un menor clearance. En hipotermia moderada disminuye el clearance, potencia, y volumen de distribución de
la morfina, a pesar de esto la concentración aumenta en el plasma y en líquido cefalorraquídeo.

BENZODIACEPINAS: En hipotermia moderada, el clearance del midazolam disminuye 11,1% por cada grado bajo 36,5°C. (McSwain & Yared, 2015)

2.5 BENEFICIOS DE LA HIPOTERMIA

Los beneficios de la hipotermia se han determinado desde hace varias décadas, se ha encontrado buenos resultados en infarto del miocardio, trasplante de órganos, by pass cardiopulmonar, isquemia intestinal, lesión de médula espinal. Sin embargo en 1970, varios estudios demostraron las complicaciones que lleva la hipotermia severa y prolongada, aparentemente por coagulopatía inducida (Bohl & Martirosyan, 2018).

A partir de los años 80 con la aparición de técnicas de microcirugía, y el manejo de las coagulopatías en el preoperatorio, se demostró las propiedades de neuroprotección de la hipotermia moderada en pacientes con enfermedades cerebrovasculares severas.

Existen dos estudios prospectivos, con pacientes con lesión neurológica por anoxia, donde se demostró que los pacientes tratados con hipotermia terapéutica tenían una mejor supervivencia, de igual manera se demuestra mejor respuesta neurológica en aquellos pacientes sometidos a hipotermia (32 -34°C por 24 horas), después de un infarto del miocardio secundario a fibrilación ventricular, además de una menor mortalidad a los 6 meses. Posterior a la publicación de estos estudios, la hipotermia terapéutica fue añadida en las guías de cuidados post resucitación. (Lioudmila V. & Wartenberg, 2014) (Saad & Aladawy, 2013)

Entre los mecanismos de neuroprotección se postula la disminución de la tasa metabólica cerebral de un 7% por cada grado que desciende la temperatura, lo que
reduce la demanda de oxígeno, preserva adenosín trifosfato (ATP) y las reservas de energía, evita la producción de lactato con el consecuente desarrollo de acidosis. Permite conservar la función autorregulación cerebral al disminuir el flujo sanguíneo cerebral en conjunto con el consumo de oxígeno, disminuye la hiperemia posterior a la reperfusión.

La isquemia cerebral desencadena trastornos en el gradiente iónico, produce liberación de aminoácidos excitatorios como glutamato, el mismo que se acumula en el espacio extracelular y provoca hiperexcitabilidad seguida de daño neuronal. (Lioudmila V. & Wartenberg, 2014)

El exceso de glutamato lleva a un estado de acidosis acompañada del aumento de calcio, potasio y activación de proteasas. La hipotermia permite la regulación negativa del trasportador de glutamato que expresa receptores de glutamato, del mismo modo suprime la fosforilación del receptor NMDA.

2.6 GUÍA DE CONTROL DE LA TEMPERATURA

Según recomendaciones de la Asociación Americana de Anestesiología (ASA) todo paciente que tenga riesgo de cambios bruscos en la temperatura durante la cirugía debe ser monitorizado, así como pacientes bajo anestesia, general, neuroaxial o sedación, pacientes pediátricos deben recibir monitorización continua.

Según el Estudio Europeo de Monitorización del paciente, solo el 19,4% de pacientes cuentan con monitorización de la temperatura y el 38,5% de pacientes reciben medios de calentamiento, de igual manera, describe que la monitorización más utilizada es la nasofaríngea y timpánica. El medio de calentamiento más utilizado.
Este estudio concluye que la temperatura debe ser monitorizada en todos los pacientes bajo anestesia general cuya duración es mayor a 30 minutos, la monitorización debe ser continua, pero en la mayoría de los casos es suficiente con intervalos de 15 minutos, la temperatura central se monitoriza durante anestesia neuroaxial en aquellos pacientes que tienen riesgo de hipotermia, la temperatura intraoperatorio debe ser mayor a 36 °C. (Barkha & Ashish, 2017).

La Guía para el manejo de la Hipotermia Perioperatoria Inadvertida en Adultos del Instituto Nacional para la Excelencia en la Salud y el Cuidado (NICE), divide el protocolo en sala de operaciones en tres fases: 1) Fase preoperatoria que se refiere a la primera hora antes de la inducción anestésica recomienda, 2) Fase intraoperatoria que se refiere al tiempo total de anestesia y 3) Fase posoperatoria, 24 horas después de ingresar a sala de recuperación (NICE, 2008). La guía sugiere valoración de los pacientes con riesgo de desarrollar hipotermia antes de ingresar a la sala de operaciones, la inducción anestésica debe iniciarse cuando la temperatura tenga valores de 36°C o más, los líquidos intravenosos y componentes sanguíneos deben calentarse a 37°C por medio de un dispositivo exclusivo para ese uso, utilizar calentadores de aire forzado para prevención y tratamiento de hipotermia. (Barkha & Ashish, 2017)

La Asociación Americana del Corazón (AHA) en su Guía de evaluación perioperatoria cardiovascular y manejo de pacientes de cirugía no cardíaca recomienda el mantenimiento de la normotermia para reducir complicaciones cardiovasculares en los pacientes que se someterán a cirugía no cardíaca. (Fleisher L., 2014)
2.7 ESTRATEGIAS DE PREVENCION DE HIPOTERMIA Y TEMBLOR POSTANESTÉSICO

La pérdida de calor durante el intraoperatorio se debe, principalmente, al mecanismo de redistribución entre compartimientos, que ocasiona disminución del umbral para vasoconstricción, y alteración importante del gradiente térmico a nivel central y periférico. Las medidas para corregir la hipotermia durante el intraoperatorio, como mejorar la temperatura de la superficie cutánea no suelen mejorar el cuadro, porque por este medio, la temperatura central incrementa en poca cantidad.

Con el fin de prevenir la hipotermia, se encontró que se obtienen mejores resultados cuando se toman medidas en el preoperatorio: Monitorización adecuada de la temperatura, técnicas de precalentamiento, mantas de aire forzado, calentamiento de líquidos intravenosos. (Barkha & Ashish, 2017)

2.7.1 MONITORIZACION DE LA TEMPERATURA

Durante la anestesia, se puede realizar la monitorización de la temperatura central en la membrana timpánica, en el extremo distal del esófago, arteria pulmonar, nasofaringe, facilita la prevención de complicaciones por sobrecalentamiento, como hipotermia maligna, y evaluar los efectos de ciertos fármacos en la termorregulación. La medición de la temperatura central en mucosa oral, rectal, vejiga, axilar permiten medir de forma bastante aproximada la temperatura central. La temperatura periférica hace posible evaluar la motilidad vascular, se puede medir en la superficie cutánea. Al medir ambas temperaturas de puede obtener la temperatura cutánea media. La medición de la temperatura cutánea no es fiable debido a su variación constante. (Tornero, 2015)
2.7.2 TERMÓMETROS

Los de mayor uso para monitorización en anestesia son de tipo termocupla y termómetros electrónicos, que transforman el voltaje que se produce por la diferencia de temperatura entre dos tipos de metales distintos en la sonda de monitorización en una señal eléctrica con intensidad equivalente a la temperatura del tejido, tienen una adecuada sensibilidad y precisión por lo que son sumamente útiles en anestesia.

Los termómetros timpánicos, captan la temperatura del oído externo, poseen un sistema de infrarrojos poco fiable, así como los termómetros de superficie cutánea que son poco seguros en su medición por la variabilidad de la temperatura, de hecho cuando se usan método de calentamiento de superficie, estos dispositivos se calientan también y proporcionan datos sobre lo normal. (Baptista Macaroff, 2007) (Miller, 2010).

2.7.3 SITIOS DE MONITORIZACIÓN DE LA TEMPERATURA

La elección del sitio donde se va a realizar la monitorización de la temperatura debe basarse en ciertos factores como accesibilidad, seguridad para el paciente, comodidad.

La temperatura central, se refiere a aquella que refleja la temperatura de la sangre que irriga el hipotálamo es decir el centro de termorregulación y los dispositivos que se utilizan para monitorizarla, miden la temperatura de la sangre que circula por las arterias cercanas al sitio donde se colocó la sonda de monitorización.
Para medir la temperatura central en forma prácticamente precisa se usa la monitorización de la arteria pulmonar mediante un catéter endovascular, pero es un método sumamente invasivo. Se puede obtener la temperatura central aproximada con la medición en nasofaringe, tercio inferior del esófago, membrana timpánica, recto, vejiga, región axilar.

La monitorización en nasofaringe mide la temperatura de la arteria carótida, con la desventaja de que al desplazarse entra en contacto con las gases inspirados y la sonda se enfriá, dando valores inferiores de los reales.

La monitorización en esófago distal, mide la temperatura adyacente al arco aórtico. Existen dispositivos adaptados a estetoscopios que son de tipo intraesofágicos, que se colocan según la intensidad de la auscultación de los latidos cardíacos.

Los dispositivos que se colocan en la membrana timpánica son muy confiables, detectan cambios bruscos de temperatura, monitorizan la temperatura proveniente de la carótida interna.

La monitorización de la temperatura oral, vesical, rectal y axilar, son fiables y aproximados a la temperatura central, sin embargo no se recomiendan en cirugía cardíaca donde los cambios de temperatura pueden llegar a ser extremos y la precisión de estos dispositivos disminuye en estas circunstancias. (Miller, 2010)

La temperatura axilar se debe medir con la piel seca, el brazo en posición de aducción y la sonda debe colocarse próxima a la arteria axilar.

Los sensores de superficie cutánea que se colocan en la superficie frontal, detectan variaciones de temperatura de 0,5°C, con la desventaja que no son útiles para temperaturas bajas como en vasoconstricción marcada o en hipotermia leve, porque se generan variaciones de 2 a 3 °C en comparación con la temperatura central. Por
Esta razón no son recomendados en situaciones en la que se sospecha de hipertermia maligna.

La temperatura central da valores muy cercanos a la temperatura central, con el inconveniente que los valores que da en casos de hipertermia maligna o hipotermia intencional en by pass cardiopulmonar no son certeros por que presenta un retraso temporal.

La monitorización de la temperatura intravesical depende de la diuresis, cuando el flujo urinario es alto sus valores se correlacionan en gran medida con los valores de la arteria pulmonar, pero cuando el flujo es bajo los valores se asemejan a la temperatura rectal. (Baptista Macaroff, 2007)

2.7.4 INDICACIONES PARA MONITORIZACIÓN DE LA TEMPERATURA CENTRAL

La hipotermia es una entidad frecuente tanto en anestesia general como en anestesia neuroaxial por lo que la recomendación es monitorizar la temperatura en todos los casos en los que la anestesia general tenga una duración mayor a 30 minutos, o todos los procedimientos independientemente del tipo de anestesia administrada tenga una duración mayor a 1 hora.

El trastorno térmico más frecuente es la hipotermia inadvertida, que se desarrolla desde la inducción de la anestesia. La monitorización de la temperatura permite evaluar las etapas de descenso de la temperatura secundario a redistribución compartimental y a vasodilatación.

Es importante monitorizar la temperatura en cirugía de cavidad abdominal y torácica, para detección de fiebre de origen infeccioso, al administrar componentes sanguíneos, uso de opioides.
El seguimiento de la temperatura en procedimientos sometidos a anestesia neuroaxial, es de especial importancia ya que se limita la respuesta compensadora ante pérdida de la temperatura debido al bloqueo simpático, además la respuesta es variable por la extensión del bloqueo, y los fármacos que se administren en el transanestésico que pueden agravar la hipotermia. Usualmente en los procedimientos bajo anestesia neuroaxial solamente se monitoriza la temperatura de la superficie cutánea, que en muchas ocasiones muestra valores poco confiables con tendencia a mostrar valores más bajos en comparación con los valores reales, a diferencia de la monitorización rectal que muestra valores más altos de lo normal secundario, probablemente, a la producción de calor por la flora bacteriana del colon.

Como se mencionó anteriormente, con el uso de monitorización de la temperatura mediante la superficie cutánea y temperatura axilar, se debe tener precaución al utilizar medios de calentamiento activo, para evitar que el sensor de temperatura se sobrecaliente.

2.7.5 PRECALENTAMIENTO

Frecuentemente los pacientes que se encuentran en hospitalización presentan temperaturas menores a lo usual por varios factores: Edad avanzada, ambiente frío en las habitaciones, pocas mantas y por comorbilidades, por lo que ingresan a sala de operaciones con un gradiente entre compartimentos amplio por el descenso de la temperatura periférica que se expresa con sensación de frío.

El método de precalentamiento antes del inicio de la anestesia, incrementa el contenido total del calor corporal por medio del aumento de la temperatura periférica y a su vez disminuir el gradiente normal que existe entre el
compartimiento central y periférico, de tal manera que al momento de la inducción anestésica la pérdida de calor mediante redistribución es menor, en respuesta a la reducción del gradiente, además al aumentar la temperatura de la superficie cutánea se produce vasodilatación, reduciendo a su vez el efecto del sistema simpático sobre el tono vascular. Hay que tener en cuenta que la transferencia de calor desde la periferia al compartimiento central será mucho más lenta. El precalentamiento se realiza por una o dos horas antes de ingresar a sala de operaciones, por medio de aire calefaccionado, aunque con un precalentamiento 30 minutos previos a la inducción se obtienen también buenos resultados. Se recomienda iniciar el calentamiento activo en cuanto el paciente llegue a quirófano y se mantiene hasta iniciar la inducción. (Barkha & Ashish, 2017)

Tiene la ventaja de producir vasodilatación lo que permite colocar con mayor facilidad la vía venosa periférica, y arterial de ser necesario, además el paciente se siente más cómodo.

Sin embargo el método de precalentamiento no se debería realizar de forma agresiva, debido a que al aumentar la temperatura de la superficie térmica de manera brusca, se produce incomodidad, sudoración, sin contar la disminución de la transferencia de calor de la periferia al compartimiento central.

2.7.6 CALENTAMIENTO PASIVO

La cantidad de calor que se pierde es proporcional a la superficie cutánea expuesta.

El calentamiento pasivo disminuye, pero no elimina la pérdida de calor. Se puede disminuir la pérdida de calor por calentamiento pasivo a través de dos métodos: Aumento de la temperatura de sala de operaciones y aislamiento pasivo.
En sala de operaciones, la temperatura normal y requerida es de 19 – 23°C con una humedad del 40- 60%, aire acondicionado con mínimo 4 cambios/ hora unidireccional.

Al aumentar la temperatura en sala de operaciones disminuye la diferencia térmica entre la piel y el ambiente. Para mantener la temperatura dentro de parámetros normales se requiere temperaturas sobre los 23°C, y sobre los 27°C para recién nacidos y prematuros, sin embargo, el personal de la sala encuentra incómodo trabajar con temperaturas altas, lo que dificulta implementar este método.

En el aislamiento pasivo se minimiza el contacto del paciente con el ambiente frío, se logra por el uso de mantas de algodón, cobertura reflectante, campos quirúrgicos de tela. Una sola manta disminuye el calor hasta en un 33%, al agregar varias mantas la pérdida de calor se reduce ligeramente. Por lo tanto el uso de calentamiento pasivo puede ser útil en cirugías de corta duración y se potencia su utilidad al usarlos junto a otros métodos de calentamiento ya que se ha demostrado que su uso exclusivo sin ayuda de otro método, evita la hipotermia en < 50% de los pacientes. (Park & Lee, 2016)

2.7.7 CALENTAMIENTO ACTIVO

Entre los dispositivos de calentamiento activo están: Colchones / mantas de agua, dispositivos de aire forzado, dispositivos resistentes al calor.

El cobertor de aire forzado, está entre los sistemas más comunes y fáciles de usar, se asocian a mayor temperatura en el postoperatorio en comparación con otros métodos de calentamiento puesto que no solo reducen la pérdida de calor, sino también, beneficia la transferencia de calor al cuerpo. (John & Ford, 2014)
Son dispositivos que constan de una unidad de calentamiento, una manguera y un cobertor desechable sin látex. El aire filtrado se dirige desde la unidad de calentamiento hacia la manguera flexible que está conectada al cobertor, el mismo que se puede colocar debajo o sobre el paciente. Disminuyen la pérdida de calor por radiación y convección debido a que reemplaza la superficie fría de la mesa quirúrgica por una capa de aire caliente. La transferencia de calor, depende de la superficie expuesta y de la diferencia entre la temperatura del paciente y la manta. Los dispositivos de aire forzado son los más utilizados en el área de recuperación postanestésica, en comparación con otros medios de calentamiento, han demostrado mejor respuesta térmica. El Instituto Nacional para la Excelencia en Salud y Cuidado (NICE) resalta las ventajas del uso de mantas como dispositivo de calentamiento activo, como mayor comodidad para el paciente, menor aparición de temblores, menos complicaciones cardiovasculares, menos complicaciones hematológicas. (NICE, 2008) (Watson, 2018)
Varios estudios sugieren que los dispositivos de aire forzado pueden significar una fuente de contaminación al ambiente en sal de operaciones, cuando los filtros de la unidad de calentamiento no se encuentran en buen estado, no obstante, si se usan los filtros del dispositivo correctamente, la probabilidad de contaminación es mínima.
Entre las desventajas del uso de mantas de aire forzado es que están diseñadas para uso único, lo implica el aumento de costos para las unidades de salud y por lo que no se utilizan en todos los procedimientos.
2.7.8 CALENTAMIENTO DE LIQUIDOS INTRAVENOSOS

La administración de líquidos intravenosos fríos provoca pérdida importante de calor corporal. La pérdida de calor corporal por medio de fluidos se considera pérdida por conducción, porque los fluidos al ponerse en contacto con la sangre y tejidos pierden calor hasta igualar la temperatura. (Baptista Macaroff, 2007)

Cada 1000 ml. de cristaloide, así como cada paquete globular a temperatura ambiente a velocidad mayor a 500 ml/ min disminuye la temperatura 0,25°C, si los líquidos se administran a una velocidad menor de 35 ml/min, no es necesario calentarlos previamente.

Deben tener una temperatura similar a la temperatura corporal.

La Guía de transfusiones de la Organización Mundial de la Salud (WHO) indica que no hay evidencia de los beneficios del calentamiento de los productos sanguíneos, que debe esta práctica debe hacerse en ciertos casos como: Transfusiones de grandes volúmenes de sangre (Adultos: > 50 ml/kg/hora, Niños: > 15 ml/kg/hora), transfusión masiva en pacientes pediátricos, pacientes con clínica evidente de crioaglutininas. Sin embargo, al transfundirlos a velocidades mayores a 100 ml/min producen consecuencias importantes aumenta el riesgo de paro cardiaco.

Cuando se calientan productos sanguíneos debe realizarse en dispositivos diseñados con este fin, que deben disponer de termómetro y alarma de advertencia. Al calentar los paquetes globulares u otros componentes en recipientes con agua caliente se produce hemolisis de los glóbulos rojos. (WHO, 2015)

El suministro de líquidos calientes depende del dispositivo que se use, velocidad de la administración, depende de la longitud del equipo de venoclisis hasta llegar
al paciente. Cuando la velocidad de infusión es menor de 500 ml/ hora se produce mayor pérdida de calor del líquido administrado, cuando la velocidad es mayor a 9 l/ hora la pérdida de calor del líquido será menor. Los dispositivos para líquidos de resucitación permiten calentar grandes volúmenes que pueden ser administrados rápidamente, y cuentan con sistemas detectores de aire que detienen la infusión automáticamente si detectan burbujas de aire.

Se debe tener en cuenta que los dispositivos para calentar líquidos reducen la pérdida de calor no corrigen la hipotermia.

2.8 TRATAMIENTO FARMACOLÓGICO DEL TEMBLOR POSTANESTÉSICO

En muchas ocasiones, a pesar de las medidas físicas para tratar el temblor postanestésico, no se logra un control adecuado, por lo que se debe recurrir a medidas farmacológicas, especialmente cuando el temblor se ha prolongado por más de 15 minutos.

Se ha demostrado la utilidad de diversos fármacos para prevenir y tratar el temblor: Opioides, alfa 2 agonistas, anticolinérgicos, corticosteroides, antagonistas NMDA, inhibidores 5HT3.

Es importante tener en cuenta que las medidas farmacológicas deben ser el segundo eslabón en el tratamiento del temblor debido a los efectos adversos que se podrían presentar al usar diversos fármacos. Por ejemplo el alfa 2 agonista, clonidina por su mecanismo de acción puede dar lugar a hipotensión, bradicardia y sedación.
2.8.1 OPIOIDES

La meperidina es el opioide más usado para el tratamiento y prevención del temblor postanestésico. Actúa directamente en sistema nervioso central por medio de la activación los receptores opioídes kappa y mu. De igual manera la petidina es una agonista kappa y mu que se usa para tratar el temblor postanestésico ya que disminuye el umbral de temblor.

La administración de meperidina en dosis bajas en anestesia neuroaxial es una estrategia efectiva, ya que es un coadyuvante de analgesia y previene la aparición de temblor en el post operatorio.

Entre los efectos adversos del uso de meperidina se encuentra la aparición de náusea, vómito, depresión respiratoria, incluso si se usa por vía intratecal.

El tramadol es un agonista mu débil, inhibe la recaptación de norepinefrina y de 5 HT (5 Hidroxitriptamina), se cree que este último mecanismo de acción lo hace útil para el control de temblor. En un estudio donde se compara la utilidad del tramadol vs petidina para el control del temblor, se demuestra un mayor número de pacientes que dejan de temblar a los 10 minutos de ser administrado el tramadol, en comparación con un menor número de pacientes que cesan de temblar después de administrar petidina. (Bhatnagar & Saxena, 2001)

La dosis requerida de tramadol para tratar el temblor es de 1 -2 mg/ kg con menores efectos adversos.

2.8.2 ANTAGONISTAS DEL RECEPTOR 5HT3 (5 HIDROXITRIPTAMINA 3)
Los antagonistas de receptor 5HT3, también conocidos como antagonistas de serotonina, se usan para la prevención del temblor postanestésico, tienen una efectividad similar a la de la meperidina.

Los antagonistas del receptor 5HT3, inhiben la recaptación de serotonina en el área preóptica del hipotálamo, y permiten el aumento de la producción de calor.

Ondansetrón, es uno de los principales fármacos de este grupo, se usa principalmente para prevenir la aparición de náusea y vómito. Por medio de la inhibición de la recaptación de serotonina evita de igual manera la aparición de temblor luego de la anestesia general y neuroaxial. Dosis de 4 a 8mg son efectivas para disminuir el riesgo de temblor, sin producir bradicardia o hipotensión. (Bermudez Lopez, 2018)

Ondansetrón así como el dolasetrón y granisetrón demostraron eficacia en el control del temblor en pacientes sometidas a cesárea bajo anestesia neuroaxial, en un estudio randomizado doble ciego (Srinivasa & Kavya, 2017)

En otro estudio, prospectivo doble ciego en pacientes bajo anestesia general, se comparó la eficacia de granisetrón, tramadol, meperidina y placebo, donde de concluyó que el granisetrón es igual de eficaz que la meperidina y el tramadol en la prevención del temblor postanestésico. (Srinivasa & Kavya, 2017)

2.8.3 ANTAGONISTAS DEL RECEPTOR NMDA (N- METIL D- ASPARTATO)

La ketamina, mediante la inhibición no competitiva del receptor NMDA, tiene un efecto simpaticomimético central, inhibe la recaptación de noradrenalina, efecto agonista kappa, también tiene efectos en la distribución de la temperatura ya que disminuye la redistribución de la temperatura desde el compartimiento central al
periférico. Se evidenció la efectividad de la ketamina en el tratamiento del temblor postanestésico secundario a infusión de remifentanil. La administración de ketamina en infusión continua durante el transoperatorio reduce la incidencia de temblor postanestésico en pacientes que reciben remifentanil para el mantenimiento anestésico. Otro estudio sugiere utilizar ketamina en anestesia general a una dosis de 0,5 mg/kg, que se debe administrar 20 minutos antes de concluir la cirugía para disminuir efectos adversos como alucinaciones o delirio. (Dal & Kose, 2005) (Bermudez Lopez, 2018)

El sulfato de magnesio, actúa como relajante muscular por su calcio antagonismo y al igual que la ketamina, inhibe al receptor NMDA de manera no competitiva, por lo que es efectivo en el tratamiento del temblor postoperatorio. Se cree que el efecto relajante muscular del sulfato de magnesio favorece para disminuir la aparición de temblor postoperatorio en dosis altas (80 mg/kg) (Ibrahim, 2013)

El uso de dosis altas de sulfato de magnesio como profilaxis o tratamiento del temblor postoperatorio predispone a la aparición de efectos secundarios como náusea, vómito e hipotensión secundaria a vasodilatación. (Ibrahim, 2013)

Un estudio compara la eficacia de la ketamina con el sulfato de magnesio para tratar el temblor, se administró ketamina a 0,4 mg/ kg y sulfato de magnesio a 50 mg/ kg, donde se encontró una menor incidencia de temblor en el grupo que recibió ketamina, además este grupo presentó menos efectos adversos. (Farías, 2013)
2.8.4 AGONISTAS DEL RECEPTOR ALFA 2

Los agonistas del receptor alfa 2 disminuyen la actividad simpática, regulan tono vascular. Actúan en la termorregulación mediante el aumento del umbral del temblor y disminución del umbral de vasoconstricción.

La dexmedetomidina, es un agonista alfa 2 altamente selectivo, tiene efectos en analgesia, disminución de los requerimientos de opioides, sin producir depresión respiratoria. Debido a su acción simpaticolítica, disminuye la presión arterial y la frecuencia cardíaca. (Bermudez Lopez, 2018).

La dexmedetomidina, actúa a nivel de sistema nervioso central mediante la unión a los receptores alfa 2 en el locus ceruleus, disminuye la liberación de norepínefrina de esta manera ejerce efectos de sedación y ansiolisis.

La dexmedetomidina ha demostrado ser eficaz en la profilaxis y tratamiento del temblor postanestésico en dosis de 1 mcg/kg en 10 minutos, seguido de 0.4 mcg/kg/hora en infusión continua durante el intraoperatorio. A más de disminuir la aparición de temblor, reduce su duración cuando este aparece. (Mansour, 2015)

La administración de dexmedetomidina en infusión continua para tratamiento del temblor postanestésico puede dar lugar a efectos adversos como bradicardia, hipotensión, sedación sobre todo en pacientes adultos mayores, lo que limita su uso. (Kundra, 2017)
CAPÍTULO III

METODOLOGÍA

3.1 MATERIALES Y MÉTODOS

Se realizó un estudio analítico prospectivo que incluyó a 460 pacientes sometidos a cirugía con anestesia general o neuroaxial. Los pacientes previo consentimiento informado, fueron monitorizados en la sala de Cuidados postanestésicos. Se realizaron dos mediciones de la temperatura axilar mediante un termómetro de canal aural, la primera al ingreso del paciente a la sala de recuperación postanestésica y la segunda medición se realizó después de una hora de estancia, asimismo, se registró la presencia de temblor postanestésico. Las variables a ser medidas fueron: hipotermia, temblor postanestésico y se recolectaron datos de edad, sexo, índice de masa corporal, tipo de cirugía, especialidad que realizó la cirugía, dolor, duración de anestesia, tipo de anestesia del registro anestésico. Los datos fueron analizados mediante estadísticas descriptivas para variables cualitativas y cuantitativas, análisis bivariado con obtención de medidas de asociación (riesgo relativo y sus intervalos de confianza); se consideró significativo un valor p<0,05. Se realizó análisis multivariado con regresión logística.

3.2 OPERACIONALIZACIÓN DE LAS VARIABLES
<table>
<thead>
<tr>
<th>Características del paciente</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEFINICION CONCEPTUAL</td>
</tr>
<tr>
<td>Temblor post anestésico</td>
</tr>
<tr>
<td>Temperatura</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Edad</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Índice de masa corporal</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Sexo</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>Tipo de cirugía</td>
</tr>
<tr>
<td>Cirugía Por especialidad</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Duración de la anestesia</td>
</tr>
<tr>
<td>Tipo de anestesia</td>
</tr>
</tbody>
</table>

52
Anestesia General:
En la cual se induce al paciente a un estado de coma farmacológico, produciendo inconsciencia e inmovilización durante el procedimiento quirúrgico.

Anestesia Neuroaxial:
Ausencia temporal de la sensibilidad de una parte del cuerpo o de su totalidad provocada por la administración de fármacos, con el fin de permitir un procedimiento quirúrgico.

<table>
<thead>
<tr>
<th>Dolor</th>
<th>Experiencia sensorial o emotiva desagradable asociada a un daño tisular real o potencial.</th>
<th>Cualitativa</th>
<th>Sí</th>
<th>No</th>
<th>Frecuencia</th>
<th>Porcentaje</th>
</tr>
</thead>
</table>

3.3 **TIPO Y DISEÑO DE LA INVESTIGACIÓN**

Estudio observacional analítico prospectivo, en el que se observó la presencia de temblor en el paciente al llegar a la sala de recuperación, a los 15 minutos, a los 30 minutos y a la hora después del procedimiento quirúrgico. Se
monitorizó la temperatura axilar de los pacientes al ingreso a sala de recuperación y una hora después. Posteriormente se analizó la asociación con hipotermia durante el postquirúrgico, como factor de exposición a la presencia o no de temblor.

3.4 POBLACIÓN DE ESTUDIO

Pacientes mayores de 18 años y menores de 65 años ASA I y II sometidos a Anestesia General y neuroaxial en el Hospital Pablo Arturo Suarez ubicado en la ciudad de Quito, en el periodo de Octubre a Diciembre 2018.

3.5 MUESTRA POBLACIONAL

Se calculó la muestra para una población conocida de 1200 pacientes (número de pacientes con procedimientos quirúrgicos al año en el Hospital Pablo Arturo Suarez), con un nivel de confianza del 95%, un error estimado del 3%, y una prevalencia del problema (Temblor en pacientes postquirúrgicos) del 14% (Leopold H. J. Eberhart, Independent Risk Factors for Postoperative Shivering, 2005). La muestra requerida fue de 360 pacientes, posteriormente se reevaluó la muestra en base a las necesidades del estudio y con el fin de mejorar la calidad de los resultados, se recalculó el número a 460 pacientes en total. Tamaño de la muestra calculada con el programa WinEpi versión 2.0. El muestreo se realizó por conveniencia.

3.6 CRITERIOS DE INCLUSIÓN

- Pacientes entre 18-65 años
- Pacientes que firmen consentimiento informado
- Pacientes sometidos a cirugías electivas y de emergencia
- Pacientes sometidos a anestesia general y/o neuroaxial

3.7 CRITERIOS DE EXCLUSIÓN

- Pacientes con categoría ASA III y ASA IV
- Pacientes menores de 18 años y pacientes mayores de 65 años
- Pacientes en los que se ha efectuado algún método de calentamiento durante la cirugía
- Pacientes gineco-obstétricas

3.8 TÉCNICAS E INSTRUMENTOS DE RECOLECCIÓN DE MUESTRA

La información fue obtenida, a través de la hoja de recolección de datos diseñada por las investigadoras (Anexo 1) y del registro de anestesia realizado por el anestesiólogo a cargo del paciente en el perioperatorio (Anexo 4). Ambas sirvieron para recolectar datos según las variables seleccionadas: Temblor postanestésico, temperatura edad, índice de masa corporal, sexo, tipo de cirugía, cirugía por especialidad, duración y tipo de anestesia, presencia de dolor. Esta información fue almacenada y procesada en una base de datos diseñada para tal fin durante el periodo que duró la investigación.

3.9 PROCEDIMIENTOS DE RECOLECCIÓN DE INFORMACIÓN
Como población diana se incorporaron al estudio pacientes de sexo masculino y femenino, entre 18 y 65 años, sometidos a anestesia general, o neuroaxial que ingresaron al área de Recuperación del hospital Pablo Arturo Suarez durante los meses de octubre a diciembre del 2018.

Posterior al procedimiento quirúrgico, los pacientes fueron llevados a sala de recuperación postanestésica, previamente se les explicó el objetivo del presente estudio y se obtuvo el consentimiento informado por escrito. A su llegada se registró la temperatura axilar usando un termómetro de canal aural First Temp Genius Modelo 3000A (Sherwood Medical Company, St. Louis, MO). El registro de la temperatura se visualizó en las pantallas de los monitores de signos vitales del área de recuperación. Los mismos que cumplen con la calibración que se realiza de acuerdo a los procedimientos anestésicos requeridos cada 4 a 6 meses.

La temperatura fue registrada por el observador número 1, y el temblor fue registrado por el observador número 2. Se monitorizó la temperatura periférica de los pacientes, a su ingreso a la sala de recuperación y se realizó otra toma de temperatura después de una hora de estancia en la sala. Las mediciones fueron realizadas por el mismo observador para minimizar el sesgo por observador. De la misma manera el observador número 2 registró la presencia o no de temblor de los pacientes al ingreso, a los 15 minutos, a los 30 minutos y a los 60 minutos de llegar a sala de recuperación postanestésica.

3.10 ASPECTOS BIOETICOS

El estudio garantizó el cumplimiento de los requisitos bioéticos entre los que prevalece, el respeto a las personas, el bienestar de los participantes durante toda la
investigación, asegurándoles que pueden retirarse en cualquier momento, o negarse a su participación, respetando su privacidad, garantizando la confidencialidad de sus datos.

Se explicó a los pacientes el tipo de estudio, los objetivos del mismo, además se solicitó su autorización para toma de datos, mediante un consentimiento informado. Esta investigación no vulneró el bienestar, no implicó riesgo alguno en los participantes, pues no se realizó ninguna intervención alguna en ellos.

Además, el estudio contó con la aprobación del Departamento de Docencia y Gerencia del Hospital Arturo Suárez (Anexo 3) y el subcomité de Bioética de la Facultad de Medicina de la PUCE (Anexo 3).

3.11 PLAN DE ANALISIS DE LOS DATOS

El análisis estadístico se inició con la elaboración de una tabla en Microsoft Excel con los datos recolectados en el área de cuidados post anestésicos (UCPA) del Hospital Pablo Arturo Suarez, que luego se codificó e incluyó en el programa estadístico SPSS versión 25.0. Se definieron las características demográficas: Sexo, edad, índice de masa corporal. De la misma forma, se determinaron las variables relacionadas con el procedimiento quirúrgico anestésico: Especialidad quirúrgica, tipo de anestesia que recibieron los pacientes (anestesia general o neuroaxial), tipo de cirugía (mayor o menor), presencia de dolor en el periodo postanestésico, tiempo quirúrgico. Determinamos la incidencia de temblor postanestésico y la temperatura axilar en sala de recuperación postanestésica.

Se realizó un análisis bivariado, relacionando el temblor postoperatorio con las variables demográficas y con las variables relacionadas con el procedimiento
quirúrgico anestésico, los resultados fueron presentados mediante frecuencias, porcentajes y la asociación por medio de tablas cruzadas y gráficos. Posteriormente se realizó el análisis mediante regresión logística multivariada, se incluyó OR, valor P e intervalos de confianza para establecer significancia estadística.
CAPÍTULO IV
RESULTADOS

4.1 CARACTERÍSTICAS DEMOGRÁFICAS

En el presente estudio participaron 460 pacientes definidos por la American Society of Anesthesiologists como ASA I y ASA II; que fueron intervenidos quirúrgicamente en el hospital Pablo Arturo Suarez de la ciudad de Quito durante los meses de octubre a diciembre del 2018 quienes cumplieron los criterios de inclusión y autorizaron participar en la investigación.

De los 460 participantes, 213 fueron mujeres (46,3%) y 247 (53,7%) fueron hombres; con una edad promedio de 50-65 años (38,5%), y el Índice de masa corporal en su mayoría se encontró en rango de normalidad entre 18,5-24,9 (52,2%) ver tabla 1.

Tabla 1 Características demográficas de pacientes post-quirúrgicas en el área de recuperación del Hospital Pablo Arturo Suarez Octubre a diciembre 2018. (n=460)

<table>
<thead>
<tr>
<th></th>
<th>FRECUENCIA</th>
<th>PORCENTAJE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sexo</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Femenino</td>
<td>213</td>
<td>46,3</td>
</tr>
<tr>
<td>Masculino</td>
<td>247</td>
<td>53,7</td>
</tr>
<tr>
<td>Edad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-29 años</td>
<td>116</td>
<td>25,2</td>
</tr>
<tr>
<td>30-39 años</td>
<td>82</td>
<td>17,8</td>
</tr>
<tr>
<td>40-49 años</td>
<td>85</td>
<td>18,5</td>
</tr>
<tr>
<td>50-65 años</td>
<td>177</td>
<td>38,5</td>
</tr>
<tr>
<td>IMC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Menor 18,5</td>
<td>5</td>
<td>1,1</td>
</tr>
<tr>
<td>18,5-24,9</td>
<td>240</td>
<td>52,2</td>
</tr>
<tr>
<td>25-29,9</td>
<td>205</td>
<td>44,6</td>
</tr>
<tr>
<td>Mayor a 30</td>
<td>10</td>
<td>2,2</td>
</tr>
</tbody>
</table>

Fuente: Registro de anestesia y hoja de recolección de datos elaborada por las investigadoras
Elaboración: MD Claudia Gallegos y MD Marcela Jarrin.
4.2 VARIABLES RELACIONADAS CON EL PROCEDIMIENTO QUIRURGICO-ANESTESICO

En la siguiente tabla se recogen datos de variables, características propias del procedimiento quirúrgico y anestésico, al que fueron sometidos los participantes. De acuerdo al análisis realizado por especialidad quirúrgica: observamos que 199 (43,3%) fueron intervenidos por el equipo de cirugía general, seguido de 158 (34,3%) por traumatología, 26 (5,7%) Oftalmología, 25 (5,4%) Urología, 21 (4,6%) Otorrinolaringología y 26 de otras especialidades se identificaron (5,7%).

En cuanto a las características anestésicas, 289 (62,8%) de pacientes recibieron anestesia general, 151(32,8%) anestesia neuroaxial, y solo 20 pacientes anestesia regional o local. Así mismo se dividió la muestra en dos grupos de acuerdo al tipo de cirugía mayor o menor (según la apertura o no de cavidades) encontrándose que 440 (95,7%) fueron cirugías mayores y 20 (4,3%) cirugías menores; la presencia de dolor se identificó en 89 (19,3%) pacientes que llegaron a UCPA.

<table>
<thead>
<tr>
<th>Tabla 2 Características del procedimiento quirúrgico de pacientes intervenidos en el HPAS durante octubre-diciembre del 2018. (n=460)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Especialidad</td>
</tr>
<tr>
<td>Traumatología</td>
</tr>
<tr>
<td>Otorrinolaringología</td>
</tr>
<tr>
<td>Oftalmología</td>
</tr>
<tr>
<td>Cirugía General</td>
</tr>
<tr>
<td>Urología</td>
</tr>
<tr>
<td>Neurocirugía</td>
</tr>
<tr>
<td>Otras</td>
</tr>
<tr>
<td>Tipo de Anestesia</td>
</tr>
<tr>
<td>General</td>
</tr>
<tr>
<td>Neuroaxial</td>
</tr>
<tr>
<td>Regional y Local</td>
</tr>
<tr>
<td>Tipo de Cirugía</td>
</tr>
<tr>
<td>Mayor</td>
</tr>
<tr>
<td>Dolor postquirúrgico inmediato</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>No</td>
</tr>
<tr>
<td>Si</td>
</tr>
<tr>
<td>No</td>
</tr>
</tbody>
</table>

Fuente: Registro de anestesia y hoja de recolección de datos elaborada por las investigadoras
Elaboración: MD Claudia Gallegos y MD Marcela Jarrin

En este estudio, el tiempo quirúrgico en el que se realizaron los procedimientos por orden de frecuencia fueron: 283 (61,5%) procedimientos realizados entre 60-120 minutos; 96(20,9%) en un tiempo menor a 60 min y 81(17,6%) fueron cirugías que se prolongaron más de 120 minutos. *Ver gráfico 1.*

![Gráfico 1. Tiempo Quirúrgico de pacientes intervenidos del Hospital Pablo Arturo Suarez durante octubre a diciembre 2018. (n=460)](image)

*Fuente: Registro de anestesia y hoja de recolección de datos elaborada por las investigadoras
Elaboración: MD Claudia Gallegos y MD Marcela Jarrin*

4.3 VARIABLES IDENTIFICADAS EN LA SALA DE RECUPERACION

En la sala de recuperación se procedió a tomar la temperatura axilar a los pacientes que ingresaban, al momento de su llegada y a la hora de estancia; se encontró que 252
pacientes (54,8%) tenían temperatura axilar inferior a 36°C (definido como hipotermia), mientras 202 pacientes (43,9%) mantenían normotermia y solo 6 pacientes (1,3%) temperatura superior a 37°C. A la hora de estancia en UCPA 349 (75,9%) de pacientes alcanzaron la normotermia con temperatura entre 36-37°C, 91 (19,8%) continuaban con temperatura inferior a 36°C y 20 (4,3%) exhibían temperatura mayor a 37°C. Ver gráfico 2.

Grafico 2. Porcentaje de pacientes que presentaron temperatura axilar menor de 36°, entre 36-37° y mayor a 37° en el postquirúrgico inmediato y a la hora de estancia en UCPA en el Hospital Pablo Arturo Suarez durante Octubre a diciembre 2018. (n=460)

Fuente: Registro de anestesia y hoja de recolección de datos elaborada por las investigadoras
Elaboración: MD Claudia Gallegos y MD Marcela Jarrin

4.4 INCIDENCIA DE TEMBLOR POST-ANESTESICO

La incidencia de temblor postquirúrgico encontrada fue en 38 pacientes (8,3%) en la sala de UCPA, que disminuyó a 10 pacientes (2,2%) a los 15 minutos de estancia, y 460 (100%) de pacientes no presentaron temblor a los 30 y 60 minutos respectivamente. Ver gráfico 3.
Una vez medida la temperatura axilar se clasificó a los pacientes por grupos; aquellos que tuvieron hipotermia a la llegada a la UCPA, 251 (54,6%) pacientes y los que no la tuvieron 209 (45,4%). Con la segunda medición de temperatura, a la hora de estancia, se puede observar que los datos varían: 370(80,4%) no presenta hipotermia mientras que 90 (19,6%) pacientes persisten con la misma al alta de UCPA. Grafico 4
Grafico 4. Presencia de Hipotermia inmediata a la llegada a UCPA y a la hora de estancia en pacientes intervenidos quirúrgicamente en el hospital Pablo Arturo Suarez durante octubre – diciembre 2018 (n=460)
Fuente: Hoja de recolección de datos elaborada por las investigadoras
Elaboración: MD Claudia Gallego y MD Marcela Jarrin

4.5 DOLOR POSTQUIRURGICO INMEDIATO

El dolor se definió como una variable cualitativa; y el interrogatorio sobre la presencia o ausencia del mismo se realizó el momento en que el paciente ingresó a sala de recuperación, encontrándose que 89 pacientes (19,3%) presentaban dolor en el post quirúrgico inmediato.
Grafico 5. Porcentaje de pacientes intervenidos quirúrgicamente en el hospital Pablo Arturo Suarez durante octubre – diciembre 2018 que presentaron dolor a su llegada a UCPA (n=460)
Fuente: Hoja de recolección de datos elaborada por las investigadoras
Elaboración: MD Claudia Gallegos y MD Marcela Jarrin

4.6 ANALISIS BIVARIADO TEMBLOR POSTOPERATORIO Y VARIABLES DEMOGRAFICAS

En cuanto al sexo, el femenino tuvo un riesgo mayor de temblor postoperatorio que el masculino (OR 1,05 IC95% 0,54-2,04), no estadísticamente significativo (valor p >0,05). Por otro lado, los pacientes mayores de 30 años, presentaron un menor riesgo de temblor postoperatorio (OR 0,84 IC95% 0,29-2,40), no estadísticamente significativo. La presencia de sobrepeso, con un IMC igual o mayor a 25, se presentó como un factor de riesgo para temblor posquirúrgico en relación con un IMC menor o igual a 24,9 (OR 1,03 IC95% 0,53-1,99), no estadísticamente significativo (p>0,05) Ver tabla 3.

Tabla 3. Asociación entre temblor y características demográficas en pacientes intervenidos en el HPAS durante octubre-diciembre del 2018 (n=460)

<table>
<thead>
<tr>
<th></th>
<th>TEMBLOR</th>
<th>OR (IC 95%)</th>
<th>VALOR P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Si (%)</td>
<td>No (%)</td>
<td></td>
</tr>
<tr>
<td>Sexo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Masculino</td>
<td>20 (8,1)</td>
<td>227 (91,9)</td>
<td>Ref.</td>
</tr>
<tr>
<td>Femenino</td>
<td>18 (8,5)</td>
<td>195 (91,5)</td>
<td>1,05 (0,54-2, 04)</td>
</tr>
</tbody>
</table>
Entre las variables relacionadas al acto quirúrgico y anestésico el análisis bi-variado dio como resultado asociación entre temblor e hipotermia definida en este estudio como temperatura axilar < 36°C. Se encontró que los pacientes con hipotermia presentaron 11,13 veces más riesgo de temblor posquirúrgico (IC 95%: 3,37-36,74), que los pacientes sin hipotermia, estadísticamente significativo (p < 0,01). Quienes recibieron anestesia general tuvieron un riesgo de 2,47 veces más probabilidad de temblor posoperatorio (IC 95%: 1,06-5,76), estadísticamente significativo (p 0,036). En pacientes con un tiempo quirúrgico mayor a 120 minutos, el riesgo de temblor fue 3,56 veces mayor (IC 95%: 1,56-8,15) que en pacientes con un tiempo quirúrgico menor a 120 minutos, estadísticamente significativo (p < 0,01). De igual manera, la presencia de dolor postquirúrgico inmediato representó un riesgo 5,03 veces mayor para desarrollar temblor que en pacientes sin dolor postquirúrgico (IC 95%: 2,53-9,98), siendo estadísticamente significativo (p <0,01), Ver Tabla 4.
Tabla 4. Asociación entre temblor con hipotermia y variables del procedimiento quirúrgico en pacientes intervenidos en el HPAS durante octubre-diciembre del 2018 (n=460)

<table>
<thead>
<tr>
<th></th>
<th>TEMBLOR</th>
<th>OR (IC 95%)</th>
<th>VALOR P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Si (%)</td>
<td>No (%)</td>
<td></td>
</tr>
<tr>
<td>Hipotermia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td>35 (13,9)</td>
<td>216 (86,1)</td>
<td>11,13 (3,37-36,74)</td>
</tr>
<tr>
<td>No</td>
<td>3 (1,4)</td>
<td>206 (98,6)</td>
<td>Ref.</td>
</tr>
<tr>
<td>Tipo de Anestesia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General</td>
<td>31 (10,7)</td>
<td>258 (89,3)</td>
<td>2,47 (1,06-5,76)</td>
</tr>
<tr>
<td>Neuroaxial</td>
<td>7 (4,6)</td>
<td>144 (95,4)</td>
<td>Ref.</td>
</tr>
<tr>
<td>Regional y Local</td>
<td>0 (0)</td>
<td>20 (100)</td>
<td>.....</td>
</tr>
<tr>
<td>Tipo de Cirugía</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mayor</td>
<td>38 (8,6)</td>
<td>402 (91,4)</td>
<td>.....</td>
</tr>
<tr>
<td>Menor</td>
<td>0 (0)</td>
<td>20 (100)</td>
<td>.....</td>
</tr>
<tr>
<td>Tiempo quirúrgico</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤ 120 min</td>
<td>13 (4,7)</td>
<td>266 (95,3)</td>
<td>Ref.</td>
</tr>
<tr>
<td>≥ 120 min</td>
<td>12 (14,8)</td>
<td>69 (85,2)</td>
<td>3,56 (1,56-8,15)</td>
</tr>
<tr>
<td>Dolor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td>19 (21,3)</td>
<td>70 (78,7)</td>
<td>5,03 (2,53-9,98)</td>
</tr>
<tr>
<td>No</td>
<td>19 (5,1)</td>
<td>352 (94,9)</td>
<td>Ref.</td>
</tr>
</tbody>
</table>

Fuente: Base de datos del estudio, SPSS ver 25.0
Elaboración: MD Claudia Gallegos y MD Marcela Jarrin

La siguiente es una tabla cruzada entre las diferentes especialidades quirúrgicas incluidas en el estudio y su asociación con aparición de temblor, no se pudo realizar el análisis bi-variado por el número de pacientes relativamente bajo en algunas de ellas, pero se observa que en especialidades como urología 6(24%), neurocirugía 1 (20%) cirugía general 17 (8,5%) el riesgo de presentar temblor es mayor al compararla con otras como oftalmología 0(0%) otorrinolaringología 2(9,5%) en donde la prevalencia es mínima.
Tabla 5. Presencia de temblor postquirúrgico según especialidad en pacientes intervenidos en el Hospital Pablo Arturo Suarez durante octubre-diciembre del 2018

<table>
<thead>
<tr>
<th>Especialidad</th>
<th>Si (%)</th>
<th>No (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Traumatología</td>
<td>11 (7)</td>
<td>147 (93)</td>
</tr>
<tr>
<td>Otorrinolaringología</td>
<td>2 (9,5)</td>
<td>19 (90,5)</td>
</tr>
<tr>
<td>Oftalmología</td>
<td>0 (0)</td>
<td>26 (100)</td>
</tr>
<tr>
<td>Cirugía General</td>
<td>17 (8,5)</td>
<td>182 (91,5)</td>
</tr>
<tr>
<td>Urología</td>
<td>6 (24)</td>
<td>19 (76)</td>
</tr>
<tr>
<td>Neurocirugía</td>
<td>1 (20)</td>
<td>4 (80)</td>
</tr>
<tr>
<td>Otras</td>
<td>1 (3,8)</td>
<td>25 (96,2)</td>
</tr>
</tbody>
</table>

Fuente: Base de datos del estudio, SPSS ver 25.0
Elaboración: MD Claudia Gallegos y MD Marcela Jarrin

4.8 REGRESIÓN LOGÍSTICA MULTIVARIADA

Después del ajuste multivariado y la regresión logística realizada se encontró que un paciente que presente hipotermia por sí sola tiene 8 veces más riesgo de desarrollar temblor postquirúrgico inmediato (IC 95%: 2,03-39,65), independientemente de la presencia o ausencia de otras variables como dolor, anestesia general o tiempo quirúrgico mayor a 120 minutos, siendo esta asociación estadísticamente significativa (valor p <0,01). Por otro lado, el tipo de anestesia y el tiempo quirúrgico en el análisis multivariado dejaron de ser variables asociadas de forma estadísticamente significativa con la presencia de temblor postquirúrgico. Sin embargo, la presencia de dolor postquirúrgico se mantuvo significativamente asociada a temblor después del ajuste por las otras variables (OR 3,12, IC 95%: 1,18-8,25). Ver Tabla 6
Tabla 6. Regresión logística multivariada en pacientes intervenidos en el Hospital Pablo Arturo Suarez durante octubre-diciembre del 2018

<table>
<thead>
<tr>
<th>Variable</th>
<th>OR</th>
<th>IC 95%</th>
<th>Valor P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hipotermia</td>
<td>8,96</td>
<td>2,03-39,65</td>
<td>0,004</td>
</tr>
<tr>
<td>Tipo de anestesia</td>
<td>1,69</td>
<td>0,58-4,97</td>
<td>0,34</td>
</tr>
<tr>
<td>Tiempo quirúrgico</td>
<td>2,09</td>
<td>0,86-5,04</td>
<td>0,1</td>
</tr>
<tr>
<td>Dolor</td>
<td>3,12</td>
<td>1,18-8,25</td>
<td>0,022</td>
</tr>
</tbody>
</table>

Fuente: Base de datos del estudio, SPSS ver 25.0
Elaboración: MD Claudia Gallegos y MD Marcela Jarrin
CAPÍTULO V
DISCUSIÓN

La hipotermia intraoperatoria es un problema frecuente y el temblor postanestésico es una de las respuestas indeseables a la misma, pues no solo es angustiante para los pacientes, sino que también puede llevar a complicaciones potencialmente graves como aumento del dolor causado por la contracción muscular en el sitio quirúrgico, es la primera consecuencia clínica del TPA (P., 2003) (Yimer HT, 2015), además aumenta las demandas metabólicas, el consumo de oxígeno, la producción de dióxido de carbono, sangrado, la cicatrización deficiente e interfiere con la monitorización (Mathews S, 2002) (De Witte J S. D., 2002).

A partir de estos datos científicos los hallazgos encontrados en nuestro estudio han confirmado la hipótesis general que establece que existe asociación entre hipotermia y aparición de temblor postoperatorio en pacientes postquirúrgicos sometidos a anestesia general y neuroaxial, estos resultados guardan relación con los encontrados en estudios previos Leopold H.J 2005 y Yimer, 2015, Por lo que es, es razonable suponer que la hipotermia contribuye al desarrollo de TPA y normotermia es de hecho un factor protector.

Hace más de una década Crossley demostró en un estudio que involucró 2595 pacientes que la incidencia de temblor postoperatorio en la sala de recuperación fue de 6.3% cuyos datos se aproximan a los obtenidos en este estudio en donde fue de 8.3%; de los cuales 31(10,7%) ocurrieron después de una anestesia general y 7(4,6%) después de una neuroaxial, los bloqueos nerviosos periféricos no tienen efectos termorregruladores clínicamente importantes por lo que dichos pacientes no fueron incluidos en el análisis. (Kim JS, 1998)
Yimer et al, 2015 demostraron la relación directa entre hipotermia y aparición de TPA. En nuestro estudio se encontró que al ingresar a la sala de cuidados postanestésicos, los pacientes con temperatura axilar menor a 36° tuvieron 11,13 veces más riesgo de desarrollar TPA (IC 95%: 3,37-36,74), cuya correlación fue confirmada en el análisis bivariado en donde la hipotermia por sí sola representa 8 veces más riesgo de desarrollar temblor (IC 95%: 2,03-39,65) independientemente de la presencia de las otras variables.

Esto puede explicarse porque el TPA ocurre como una respuesta fisiológica a la hipotermia secundaria a la redistribución interna de calor desde el núcleo hacia la periferia debido a la vasodilatación inducida por la anestesia y como resultado la pérdida de calor al medio ambiente. En contraste con el hallazgo actual del estudio, otros estudios informaron que la incidencia de TPA no está asociada con la temperatura corporal central (Leopold, 2005), (Crossley, 1994) (Holdcroft, 1978) y establecen que el factor más importante es la edad, aunque en todos ellos la medición de temperatura fue central y la variable temperatura periférica no fue analizada. En todo caso, se argumenta que el aumento suficiente de la temperatura en la piel por sí solo puede detener el TPA. Por tanto, en nuestro análisis el factor determinante para la aparición de TPA fue la temperatura periférica medida en la región axilar.

En los estudios mencionados, la edad ha demostrado ser un factor protector de TPA pues la respuesta termorreguladora al cambio en la temperatura corporal en los ancianos se atenúa (Eberhart, 2005). Sin embargo nuestro análisis demuestra que los pacientes mayores de 30 años, presentaron un menor riesgo de temblor postoperatorio (OR 0,84 IC95% 0,29-2,40), no estadísticamente significativo, la razón para este resultado puede
deberse a que no fueron incluidos pacientes mayores de 65 años en los que se observa los cambios fisiopatológicos descritos anteriormente.

A pesar que la presencia de TPA se relaciona directamente con el grado de hipotermia del paciente existen otros factores, dependientes del paciente y del procedimiento quirúrgico que se ha descrito aumentan el riesgo de su aparición: se han realizado varios estudios intentando identificar dichos factores, pero aún es difícil ya que numerosas variables pueden influir en el entorno perioperatorio. Entre ellos características demográficas como edad y sexo del paciente, comorbilidades, fármacos de uso crónico, características propias del procedimiento quirúrgico: duración de la anestesia y cirugía, tipo de cirugía, estado físico ASA (P., 2003) (Zhang Y, 1999)

Crossley, 1994 concluyó que el sexo masculino implica mayor riesgo de TPA pero no encontramos una relación directa pues el temblor ocurrió en 8.1 hombres (20%) y 8.5 mujeres (18%) en nuestro análisis por lo que no podemos establecer como factor de riesgo el género

Una clasificación ASA más alta se correlaciona con la presencia de diferentes comorbilidades por lo que podría relacionarse con la aparición de TPA sin embargo no existen datos que evalúen esta variable.

En el estudio realizado por Leopold, 2005 no se encontró asociación entre técnica anestésica y desarrollo de TPA pero nuestros datos refutan esta información, pues se encontró significancia estadística entre anestesia general y presencia de TPA con un aumento de riesgo de 2,47 veces mayor que en pacientes que recibieron anestesia neuroaxial. Así mismo se describe que la hipotermia se desarrolla dentro de la primera hora después de la inducción en una anestesia general o neuroaxial (Matsukawa T S. D., 1995) y resulta principalmente de la redistribución de calor corporal del núcleo central a la periferia lo que ha sido confirmado en nuestro análisis univariado pues en
pacientes cuyo procedimiento quirúrgico se prolongó más allá de 120 minutos, el riesgo de temblor fue 3,56 veces mayor (IC 95%: 1,56-8,15) que en pacientes con un tiempo quirúrgico menor a 120 minutos, estadísticamente significativo, (Leopold, 2005) observó TPA más frecuente en procedimientos más largos e invasivos, pero esta influencia no se pudo demostrar en un nivel de significancia estadístico.

Otra factor de riesgo descrito previamente es la cirugía ortopédica especialmente con el uso de cemento óseo en el desarrollo de TPA (Eberhart, 2005) (Leopold, 2005) estos hallazgos no han sido confirmados en nuestro estudio pues se incluyó un pequeño número de casos ortopédicos durante las observaciones.

Nuestro análisis encontró que la presencia de dolor postquirúrgico inmediato representa un riesgo 5,03 veces mayor para desarrollar temblor (IC 95%: 2,53-9,98), siendo estadísticamente significativo (p <0,01), pues se ha establecido que el temblor, es parte integral del sistema termorregulador, ya que está estrechamente relacionado con otros sistemas homeostáticos, argumentando así que las señales de dolor y temperatura se transmiten a lo largo de sistemas de fibras nerviosas similares y que ambos hacen sinapsis en las regiones del asta de la raíz dorsal. (De Witte J S. D., 2002). Estos resultados contrastan con los obtenidos por (Leopold, 2005) ya que en él no observa ninguna asociación entre la intensidad del dolor y TPA aclarando que el dolor estuvo bien controlado en la mayoría de los pacientes, lo que oculta la importancia real de este factor. Cabe recalcar que nuestro estudio no analizó medicación administrada para tratar el temblor o para prevenirlo

En nuestro estudio se observó que el 1.4% de los pacientes presentaron TPA pese a tener una temperatura axilar > 36°, por lo que habría que estudiar factores relacionados al temblor no termorregulador como procesos inflamatorios activos, bloqueo simpático, supresión adrenal, alcalosis respiratoria, etc. Además los anestésicos hipnóticos alteran
el control termorregulador de una manera dependiente de la dosis y pueden ser una causa de temblor no estudiada.

Existen algunas limitaciones del estudio entre ellas, no se informó sobre el uso de opioides como técnica analgésica o el uso crónico de medicamentos por parte de los pacientes participantes, pues dichos factores se han descrito reducir la aparición de TPA. (Leopold, 2005). Otra limitación encontrada fue la medición de la temperatura la cual se realizó periféricamente (temperatura axilar) usando un termómetro de canal aural First Temp Genius Modelo 3000A (Sherwood Medical Company, St. Louis, MO) ya que el centro hospitalario no contaba con termómetros clínicos centrales.

El presente estudio confiere algunas ventajas entre ellas: al demostrar que la incidencia de hipotermia en UCPA de la unidad hospitalaria es alta; siendo la variable que más se asocia a TPA pueden usarse estrategias de prevención de la misma, además el control adecuado del dolor es un elemento fundamental para prevenir el temblor.

Conocer la incidencia de hipotermia y dolor postquirúrgico en esta unidad hospitalaria permite establecer mejores protocolos analgésicos y anestésicos. Además de disminuir complicaciones, por estancias hospitalarias prolongadas así como costes derivados de ello, además de mejorar el confort y satisfacción de los pacientes quirúrgicos atendidos en esta casa de salud.
CAPÍTULO VI

CONCLUSIONES Y RECOMENDACIONES DEL ESTUDIO

CONCLUSIONES

- En conclusión, la temperatura axilar fue la variable con mayor poder predictivo para la aparición de temblor en el área de cuidados post-anestésicos. Pero el TPA puede predecirse también utilizando otros tres factores de riesgo: anestesia general, tiempo quirúrgico prolongado y dolor los mismos que también aumentaron el riesgo de que una paciente presente TPA.

- La temperatura fue la variable que mejor se asoció a la presencia de temblor, los pacientes con hipotermia presentaron mayor riesgo (IC 95%: 3,37-36,74) de TPA estadísticamente significativo.

- Se encontró que el 54,8 % de los pacientes ingresaban a la unidad de recuperación con una temperatura axilar inferior a 36°C.

- En cuanto a las características demográficas ninguna de ellas: sexo, edad o IMC mostraron una asociación estadísticamente significativa con la presencia de TPA.

- La incidencia de dolor postquirúrgico en esta unidad hospitalaria fue del 19%, no se valoró intensidad.

- Las variables quirúrgicas: son las que representaron mayor asociación con la presencia de temblor siendo el tiempo quirúrgico mayor a 120 min (IC 95%: 1,56-8,15), y dolor postquirúrgico inmediato (IC 95%: 2,53-9,98), los principales factores de riesgo.
• El tipo de cirugía (mayor o menor) no muestra una asociación estadística significativa.

• En cuanto a la especialidad quirúrgica pacientes sometidos a intervenciones por urología 6(24%), neurocirugía 1 (20%) cirugía general 17 (8,5%) el riesgo de presentar temblor es mayor al compararla con otras como oftalmología y otorrinolaringología, aunque la muestra incluida en cada uno de ellos fue pequeña.

• En cuanto a las variables anestésicas la anestesia general ((IC 95%: 1,06-5,76) mostró mayor riesgo de aparición de TPA, al compararla con anestesia neuroaxial.

• Finalmente después del análisis multivariado las variables que permanecen como factores independientes para la presencia de temblor postquirúrgico fueron: hipotermia y dolor.

RECOMENDACIONES

• Se recomienda realizar estudios posteriores que incluyan pacientes ASA III o mayor así como adultos mayores de 65 años pues se han descrito fisiopatológicamente como factores protectores para la aparición de TPA.

• Se recomienda realizar estudios que analicen asociación entre dolor y presencia de TPA, dado que se ha demostrado como variable independiente.

• Se recomienda mejorar protocolos analgésicos para disminuir la incidencia de dolor postquirúrgico.
- Se recomienda el uso de mantas térmicas y calentadoras de fluidos intravenosos transquirúrgicos y en sala de recuperación para disminuir la incidencia de hipotermia.
- Se recomienda monitorización de temperatura transquirúrgica como constante vital durante el procedimiento quirúrgico, sobre todo si es mayor de 120 minutos.
- Se recomienda estudios a largo plazo de complicaciones asociadas a TPA.
- Se recomienda investigaciones sobre la cirugía ortopédica con uso de cemento óseo como factor de riesgo de TPA.
 - Se recomienda que los anestesiólogos mantengan un buen nivel de preparación y entrenamiento en técnicas anestésicas y analgésicas loco-regionales pues disminuyen la necesidad de someter a un paciente a anestesia general lo que a su vez disminuye la incidencia de hipotermia y temblor en pacientes sometidos a procedimientos quirúrgicos.
REFERENCIAS BIBLIOGRÁFICAS

ANEXOS
ANEXO 1HOJA DE RECOLECCION DE DATOS

OBSERVADOR N°1

PROYECTO:
Hipotermia asociada a temblor en pacientes post-quirúrgicos en el área de recuperación del Hospital Pablo Arturo Suarez Octubre a Diciembre 2018.

Nombre del paciente: __
Fecha: _______ Edad: ___________________
Sexo:___________ Peso:______Talla:_____ Etnia:__________
Cirugía realizada: ___________Especialidad_______________________
Tipo de cirugía: Menor □ Mayor □
Tiempo quirúrgico: _____________
Tipo de anestesia: General □ Neuroaxia □
Temperatura en UCPA: _____________
Temblor: Presente □ Ausente □
Al arribar a UCPA □ □
A los 15 min: □ □
A los 30 min: □ □
A la hora: □

Dolor: si no
ANEXO 2 CONSENTIMIENTO INFORMADO

Estimado __

Nombre del paciente

Soy _________________________________, estudiante de la Pontificia Universidad Católica del Ecuador en Quito (PUCE). Le invito a participar de la investigación titulada “Hipotermia asociada a temblor en pacientes post-quirúrgicos en el área de recuperación del Hospital Pablo Arturo Suarez”, propuesta por los investigadores: Claudia Gallegos, Marcela Jarrin.

Explicación de la investigación

El temblor después de la cirugía muchas veces se debe a temperatura baja (hipotermia), este es un problema común después de realizarse una cirugía además puede dificultar la recuperación del paciente. Muchas veces la temperatura baja se acompaña de temblor. Por ese motivo, esta investigación quiere identificar las causas por las que se da este problema y proponer una alternativa de solución.

Usted podrá decidir libre y voluntariamente si desea participar o no. Si acepta, se le pedirá que firme este documento en el que da su consentimiento para participar en la investigación. Usted puede realizar preguntas en cualquier momento.

A continuación, vamos a mencionarle en qué consiste la investigación

En esta investigación vamos a tomar datos de pacientes de 18 – 65 años de edad que se encuentran en sala de recuperación después de cirugía. En esta investigación vamos a:

1) Presentar el estudio a los pacientes
2) Explicar el consentimiento informado y solicitar la firma de aceptación de participación,
3) Tomar la temperatura mediante un termómetro

Posibles riesgos y molestias: No hay riesgos relacionados con la toma de la temperatura

Confidencialidad

La información que nos proporcione será compartida solamente con el equipo de investigación, y será presentada en artículos y debates académicos, sin revelar su identidad personal. Los datos que serán colectados no se identificarán por su nombre, se hará una lista con un código y esta lista será guardada en un archivador en la Universidad.

Información sobre autorizaciones para el estudio
Este estudio ha sido revisado y aprobado por el Comité de Ética de la Investigación en Seres Humanos de la Pontificia Universidad Católica del Ecuador, así como por la Dirección de Inteligencia del Ministerio de Salud Pública del Ecuador.

DECLARACIÓN DE CONSENTIMIENTO INFORMADO

Yo, _____________________________ con C.I.: __________________
declaro que: _____________________________, me ha explicado
-los objetivos de esta investigación
-el procedimiento para la toma de temperatura
-el número de muestras y la cantidad que será extraída
-los posibles riesgos de la participación de esta investigación
-mi participación en este estudio es completamente voluntaria.
-puedo dejar este estudio en cualquier momento

Yo, _____________________________-delegado del equipo de investigación-,

(Nombre de la persona que informa)
Con C.I.: ________________ , declaro que he informado a: _________________________
(Cédula de identidad) (Nombre del paciente)
-el propósito y la naturaleza de la investigación,
-los criterios de inclusión y exclusión para la presente investigación,
-los procesos para garantizar confidencialidad en el manejo de los datos
-he contestado todas las inquietudes del participante, respecto a esta investigación
ANEXO 3. APROBACIONES PARA LA REALIZACIÓN DEL PROYECTO DE INVESTIGACIÓN

Pontificia Universidad Católica del Ecuador
Facultad de Medicina

SUBCOMITÉ DE BIOÉTICA

Quito, 08 de noviembre de 2018

Doctoras
Claudia Silvana Gallegos Mazza
Marcela Fabiola Jarrín Jaramillo
Estudiantes del Posgrado de Anestesiología, Reanimación y Terapia del Dolor de la Facultad de Medicina de la PUCE
Presente.-

De nuestra consideración:

Por medio de la presente, el Subcomité de Bioética de la Facultad de Medicina de la Pontificia Universidad Católica del Ecuador, resuelve Aprobar el proyecto titulado: "HIPOTERMIA ASOCIADA AL TEMBLOR EN PACIENTES POSTQUIRÚRGICOS EN EL ÁREA DE RECUPERACIÓN DEL HOSPITAL PABLO ARTURO SUÁREZ, OCTUBRE A DICIEMBRE 2018".

Atentamente,

[Signature]
Dr. Caplos Azurue Velasco
Subcomité de Bioética
Facultad de Medicina PUCE

Feche 13 Nov. 2018
Quito, 13 de Junio de 2018

PARA: Marcela Fabiola Jarrín Jaramillo

ASUNTO: APROBACIÓN DE TEMA DE INVESTIGACIÓN.

De mi consideración:

En respuesta al Documento Nro. S/N, mediante el cual solicita la aprobación del tema de investigación "HIPOTERMIA ASOCIADA AL TEMBLOR EN PACIENTES POST QUIRÚRGICOS EN EL ÁREA DE RECLUTMENT DEL HOSPITAL PROVINCIAL PABLO ARTURO SUÁREZ, MAYO A JULIO DEL 2018", puedo mencionar que se encuentra aprobado el tema en cuestión, pero para dar inicio a la investigación debe presentar lo siguiente:

- Oficio dirigido a la Gerencia del Hospital Provincial General Pablo Arturo Suárez.
- Carta suscrita por la máxima autoridad del establecimiento de Educación Superior responsable de la aprobación del estudio, que manifieste conocimiento y acuerdo con la propuesta de investigación.
- Currículum de los expertos que participan en la investigación.
- Formulario para la Presentación de Protocolo de Investigación en Salud.
- Consentimiento informado e instrumentos de evaluación como entrevistas, guiones, entre otros (de ser el caso).

NOTA: No se aceptarán cambios en el tema.

Los formularios requeridos se pueden solicitar al correo docenciaphas@gmail.com

De antemano le agradezco su amable atención y me suscribo de usted.

Atentamente,

[Nombre]
GERENTE DEL HOSPITAL PROVINCIAL GENERAL PABLO ARTURO SUÁREZ

Referencias:
- MSP-HPASGEHO-2018-3184-M
Hospital Provincial General Pablo Arturo Suárez
Gerencia Hospitalaria

Oficio Nro. MSP-CZ9-HPASGEHO-2018-0216-O
Quito, 27 de julio de 2018

Asunto: RESPUESTA AL REQUERIMIENTO DE ALCANCE AL MEMORANDO
Nro. MSP CZ9-HPASGEHO-2018-3184-M

Señorita
Marcela Fabiola Jarrín Jaramillo

Señora
Claudia Silvana Gallegos Mazza
En su Despacho

De mi consideración:

En respuesta al Documento No. SN-G165 en el que solicita el cambio de período del trabajo de titulación de mayo a julio 2018 por octubre a diciembre, en alcance al Memorando Nro. MSP-CZ9-HPASGEHO-2018-3184-M, permítanme mencionar que la Coordinación de Docencia e Investigación del HPAS validará dicho requerimiento una vez que las interesadas presenten el documento de aprobación del cambio de tema por el área de titulación de posgrado de la Universidad, en vista de que estos trámites ya fueron aprobados anteriormente.

Con sentimientos de distinguida consideración.

Atentamente,

Mgs. Paulina Susana Proaño Silva
GERENTE DEL HOSPITAL PROVINCIAL GENERAL PABLO ARTURO SUÁREZ, SUBROGANTE

Referencias:
- MSP-HPASADFT-2018-0235-E

Anexos:
- 0235-e07949510015126415199.pdf

Copia:
Señor Doctor
Diego Mauricio Noboa Escobar
Responsable de la Gestión de Docencia e Investigación

Angel Ludeña Co62-81 y Machala, Quito – Ecuador • Código Postal: 170001 • Teléfono: 593 (02) 2847-940 • www.hpas.gob.ec
ANEXO 4. REGISTRO ANESTÉSICO

<table>
<thead>
<tr>
<th>AGENTES / HORA</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>15</th>
<th>25</th>
<th>35</th>
<th>45</th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA MAX</td>
<td>200</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>PULSO</td>
<td>80</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>INSUFINCION</td>
<td>100</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>FRANANESTESIA</td>
<td>300</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>RESPIRACION</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>ESR</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>ASIS</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>CONT</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>TEMPERATURA</td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>PTO</td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>PES</td>
<td>20</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>POSICION</td>
<td></td>
</tr>
</tbody>
</table>

DROGAS ADMINISTRADAS

<table>
<thead>
<tr>
<th>N</th>
<th>TIPO</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TIEMPOS

<table>
<thead>
<tr>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TÉCNICAS

<table>
<thead>
<tr>
<th>GENERAL</th>
<th>SISTEM ABIERTO</th>
<th>SISTEM CIERDO</th>
<th>APARATOS USADOS</th>
<th>CIRC</th>
<th>MASCARA</th>
<th>INTR. TRAQUEAL</th>
<th>ORAL</th>
<th>RAPID</th>
<th>TUBO</th>
<th>MANGUITO</th>
<th>TAPONAMIENTO</th>
<th>ANST. TOPICA</th>
<th>ANST. TRANSVERSAL</th>
<th>CONDUCTIVA</th>
<th>DEXTRASIS</th>
<th>HIPOTENSION</th>
<th>ARITMIAS</th>
</tr>
</thead>
</table>

INFUSIONES

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

COMPLICACIONES OPERATORIAS

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FIRMA DEL ANESTÉSICO

REGISTRO DE ANESTESIA