PONTIFICIA UNIVERSIDAD CATÓLICA DEL ECUADOR-MATRIZ
FACULTAD DE CIENCIAS ADMINISTRATIVAS Y CONTABLES

TRABAJO DE TITULACIÓN PREVIO A LA OBTENCIÓN DEL TÍTULO DE MAGISTER EN ADMINISTRACIÓN DE EMPRESAS CON MENCIÓN EN GERENCIA DE LA CALIDAD Y PRODUCTIVIDAD

MAURICIO JAVIER GUNCAY TACO
DIRECTOR: ING. FRANCISCO VARGAS

LÍNEA DE INVESTIGACIÓN: SISTEMAS DE GESTIÓN DE PRODUCCIÓN Y OPERACIONES

QUITO, FEBRERO DEL 2018
Mauricio Javier Guncay Taco.
Febrero 2018.

Pontificia Universidad Católica Del Ecuador- Matriz.
Facultad De Ciencias Administrativas Y Contables.

Copyright © 2018 por Mauricio Guncay. Todos los derechos reservados.
DEDICATORIA

Dedicó este trabajo a mi esposa Jessica, mi hija Ana Paula, mis padres Yolanda y Roberto quienes me apoyado en todo el trayecto de mi vida.
AGRADECIMIENTOS

Al Ing. Francisco Vargas, director de tesis, quien, con su perseverancia, conocimientos y aportes técnicos, me ha conducido a culminar este proyecto y ganar nuevos conocimientos.

Agradezco a mis compañeros de trabajo quienes aportaron con su experiencia y habilidades para el logro desde la parte operativa.

Agradezco a mis profesores, compañeros de clases y sobre todo la universidad que presta un servicio de calidad para la comunidad estudiantil ecuatoriana.
CONTENIDO

GLOSARIO ... xvi
RESUMEN EJECUTIVO ... xviii
INTRODUCCIÓN .. 1

1 ANTECEDENTES DE LA EMPRESA TENARIS ECUADOR 2
1.1 Descripción General de la Empresa... 2
1.1.1 Principales Productos de Tenaris. .. 5
1.1.2 Estructura Organizacional. .. 6
1.1.3 Principales Clientes y Competidores. .. 6
1.2 La Industria de Fabricación de Roscas de Tubería Petroleras. 7
1.3 Macro Procesos de Fabricación de Tubería de Acero para el Sector Petrolero. ... 7
1.4 Descripción de los Procesos del Centro Productivo de Tenaris Ecuador. ... 21

2 MARCO TEÓRICO .. 33
2.1 HERRAMIENTAS DE CALIDAD .. 33
2.2 Antecedentes de Lean Manufacturing. .. 33
2.3 Principios de Lean Manufacturing .. 35
2.4 Estructura del Lean Manufacturing. .. 36
2.5 Herramientas del Lean Manufacturing. ... 39
2.5.1 5 S. ... 50
2.6 Modelo para Implementación de Lean Manufacturing. 53
2.7 Implementación de 5 S. .. 58
2.8 Eliminación de Mudas (Desperdicios). .. 65
2.8.1 Análisis de la Demanda. Operaciones. .. 67
2.8.2 Estudio de los Métodos de Trabajo. .. 69
2.8.3 Diagramas de Procesos. ... 71
2.9 Los Siete Desperdicios. ... 72
2.10 Medición del Trabajo. ... 81
2.10.1 Procedimiento para Medir el Trabajo. .. 84
2.10.2 Estadístico de Anderson – Darling. ... 87
2.10.3 Diagrama de Pareto. .. 89

3 APLICACIÓN DE HERRAMIENTAS DE CALIDAD BASADAS EN LEAN MANUFACTURING PARA EL PROCESO DE “FABRICACIÓN” DEL CENTRO PRODUCTIVO DE TENARIS ECUADOR PARA LA FABRICACIÓN DE ROSCAS PARA TUBERÍA PETROLERA............ 92
3.1 Análisis del Estado Inicial de Los Procesos de “Fabricación” del Centro Productivo de Tenaris Ecuador.. 95
3.1.1 Estado Inicial del Proceso de Roscado del Centro Productivo de Tenaris Ecuador. .. 98
3.1.1.1 Diagrama de Flujo del Proceso de Roscado. 98
3.1.1.2 Levantamiento de Información Proceso de Roscado 100
3.1.1.3 Tabulación y Estadística de los Datos Obtenidos del Proceso de Roscado .. 101
3.1.2 Estado Inicial del Proceso de Inspección de Rosca del Centro Productivo de Tenaris Ecuador. .. 107
3.1.2.1 Diagrama de Flujo del Proceso de Inspección de Rosca 107
3.1.2.2 Levantamiento de Información Proceso de Inspección de Rosca .. 109
3.1.2.3 Tabulación y Estadística de los Datos Obtenidos del Proceso de Inspección de Rosca ... 110
3.1.3 Estado Inicial del Proceso de Pruebas No Destructivas (NDT) del Centro Productivo de Tenaris Ecuador ... 116
3.1.3.1 Diagrama de Flujo del Proceso de NDT 116
3.1.3.2 Levantamiento de Información Proceso de NDT 118
3.1.3.3 Tabulación y Estadística de los Datos Obtenidos Proceso de NDT . 119
3.1.4 Estado Inicial del Proceso de Acoplado y Paso del Mandril en Punta del Centro Productivo de Tenaris Ecuador 124
3.1.4.1 Diagrama de Flujo Del Proceso Acoplado y Paso del Mandril 124
3.1.4.2 Levantamiento de Información Sub Proceso de Pre Acoplado. 126
3.1.4.3 Tabulación y Estadística de los Datos Obtenidos Sub Proceso de Pre Acoplado ... 128
3.1.4.4 Levantamiento de Información Sub Proceso de Acoplado Automático ... 135
3.1.4.5 Tabulación y Estadística de los Datos Obtenidos Sub Proceso de Acoplado Automático ... 137
3.1.5 Estado Inicial del Proceso de Pesaje, Medición y Marcación (BME) del Centro Productivo de Tenaris Ecuador ... 143
3.1.5.1 Diagrama de Flujo del Proceso de BME 143
3.1.5.2 Levantamiento de Información Proceso de BME 145
3.1.5.3 Tabulación y Estadística de los Datos Obtenidos Proceso de BME . 147
3.2 Selección e Implementación de Herramientas de Calidad Basadas en Lean Manufacturing para la Aplicación al Proceso de “Fabricación” del Centro Productivo de Tenaris Ecuador ... 153
3.2.1 Selección de herramientas de calidad basadas en Lean Manufacturing para la aplicación al proceso de “Fabricación” del Centro Productivo de Tenaris Ecuador ... 153
3.2.2 Implementación de las herramientas de calidad basadas en Lean Manufacturing para la aplicación al proceso de “Fabricación” del Centro Productivo de Tenaris Ecuador ... 153
3.2.2.1 Implementación de la 5S en los procesos de “Fabricación” del Centro Productivo de Tenaris Ecuador ... 161
3.2.2.2 Implementación de la Gestión Visual en los procesos de “Fabricación” del Centro Productivo de Tenaris Ecuador ... 162
3.2.2.3 Implementación de la Estandarización en los procesos de “Fabricación” del Centro Productivo de Tenaris Ecuador ... 167
3.3 Verificación de los Niveles de Mejora Alcanzados de las Herramientas de Calidad Basadas en Lean Manufacturing al Proceso de “Fabricación” del Centro Productivo de Tenaris Ecuador ... 187
3.3.1 Verificación de los Niveles de Mejora Alcanzados en el Proceso de Roscado Implementado ... 190
3.3.1.1 Levantamiento de Información Final Proceso de Roscado Implementado ... 190
3.3.1.2 Tabulación y Estadística de los Datos Obtenidos del Proceso de Roscado Implementado ... 192
3.3.2 Verificación de los Niveles de Mejora Alcanzados en el Proceso de Inspección de Rosca Implementado. .. 200
3.3.2.1 Levantamiento de Información Final Proceso de Inspección de Rosca Implementado. .. 200
3.3.2.2 Tabulación y Estadística de los Datos Obtenidos del Proceso de Inspección de Rosca Implementado. ... 202
3.3.3 Verificación de los Niveles de Mejora Alcanzados en el Proceso de Pruebas No Destructivas (NDT) Implementado. ... 209
3.3.3.1 Levantamiento de Información Final Proceso de NDT Implementado. ... 209
3.3.3.2 Tabulación y Estadística de los Datos Obtenidos del Proceso de NDT Implementado. ... 211
3.3.4 Verificación De Los Niveles De Mejora Alcanzados En El Proceso De Acoplado Y Paso Del Mandril Implementado. .. 217
3.3.4.1 Levantamiento de Información Final Sub Proceso de Pre Acoplado Implementado. .. 217
3.3.4.2 Tabulación y Estadística de los Datos Obtenidos del Sub Proceso de Pre Acoplado Implementado. ... 219
3.3.4.3 Levantamiento de Información Final Sub Proceso de Acoplado Automático Implementado. .. 225
3.3.4.4 Tabulación y Estadística de los Datos Obtenidos del Sub Proceso de Acoplado Automático Implementado. ... 227
3.3.5 Verificación de los Niveles de Mejora Alcanzados en el Proceso de BME Implementado. .. 233
3.3.5.1 Levantamiento de Información Final Proceso de BME Implementado. ... 233
3.3.5.2 Tabulación y Estadística de los Datos Obtenidos del Proceso de BME Implementado. ... 235
4 ANÁLISIS Y RESULTADOS. .. 245
4.1 Análisis de Variables de Estudio. .. 245
4.1.1 Variables de Impacto. ... 245
4.1.2 Variables de Proceso ... 249
4.1.2.1 Variables de Proceso – Eliminación de Mudas. 249
4.1.2.2 Variable de Proceso – Valor de Tiempo de Trabajo. 260
4.2 Ventajas y Desventajas de lo Investigado 263
4.2.1 Ventajas de lo Investigado ... 263
4.2.2 Desventajas de lo Investigado ... 263
5 CONCLUSIONES Y RECOMENDACIONES. ... 264
5.1 Conclusiones. ... 264
5.2 Recomendaciones ... 267
Bibliografía. .. 269
ANEXOS 272
ANEXO 1. Hoja de Tiempo de Observación. .. 272
ANEXO 2. Formato de Valor Agregado – No Valor Agregado. 273
ANEXO 3. Cronograma de Implementación. .. 274
ANEXO 4. Material Didáctico de 5S. .. 275
ANEXO 5. Implementación de 5S. ... 278
ANEXO 6. Implementación de 5S – Proceso de Roscado. 279
ANEXO 7. Implementación de 5S – Proceso de Inspección de Rosca 280
ANEXO 8. Implementación de 5S – Proceso de NDT 281
ANEXO 9. Implementación de 5S – Proceso de Acoplado y Paso de Mandril. – Sub Proceso Pre Acoplado 282
ANEXO 10. Implementación de 5S – Proceso de Acoplado y Paso de Mandril. – Sub Proceso Acoplado Automático 283
ANEXO 11. Implementación de 5S – Proceso de BME 284
ANEXO 12. Implementación de 5S – Estandarización 285
ANEXO 13. Estandarización de Proceso Roscado “5S” 286
ANEXO 14. Estandarización de Proceso de Inspección de Rosca “5S” 287
ANEXO 15. Estandarización de Proceso NDT “5S” 288
ANEXO 16. Estandarización de Sub Proceso Pre Acoplado “5S” 289
ANEXO 17. Estandarización de Sub Proceso Acoplado Automático “5S” 290
ANEXO 18. Estandarización de Proceso BME “5S” 291
ANEXO 19. Auditores de 5S 292
ANEXO 20. Cronograma de Auditorias de 5S 293
ANEXO 21. Formato de Auditoría 5S 294
ANEXO 22. Autodisciplina de Proceso Roscado “5S” 295
ANEXO 23. Autodisciplina de Proceso de Inspección de Rosca “5S” 296
ANEXO 24. Autodisciplina de Proceso de NDT “5S” 297
ANEXO 25. Autodisciplina de Sub Proceso de Pre Acoplado “5S” 298
ANEXO 26. Autodisciplina de Sub Proceso de Acoplado Automático “5S” 299
ANEXO 27. Autodisciplina de Proceso de BME “5S” 300
ANEXO 28. Cumplimiento de Programa de “5S” 301
ANEXO 29. Implementación de Gestión Visual 302
ANEXO 30. Capacitación de nuevo método de trabajo 304
LISTA DE TABLAS

Tabla 1. Hitos históricos de TENARIS a nivel mundial. ... 3
Tabla 2. Resumen de 5 S. ... 65
Tabla 3. Diagrama de flujo de la elaboración de una pizza, con los motivos SQVC anotados de esta elección. ... 68
Tabla 4. Valores de Anderson – Darling. ... 88
Tabla 5 Datos Iniciales del Proceso de Roscado. ... 100
Tabla 6 Valores de Tiempo de Trabajo de Observaciones Iniciales Proceso Roscado. 101
Tabla 7 Datos Finales del Proceso Roscado. .. 102
Tabla 8. Valores de tiempo de trabajo de Observaciones del Proceso de Roscado.…..103
Tabla 9. Tabulación de Datos de Clasificación de actividades VA y NVA del Proceso de Roscado. .. 105
Tabla 10. Porcentaje de Actividades de VA y NVA. Proceso de Roscado. 106
Tabla 11 Datos Iniciales del Proceso de Inspección de Rosc. .. 109
Tabla 12. Valores de tiempo de trabajo del Proceso de Inspección de Rosc. 109
Tabla 13 Datos Finales del Proceso de Inspección de Rosc. .. 111
Tabla 14. Valores de tiempo de trabajo de Observaciones del Proceso de Inspección de Rosc. ... 112
Tabla 15. Tabulación de Datos de Clasificación de actividades VA y NVA del Proceso de Inspección de Rosc. .. 114
Tabla 16. Porcentaje de Actividades de VA y NVA. Proceso de Inspección de Rosc. 115
Tabla 17. Datos Iniciales del Proceso de NDT .. 118
Tabla 18. Valores de tiempo de trabajo del Proceso de NDT .. 118
Tabla 19 Datos Finales del Proceso de NDT .. 120
Tabla 20. Valores de tiempo de trabajo finales del Proceso de NDT. ... 120
Tabla 21. Tabulación de Datos de Clasificación de actividades VA y NVA del Proceso de NDT .. 122
Tabla 22. Porcentaje de Actividades de VA y NVA del Proceso de NDT 123
Tabla 23 Datos Iniciales del Sub Proceso de Pre Acoplado. ... 127
Tabla 24. Valores de tiempo de trabajo del Sub Proceso de Pre Acoplado. 127
Tabla 25 Datos Finales del Sub Proceso de Pre Acoplado. .. 129
Tabla 26. Valores de tiempo de trabajo finales del Sub Proceso de Pre Acoplado. 130
Tabla 27. Tabulación de Datos de Clasificación de actividades VA y NVA del Sub Proceso de Pre Acoplado. .. 131
Tabla 28. Porcentaje de Actividades de VA y NVA del Sub Proceso de Pre Acoplado. 133
Tabla 29 Datos Iniciales del Sub Proceso de Acoplado Automático. ... 136
Tabla 30. Valores de tiempo de trabajo del Sub Proceso de Acoplado Automático. 136
Tabla 31 Datos Finales del Sub Proceso de Pre Acoplado. ... 138
Tabla 32. Valores de tiempo de trabajo finales del Sub Proceso de Acoplado Automático. ... 139
Tabla 33. Tabulación de Datos de Clasificación de actividades VA y NVA del Sub Proceso de Pre Acoplado Automático. ... 141
Tabla 34. Porcentaje de Actividades de VA y NVA del Sub Proceso de Acoplado Automático. .. 142
Tabla 35. Datos Iniciales del Proceso de BME ... 145
Tabla 36. Valores de tiempo de trabajo del Proceso BME ..146
Tabla 37 Datos Finales del Proceso de NDT ..147
Tabla 38. Valores de tiempo de trabajo de finales del Proceso BME ..148
Tabla 39. Tabulación de Datos de Clasificación de actividades VA y NVA del Proceso de BME ...150
Tabla 40. Porcentaje de Actividades de VA y NVA del Proceso de NDT ..151
Tabla 41. Criterios de calificación de acuerdo al impacto de la herramienta evaluada ..153
Tabla 42. Matriz de Priorización del Proceso de Roscado ..154
Tabla 43. Matriz de Priorización del Proceso de Inspección de Rosca ...155
Tabla 44. Matriz de Priorización del Proceso de NDT ...156
Tabla 45. Matriz de Priorización del Sub Proceso de Pre Acoplado ..157
Tabla 46. Matriz de Priorización del Sub Proceso de Acoplado Automático ..158
Tabla 47. Matriz de Priorización del Proceso de BME ...159
Tabla 48. Matriz de Priorización del Proceso ...160
Tabla 49. Tabla de Criterios de Priorización ..160
Tabla 50 Matriz de Secuencia de Aplicación de Herramientas Lean Manufacturing161
Tabla 51 Matriz de Aplicación de Herramientas Comunes Lean Manufacturing ..162
Tabla 52. Análisis de VA y NVA Proceso de Roscado ...171
Tabla 53. Análisis de VA y NVA Proceso de Inspección de Rosca ..172
Tabla 54. Análisis del VA y NVA del Proceso de NDT ...174
Tabla 55. Análisis de VA y NVA del Sub Proceso de Pre Acoplado ...175
Tabla 56. Análisis del VA y NVA del Sub Proceso de Acoplado Automático ...177
Tabla 57. Análisis del VA y NVA del Proceso de BME ..178
Tabla 58. Datos Iniciales de Verificación del Proceso de Roscado ...190
Tabla 59. Número de Observaciones Finales Proceso Roscado ...191
Tabla 60 Datos Finales de Verificación del Proceso Roscado ...192
Tabla 61. Valores de tiempo de trabajo del Proceso de Roscado ..194
Tabla 62. Tabulación de Datos VA y NVA del Proceso de Roscado Implementado197
Tabla 63. Porcentaje de Actividades de VA y NVA. Proceso de Roscado Implementado199
Tabla 64. Datos Iniciales del Proceso de Inspección de Rosca. Implementado ..201
Tabla 65. Número de Observaciones Finales Proceso de Inspección de Rosca. Implementado201
Tabla 66 Datos Finales del Proceso de Inspección de Rosca. Implementado ...203
Tabla 67. Valores de tiempo de trabajo del Proceso de Inspección de Rosca. Implementado204
Tabla 68. Tabulación de Datos VA y NVA del Proceso de Inspección de Rosca Implementado206
Tabla 69.Porcentaje de Actividades de VA y NVA. Proceso de Inspección de Rosca. Implementado208
Tabla 70. Datos Iniciales del Proceso de Inspección de NDT. Implementado ..210
Tabla 71. Valores de tiempo de trabajo del Proceso de Inspección de Rosca. Implementado210
Tabla 72 Datos Finales Implementado del Proceso de NDT. Implementado ..212
Tabla 73. Valores de tiempo de trabajo finales del Proceso de NDT. Implementado213
Tabla 74. Tabulación de Datos de Clasificación de actividades VA y NVA del Proceso de NDT. Implementado ..215
Tabla 75. Porcentaje de Actividades de VA y NVA. Proceso de NDT. Implementado...

Tabla 76. Datos Iniciales del Sub Proceso de Pre Acoplado. Implementado.

Tabla 77. Valores de tiempo de trabajo del Sub Proceso de Pre Acoplado. Implementado.

Tabla 78. Datos Finales del Sub Proceso de Pre Acoplado. Implementado.

Tabla 79. Valores de tiempo de trabajo finales del Sub Proceso de Pre Acoplado. Implementado.

Tabla 80. Tabulación de Datos de Clasificación de actividades VA y NVA del Sub Proceso de Pre Acoplado. Implementado.

Tabla 81. Porcentaje de Actividades de VA y NVA. Sub Proceso de Pre Acoplado. Implementado.

Tabla 82. Datos Iniciales del Sub Proceso de Acoplado Automático. Implementado.

Tabla 83. Valores de tiempo de trabajo del Sub Proceso de Pre Acoplado. Implementado.

Tabla 84. Datos Finales del Sub Proceso de Acoplado Automático. Implementado.

Tabla 85. Valores de tiempo de trabajo finales del Sub Proceso de Acoplado Automático. Implementado.

Tabla 86. Tabulación de Datos de Clasificación de actividades VA y NVA del Sub Proceso de Acoplado Automático. Implementado.

Tabla 87. Porcentaje de Actividades de VA y NVA. Sub Proceso de Pre Acoplado. Implementado.

Tabla 88. Datos finales del Proceso de BME. Implementado.

Tabla 89. Valores de tiempo de trabajo del Proceso de BME. Implementado.

Tabla 90. Datos Finales del Proceso de BME. Implementado.

Tabla 91. Valores de tiempo de trabajo finales del Proceso de BME. Implementado.

Tabla 92. Tabulación de Datos de Clasificación de actividades VA y NVA del Proceso de BME. Implementado.

Tabla 93. Porcentaje de Actividades de VA y NVA. Proceso de BME. Implementado.

Tabla 94. Análisis de Resultado del Proceso de Roscado.

Tabla 95. Análisis del Proceso de Inspección de Rosca.

Tabla 96. Análisis del Proceso de NDT.

Tabla 97. Análisis del Sub Proceso de Pre Acoplado.

Tabla 98. Análisis del Sub Proceso de Acoplado Automático.

Tabla 99. Análisis del Proceso de BME.

Tabla 100. Análisis del valor de tiempo de trabajo del Proceso de Roscado.

Tabla 101. Análisis del valor de tiempo de trabajo del Proceso de Inspección de Rosca.

Tabla 102. Análisis del valor de tiempo de trabajo del Proceso de NDT.

Tabla 103. Análisis del Sub Proceso de Pre Acoplado.

Tabla 104. Análisis del Sub Proceso de Acoplado Automático.

Tabla 105. Análisis del Proceso de BME.
LISTA DE FIGURAS

Figura 1. Organización Global. ... 5
Figura 3. Proceso de Fabricación de Acero. .. 10
Figura 4. Barra de Acero o Tocho de Acero ... 11
Figura 5. Proceso de Laminado en Caliente. ... 13
Figura 6. Tratamientos Térmicos. .. 14
Figura 7. Etapas del Tratamiento Térmico. .. 16
Figura 8. Inspección Electromagnética. ... 17
Figura 9. Método de Ultrasonido. .. 18
Figura 10. Prueba no Destructiva – Corrientes EDDY. 18
Figura 11. Indicación de las partículas magnética. 19
Figura 12. Equipo de Prueba Hidrostática. ... 20
Figura 13. Proceso de Laminado en Caliente. 21
Figura 14. Mapa de procesos (Cadena de valor) de centro productivo 23
Figura 15. Tubería a ser roscada. ... 25
Figura 16. Inspección de la rosca de la tubería. 25
Figura 17. Inspección de la rosca de la tubería a través de partículas magnéticas húmedas ... 26
Figura 18. Accesorio (Cupla o Acople). .. 26
Figura 19. Accesorio (Cupla o Acople) .. 27
Figura 20. Paso de Mandril en tubería con accesorio o acople 27
Figura 21. Medición de marcas en el accesorio o acople. 28
Figura 22. Marcación de tubería terminada. ... 28
Figura 23. Producto terminado esperando para el retiro del departamento de logística. 29
Figura 24. Almacenamiento de tubería. .. 30
Figura 25. Embarque de tubería para entrega al cliente. 30
Figura 26. Producción del Centro Productivo Tenaris Ecuador (octubre 2013 - junio 2014) ... 31
Figura 27. Porcentaje de Producto No Conforme del Centro Productivo Tenaris Ecuador (octubre 2013 - junio 2014) 31
Figura 28. Reclamos de Clientes del Centro Productivo Tenaris Ecuador (octubre 2013 - junio 2014) .. 32
Figura 29. Adaptación de la Casa Lean Manufacturing 38
Figura 30. Producción suavizada (Heijunka). ... 50
Figura 31. Mapa de implementación con aportes progresivos. 54
Figura 32. Que son las 5 S ... 60
Figura 33. El pilar de orden a veces implica mejoras en las tareas. 62
Figura 34. Falta de limpieza puede producir resbalones. 63
Figura 35. Formato estándar de captura de VA/NVA. 67
Figura 36. Diagrama de precedencia de las operaciones de elaboración de una pizza. .. 68
Figura 37. Adaptación de la Figura Desperdicio en el proceso de pintado de un mueble. .. 73
Figura 38. Adaptación de Los siete desperdicios 75
Figura 39. Exceso de Inventarios .. 76
Figura 40. Sobreproducción ... 77
Figura 78. Layout de la Planta de Tenaris ... 163
Figura 79. Diagrama de Flujo final del Proceso de Roscado.......................................181
Figura 80. Diagrama de Flujo final del Proceso de Inspección de Rosca. 182
Figura 81. Diagrama de Flujo final del Proceso NDT. ... 183
Figura 82. Diagrama de Flujo final del Proceso Acoplado y Paso de Mandril 184
Figura 83. Diagrama de Flujo final del Proceso BME. ... 186
Figura 84. Cálculo del tamaño de la muestra. Final Proceso Roscado (Pantalla Minitab). ... 191
Figura 85. Cálculos estadísticos descriptivos del tiempo (segundos) - Proceso Roscado Final (Pantalla Minitab). ... 195
Figura 86. Prueba de Normalidad del Proceso de Roscado Final (Pantalla Minitab). ... 196
Figura 87. Diagrama de Pareto de Proceso de Roscado. Implementado..................... 200
Figura 88. Cálculo del tamaño de la muestra. Final Proceso de Inspección de Rosca. Implementado. (Pantalla Minitab) ... 202
Figura 89. Cálculos estadísticos descriptivos del tiempo (segundos) - Proceso de Inspección de Rosca. Implementado (Pantalla Minitab). ... 205
Figura 90. Prueba de Normalidad del Proceso de Roscado Implementado 205
Figura 91. Diagrama de Pareto de Proceso de Inspección de Rosca. Implementado. ... 209
Figura 92. Cálculo del tamaño de la muestra. Proceso de NDT. Implementado (Pantalla Minitab) ... 211
Figura 93. Cálculos estadísticos descriptivos del tiempo (segundos) - Proceso de NDT. Implementado. (Pantalla Minitab) ... 213
Figura 94. Prueba de Normalidad del Proceso de NDT. Implementado 214
Figura 95. Diagrama de Pareto de Proceso de NDT. Implementado 217
Figura 96. Cálculo del tamaño de la muestra. Final Sub Proceso de Pre Acoplado. Implementado ... 219
Figura 97. Cálculos estadísticos descriptivos del tiempo (segundos) – Sub Proceso de Pre Acoplado. Implementado. (Pantalla Minitab) ... 222
Figura 98. Prueba de Normalidad del Sub Proceso de Pre Acoplado Implementado (Pantalla Minitab) .. 222
Figura 99. Diagrama de Pareto de Sub Proceso de Pre Acoplado. Implementado 225
Figura 100. Cálculo del tamaño de la muestra. Final Sub Proceso de Acoplado Automático. Implementado. (Pantalla Minitab) ... 227
Figura 101. Cálculos estadísticos descriptivos del tiempo (segundos) – Sub Proceso de Acoplado Automático. Implementado. (Pantalla Minitab) .. 229
Figura 102. Prueba de Normalidad del Sub Proceso de Acoplado Automático Implementado .. 230
Figura 103. Diagrama de Pareto de Sub Proceso de Acoplado Automático. Implementado ... 233
Figura 104. Cálculo del tamaño de la muestra. Final Proceso de BME. Implementado. (Pantalla de Minitab). .. 235
Figura 105. Cálculos estadísticos descriptivos del tiempo (segundos) - Proceso de BME. Implementado. (Pantalla Minitab) ... 238
Figura 106. Prueba de Normalidad del Proceso de Roscado Implementado 238
Figura 107. Diagrama de Pareto de Proceso de BME. Implementado 242
Figura 108. Resumen Esquemático ... 243

Figura 110. Comparación de Producción del Centro Productivo Tenaris Ecuador ... 246

Figura 111. Producto No Conforme del Centro Productivo Tenaris Ecuador (julio 2014 - mayo 2015) .. 247

Figura 112. Comparación de Producto no Conforme del Centro Productivo Tenaris Ecuador .. 247

Figura 113. Reclamos de Cliente del Centro Productivo Tenaris Ecuador (julio 2014 - mayo 2015) .. 248

Figura 114. Comparación de Reclamos de Cliente del Centro Productivo Tenaris Ecuador ... 248

Figura 115. Análisis de Resultados de Actividades de Valor Agregado. Proceso de Roscado .. 250

Figura 116. Análisis de Resultados de Actividades de Valor Agregado. Proceso de Inspección de Rosca ... 252

Figura 117. Análisis de Resultados de Actividades de Valor Agregado. Proceso NDT .. 254

Figura 118. Análisis de Resultados de Actividades de Valor Agregado. Sub Proceso de Acoplado Automático ... 256

Figura 119. Análisis de Resultados de Actividades de Valor Agregado. Proceso de BME .. 258

Figura 120. Análisis de Resultados de Actividades de Valor Agregado. Proceso de BME .. 260
GLOSSARIO

API: Son siglas en inglés de American Petroleum Institute o en español Instituto Americano de Petróleo; este instituto se encarga de normalizar la construcción, propiedades de todos los productos (tubería, rosca o conexiones) que se utilizan en la extracción, producción y conducción del petróleo.

Autonomación: significa la palabra japonesa Jidoka.

Casing: Tubería para la conducción de petróleo y protección de las perforaciones en los pozos; de diámetros grandes desde 5 ½”.

Cupla o Acople: Accesorio utilizado para realizar la unión de las tuberías a través de sus extremos sin el mismo, para realizar la longitud necesaria de acuerdo al trabajo que se va a realizar con la tubería.

Heijunka: Balanceo de Línea, realizar una nivelación de la producción de acuerdo a la demanda del cliente.

Jidoka: Sistema de auto control independiente de defectos.

Just in Time: Justo a tiempo, producir o entregar los artículos necesarios en el momento justo.

Kaizen: Mejoramiento continuo o mejora continua; cambio constante y continuo en un sistema de producción.

Lean Manufacturing: Con uno de los significados conocidos que es Manufactura Esbelta, que se interpreta como la mejora, optimización y eliminación de los desperdicios de un sistema de producción.

Lead times: es el tiempo que pasa desde que se principia un proceso u actividad de fabricación hasta que finaliza.

Mandril: Es una herramienta que es construida de acuerdo al diámetro interior de la tubería y la misma debe cumplir con la Norma API 5 CT; sirve para verificar la deformación de la punta por la sujeción de las mordazas del torno o de la máquina acopladora.
Muda: Desperdicio, actividad que no agrega valor.

NDT: Son las siglas en inglés de Nondestructive Testing o en español END (Pruebas No Destructivas): consisten en varios tipos de pruebas a las que se somete un producto u objeto para verificar su calidad o el estado de la misma, sin que éste resulte dañado o modificado sus propiedades y estado original.(Ing. Jorge Bunge & Ing Diego Magallanes, 2011).

OCGT: Por sus siglas en inglés, OCTG significa Oil Country Tubular Goods que en general son todos los materiales que regularmente se utilizan en una perforadora o plataforma para llevar a cabo la perforación de pozos y que están sujetos a condiciones de carga y esfuerzos muy específicos para la industria del Petróleo & Gas.(“Metales en el OCTG,” 2017).

Poka- Yoke: Dispositivo a prueba de error.

Scrap: significa material descartado, chatarra, que no sirve o no conforme.

Seiri: Clasificar o retirar lo que no es necesario.

Seiton: Organizar o colocar cada cosa en el lugar asignado.

Seiso: Limpieza el lugar de trabajo.

Seiketsu: Estandarización del trabajo.

Shitsuke: Disciplina, forjar hábitos en la gente.

Tubing: Tubería para la extracción y producción de petróleo en los pozos; de diámetros pequeños hasta 4 ½".
RESUMEN EJECUTIVO

El presente trabajo final presenta la reducción del nivel de Producto No conforme y los Reclamos del Cliente a través de las herramientas basadas en Lean Manufacturing en los procesos de fabricación del Centro Productivo de Tenaris Ecuador. En el primer capítulo se realiza la descripción general de la empresa donde se presenta el problema, además se detalla los procesos que componen la cadena de valor con el objetivo de tener un claro panorama de la empresa. Adicional, una breve descripción del proceso de fabricación de la tubería de acero.

En el segundo capítulo se explica los fundamentos teóricos y la metodología sobre las herramientas de Lean Manufacturing que será utilizada en el desarrollo del estudio y la obtención del resultado, además el fundamento para la selección de la mejor o mejores herramientas.

En el tercer capítulo se realiza previamente el análisis del estado inicial de los procesos de fabricación, lo cual se divide en dos grupos: diagramas de flujo y el levantamiento de información de las actividades de cada proceso con su posterior tabulación. Subsiquientemente, se realizó la selección de las herramientas adecuadas de Lean Manufacturing a través de una priorización para que las mismas sean implementadas. Finalmente, se realizó la verificación de la implementación y de los niveles de mejora alcanzados en los procesos de fabricación a través del análisis de datos e información obtenida con la estadística descriptiva.

En el cuarto capítulo se realizó el análisis de las variables de impacto y de proceso, además las ventajas y desventajas de lo realizado en el proyecto de investigación.

PALABRAS CLAVE
Lean Manufacturing, industria de producción, eliminación de desperdicios.
INTRODUCCIÓN

La tesis presenta el estudio para realizar la reducción del nivel de Producto No Conforme y los Reclamos del Cliente para el Centro Productivo de Tenaris Ecuador ubicado en la ciudad de Machachi; se desarrolló partiendo de la descripción general de la empresa donde se presenta la identificación del problema existente; la información se obtuvo de la empresa durante el periodo 2014-2015.

Se utilizaron los fundamentos teóricos y la metodología sobre las herramientas de Lean Manufacturing de donde se obtuvieron los elementos para la selección de la mejor o mejores herramientas que se puedan aplicar en el caso de estudio.

La metodología utilizada para establecer la situación inicial del caso de estudio fue a través del levantamiento de las actividades en cada proceso del Centro Productivo de Tenaris Ecuador; esta información permitió la posterior determinación de las herramientas adecuadas de Lean Manufacturing a ser aplicadas.

Las herramientas identificadas para el caso de estudio fueron priorizadas tomando como base las directrices de la empresa y vinculándolas a los objetivos de reducción del producto no conforme y reclamos del cliente.

Luego de las actividades de implementación de las herramientas, se realizaron las evaluaciones de las variables de impacto y de proceso para estructurar las conclusiones y recomendaciones del proyecto de investigación.
ANTECEDENTES DE LA EMPRESA TENARIS ECUADOR

1.1 Descripción General de la Empresa

Tenaris es una empresa de metalurgia multinacional constituida en Luxemburgo (Luxemburgo) donde se encuentra sus oficinas centrales; la empresa pertenece al Grupo Argentino Techint y se encuentra actualmente cotizando acciones en las bolsas de Nueva York y Milán.

Tenaris elabora tubos de acero y ofrece servicios para la industria petrolera y otras aplicaciones industriales, su historia nace en 1909 con una planta de nombre Dalmine donde comienza la fabricación de tubos de acero sin costura. El crecimiento de la empresa ha sido exponencial llegando a establecer plantas o centro productivos a nivel global; además de tener centros de desarrollo e ingeniería donde se generan nuevos productos tubulares para la industria petrolera y automotriz.

La empresa presenta un portafolio amplio de productos los mismos que presenta desde tuberías para varios tipos de utilización dentro la industria petrolera, como, por ejemplo: tubería casing, tubing, tubería con conexiones Premium las mismas que han sido desarrolladas por la empresa, accesorios, servicios en el sector petrolero, etc; con una alta calidad. Adicional ha desarrollado grados de acero propietarios para las aplicaciones de exploración y producción de petróleo. Tenaris dentro de sus servicios cuenta con personal capacitado para ofrecer soluciones y asesoría a los clientes para obtener el mejor rendimiento de acuerdo a las necesidades de los clientes en cuanto a costos y tiempo; tanto en campo como en las fases de diseño de los pozos petroleros.

Para la industria automotriz provee de tubos sin costura para aplicaciones de seguridad (bolsas de aires), dirección, chasis y suspensión, componentes de motor y transmisión. Tenaris posee tres centros productivos para la fabricación de productos automotrices los que se encuentran ubicados en Argentina, México y Rumania.
“Tenaris creció hasta convertirse en una compañía global a través de una serie de inversiones estratégicas en las últimas dos décadas” (Tenaris, 08.2017.). A continuación se presentan los hitos más importantes de la historia de la empresa (ver Tabla 1):

<table>
<thead>
<tr>
<th>Año</th>
<th>Descripción</th>
</tr>
</thead>
<tbody>
<tr>
<td>1909</td>
<td>La primera planta de nombre Dalmine comienza la fabricación de tubos de acero sin costura en Italia.</td>
</tr>
<tr>
<td>1914</td>
<td>Se incorpora la planta Nippon Kokan Kabushiki-gaisha (NKK) quien comienza la fabricación de tubos de acero sin costura en Japón.</td>
</tr>
<tr>
<td>1924</td>
<td>La planta de Dalmine se empieza a cotizar en la Bolsa de Valores de Milán.</td>
</tr>
<tr>
<td>1935</td>
<td>El señor Agostino Rocca, futuro fundador del Grupo Techint, se convierte en el Director Gerente de Dalmine.</td>
</tr>
<tr>
<td>1953</td>
<td>La planta de nombre Tamsa empieza a cotizar en la Bolsa de Valores de México.</td>
</tr>
<tr>
<td>1954</td>
<td>La planta de Tamsa comienza sus operaciones en México y la planta de Siderca en Argentina. Ambas plantas son construidas por Techint.</td>
</tr>
<tr>
<td>1958</td>
<td>La planta de Siderca empieza a cotizar en la Bolsa de Valores de Buenos Aires.</td>
</tr>
<tr>
<td>1960</td>
<td>La planta de Confab, fabricante brasileño de equipamiento industrial, comienza a producir tubos de acero con costura.</td>
</tr>
<tr>
<td>1967</td>
<td>La planta de Tamsa empieza a cotizar en la Bolsa de Valores de los Estados Unidos, y se convierte así en la primera empresa mexicana en cotizar en una Bolsa de Valores estadounidense a través de un programa de Certificado de Depositario Americano (ADR).</td>
</tr>
<tr>
<td>1980</td>
<td>La planta de Algoma encarga el primer tren de laminación de tubos sin costura a mandril retenido de América del Norte.</td>
</tr>
<tr>
<td>1986</td>
<td>La planta de Siderca adquiere la planta de Siat, productor de tubos soldados de Argentina establecido en 1948.</td>
</tr>
<tr>
<td>Año</td>
<td>Descripción</td>
</tr>
<tr>
<td>-----</td>
<td>-------------</td>
</tr>
<tr>
<td>1993</td>
<td>La planta de Siderca adquiere una participación controlante en Tamsa y forma una alianza estratégica.</td>
</tr>
<tr>
<td>1996</td>
<td>La planta de Siderca adquiere una participación controlante en Dalmine, después de su privatización. Con Tamsa, dicha alianza estratégica toma el nombre de DST.</td>
</tr>
<tr>
<td>1998</td>
<td>La planta de Siderca adquiere la planta de TAVSA en Venezuela.</td>
</tr>
<tr>
<td>1999</td>
<td>La planta de Siderca adquiere control de la planta de Confab de Brasil</td>
</tr>
<tr>
<td>2000</td>
<td>La planta de Siderca y la planta de NKK Corporation forman NKKTubes para asumir control del negocio de fabricación de tubos sin costura de NKK en Keihin Works (Tokio, Japón).</td>
</tr>
<tr>
<td>2001</td>
<td>Se adopta el nombre Tenaris, como reemplazo de la alianza establecida de siglas DST. Siderca cotiza en la Bolsa de Valores de Nueva York (NYSE).</td>
</tr>
<tr>
<td>2002</td>
<td>La Multinacional Tenaris S.A., una empresa constituida en Luxemburgo, se convierte en la empresa controlante del grupo, tras una oferta de cambio de las acciones de Siderca, Tamsa y Dalmine, y cotiza simultáneamente en las bolsas de valores de Nueva York, Milán, Buenos Aires y México; donde antes se tenía como planta individual.</td>
</tr>
<tr>
<td>2004</td>
<td>La Multinacional Tenaris toma control de Silcotub, planta de producción de nacionalidad rumana de tubos de acero sin costura.</td>
</tr>
<tr>
<td>2006</td>
<td>La Multinacional Tenaris presenta una fuerte presencia en los Estados Unidos, a través de la adquisición de Maverick Tube Corp. Al mismo tiempo, expande su presencia en Canadá con Prudential y se establece en Colombia a través de TuboCaribe que pertenecía al grupo Maverick Tube.</td>
</tr>
<tr>
<td>2007</td>
<td>Con la empresa Hydril, la multinacional Tenaris expande su oferta de productos y servicios para la industria del petróleo y el gas.</td>
</tr>
</tbody>
</table>
En la Figura 1 se muestra los países donde Tenaris tiene ubicado los Centros Productivos, Centros de Ingeniería y Desarrollo (Centro de I+D), Centros de Servicios y Oficinas Comerciales a nivel mundial.

![Mapa de ubicación de centros de Tenaris](image)

Figura 1. Organización Global.

Fuente: (Pagina Web de Tenaris, 2017).

Los Centros Productivos, Centros de Ingeniería y Desarrollo, Centro de servicios y Oficinas Comerciales de Tenaris mantienen un solo sistema de gestión de calidad bajo la norma ISO 9001 certificada. Además, se encuentran certificadas las plantas, centros productivos bajo las normas que exige el cliente en cada país, la normativa legal del país; la tubería que es utilizada para la exploración y producción de petróleo cumple con la norma internacional API. También los productos que son fabricados para la industria automotriz se encuentran certificados por ISO TS 16949.

1.1.1 **Principales Productos de Tenaris.**

Dentro de Tenaris se tiene varios productos los mismos que se enfocan principalmente en la industria de gas y petróleo, siendo los principales los de OCTG dentro de los cuales se encuentran, tubería de revestimiento, tubería de perforación, acoplamientos (acoples), tubería de conducción y tubería de...
producción. Además, presenta servicios para los tubos como, por ejemplo: Asistencia Técnica, Especialización en tubos de alta especificación, etc. También, presentan recubrimientos de tubería, tubería para aplicación en empresas químicas, petroquímicas y plantas generadoras de energía.

Tenaris, de la misma manera produce tubos para aplicaciones de construcción, ingeniería civil, sistemas hidráulicos, tubos para cojinetes y para aplicaciones automotrices como componentes de transmisión, de la dirección, de motores, etc.

1.1.2 Estructura Organizacional.

Tenaris tiene una estructura organizacional jerárquico; la misma que se encuentra formada desde el CEO, posterior los Gerentes de Operaciones nivel 7 de cada planta y los Gerentes de nivel 7 de las áreas macros como son: Logística, Recursos Humanos, Financiero, Desarrollo de Tecnología, Comercial, Relaciones Institucionales y Comunicaciones.

Posteriormente, siguen en la estructura los Gerentes de Nivel 6 y 5 en las mismas áreas macros hasta bajar con el personal de nivel 1 quienes son el personal de Analistas Junior y por último se encuentra el personal operativo en cada área.

1.1.3 Principales Clientes y Competidores.

Los principales clientes que tiene Tenaris a nivel mundial por el producto OCTG de mayor venta son empresas petroleras que realizan la perforación, exploración y conducción de petróleo y gas.

Dentro del Ecuador, los clientes de la empresa son de la industria hidrocarburífera, siendo la Empresa Pública Petroecuador uno de los más importantes; dentro de las empresas privadas multinacionales se puede nombrar al Consorcio Shushufindi (Schlumberger - Tecpetrol) y Sinopec.

Los principales competidores a nivel mundial de Tenaris son empresas de fabricación o comercialización de tuberías para la industria de gas y petróleo,
como Hilong, South Logistc y Hebei Zhongkuang Steel Pipe Manufacturing Co., Ltd. Estas tres empresas con presencia en el mercado ecuatoriano.

1.2 La Industria de Fabricación de Roscas de Tubería Petroleras.

Las empresas de metalurgia son empresas dedicadas a la fabricación de acero de donde nace diferentes tipos de productos para el sector industrial a nivel mundial; por lo cual los primeros macro procesos productivos hasta la creación del acero son similares con diferencias en metodología o sub procesos para la creación de aceros para el sector automotriz, petrolero, de la construcción, industrial, etc.

A continuación, se realizará una descripción de los macro procesos que se utilizan para la creación de la tubería para el sector petrolero debido a que posterior a la creación de este producto se realizará las terminaciones del mismo de acuerdo al lugar o requerimiento del cliente a ser utilizado.

1.3 Macro Procesos de Fabricación de Tubería de Acero para el Sector Petrolero

A continuación, se detalla cada macro proceso con pequeña descripción de la fabricación de la tubería que es utilizada para la exploración y conducción en el sector petrolero.

a) PROCESO DE CARGA.

Previo al proceso de carga se realiza una clasificación del mineral de hierro y chatarra; además de una trituración, para que la materia prima tenga una mejor calidad y posteriormente pueda ser colocada dentro de la cesta de chatarra por la parte superior, el mismo que es un contenedor de aproximadamente 50/60 m3. La cesta es llenada con la materia prima a través de electroimanes y/o garras mecánicas; una vez llenada la cesta con la cantidad de material necesaria será transportada para que se sea depositada dentro del horno eléctrico para el siguiente proceso. (Masaitis John & Schneider H., n.d., p. 73.4; Vicente Stagnetto, Alejandro Cuevas, Gustavo Kehr, 2009).
b) PROCESO DE FUSIÓN.

Dentro de este proceso se calienta el hierro y chatarra los mismos que son el componente principal para la fabricación del acero, la temperatura que se alcanza aproximadamente es de 1600 a 1620° C; todo este proceso se realiza en un horno eléctrico que está compuesto de electrodos. (José Mendez García, n.d.; Masaitis John & Schneider H., n.d., p. 73.4).

Posteriormente, que la carga esta fundida parcialmente debido al calentamiento realizado por el arco eléctrico generado por los electrodos se inyecta oxígeno y carbono en el horno para aumentar la energía de calentamiento químico. La carga fundida debe alcanzar la temperatura adecuada para el proceso de aceración.

Consecutivamente, se realiza la eliminación de la escoria o impurezas que flota en la superficie del acero líquido; esto son retirados a través de trasvases del este material a un contenedor. Una vez realizado este proceso se transfiere el material hacia un horno de cuchara. (Vicente Stagnetto, Alejandro Cuevas, Gustavo Kehr, 2009, p. 12).

c) PROCESO DE AFINO.

Este proceso se realiza con un precalentamiento del horno de cuchara para mantener el material en el estado líquido; el objetivo del proceso es realizar ajustes finales en la composición química del acero, en la temperatura y la limpieza del material.

Dentro de este proceso se coloca aditivos y ferroaleaciones al acero fundido para obtener la composición química deseada y posteriormente el grado de acero requerido. (Vicente Stagnetto, Alejandro Cuevas, Gustavo Kehr, 2009).
d) PROCESO DE COLADA CONTINUA

Este proceso se realiza a través de un equipo de colada continua de acuerdo al producto a ser realizado, es decir la forma del producto, la capacidad de producción y los diseños mecánicos, metalúrgicos y operativos de la planta.

Dependiendo del equipo elegido y la forma del producto se realiza la transformación del acero líquido depositando el material dentro de un distribuidor que distribuye el acero líquido hacia los conductos de los anillos de enfriamiento, donde fluye desde estado líquido a semilíquido y finalmente a sólido donde se obtiene las barras de acero, las mismas que continúan con el siguiente sub proceso que se realiza a través de máquinas cortadoras las que cortan las barras y por último continúan a unos equipos que ejecutan el enfriamiento que puede ser con agua, aire. (Masaitis John & Schneider H., n.d., p. 73.4; Vicente Staggetto, Alejandro Cuevas, Gustavo Kehr, 2009).

A continuación en la Figura 2 y 3 se muestran el proceso de fabricación de acero.
Como resultado de los procesos anteriores descritos se tiene las barras de acero que son utilizados para la fabricación de la tubería. A continuación se muestra en la Figura 4 la barra de acero o conocida como tocho de acero.
Figura 4. Barra de Acero o Tocho de Acero
Fuente: (“Fabricación Del Tubo De Acero Fotos de archivo libres de regalías - Imagen: 16672198,” n.d.).

e) PROCESO DE LAMINACIÓN EN CALIENTE.

Durante este proceso se realiza la fabricación de tubos sin costura; como materia prima se utiliza las barras de colada continua. A continuación, se describe cada sub proceso:

a) Calentamiento. El proceso de laminación inicia con un sub proceso de calentamiento de las barras a una temperatura adecuada para la deformación y maleabilidad posterior del acero, a través de horno a gas o eléctricos, donde alcanza aproximadamente 1200°C en forma gradual.(Vicente Stagnetto, Alejandro Cuevas, Gustavo Kehr, 2009).

b) Perforación. Este sub proceso consiste en realizar la perforación a través de un tapón o mandril y por rodillos metálicos colocados en pares para formar un tubo hueco rudimentario.(Vicente Stagnetto, Alejandro Cuevas, Gustavo Kehr, 2009).
c) **Laminación.** Este sub proceso es donde se realiza el laminado del tubo rudimentario y formar el tubo hueco adecuado, con lo cual se define el espesor de pared y el diámetro externo; esto se realiza a través de un mandril que empuja el material y al mismo tiempo se va alargando a través de una serie de rodillos metálicos colocados en pares donde se aplasta hasta obtener el material deseado.

Existen varios tipos de laminación que pueden ser utilizados para realizar la actividad, debido a que el producto dependerá de la distancia entre los rodillos metálicos la misma que va disminuyendo a lo largo del recorrido.(Vicente Stagnetto, Alejandro Cuevas, Gustavo Kehr, 2009).

d) **Recalentamiento.** Dentro de este sub proceso se vuelve a calentar el material pero ahora es el tubo hueco, donde se alcanza una temperatura homogénea, con el fin de obtener el diámetro exterior y espesor de pared del tubo finales.(Vicente Stagnetto, Alejandro Cuevas, Gustavo Kehr, 2009).

e) **Calibración.** En este sub proceso se vuelve a realizar el laminado del tubo hueco para obtener las dimensiones finales, es decir a través de un equipo con mayor precisión se lograr reducir el diámetro y mejorar la redondez.(Vicente Stagnetto, Alejandro Cuevas, Gustavo Kehr, 2009).

f) **Reducción por estirado.** En este sub proceso se vuelve a realizar el laminado del tubo hueco para obtener las dimensiones finales, a través de un equipo con mayor precisión.(José Méndez García, n.d.; Vicente Stagnetto(Tenaris), Alejandro Cuevas(Tenaris), Gustavo Kehr (Tenaris), 2009).

Como se muestra en la Figura 5 el proceso de laminado en caliente permite al acero dar la forma requerida según sea el producto, lo que puede generar tubos de acero sin costura, láminas de acero (plaquitas), varillas, etc.

Posterior se continúa con los siguientes procesos para tener un tubo de calidad, donde se realizará las inspecciones de calidad.
f) **PROCESO DE TRATAMIENTO TÉRMICO.**

Los tratamientos térmicos son utilizados para alterar las propiedades del acero, esto se realiza sometiendo a los tubos sin costura y con costura a una serie de cambios de temperatura; posteriormente pasan un enfriamiento según sea necesario; esto es ejecutado para generar las modificaciones en la forma estructural, de tal modo que se genere un impacto en las características deseadas con el fin de alcanzar las propiedades mecánicas esperadas para cumplir con los requerimientos de las normas y los clientes.

Dentro de los tratamientos térmicos se presentan distintos pasos siendo los siguientes entre los principales:
a) **AUSTENIZADO.** Es una etapa y no es un tratamiento térmico; donde los tubos son calentados a una temperatura homogénea, con lo cual se garantiza la transformación de estructura de austenita a martensita en el proceso de templado.

El proceso de calentamiento consiste en calentar el acero por encima del rango transformación.(Vicente Stagnetto, Alejandro Cuevas, Gustavo Kehr, 2009).

En la Figura 6 se muestra el cambio de grano de acero de austenita a martensita posterior al tratamiento térmico.

![Figura 6. Tratamientos Térmicos.](image)

b) **TRATAMIENTO NORMALIZADO.** La función principal de este tratamiento térmico es aumentar la ductilidad del acero.

Este tratamiento se emplea para homogenizar la estructura, donde consiste en calentar el tubo de manera homogénea hasta alcanzar la temperatura de austenizado; posteriormente se enfria el tubo a temperatura ambiente con lo cual se genera cierta uniformidad en la microestructura, dureza y propiedades mecánicas del tubo. El normalizado se realiza a temperaturas que excedan la de transformación.(Vicente Stagnetto, Alejandro Cuevas, Gustavo Kehr, 2009).

c) **TRATAMIENTO TEMPLADO.** El proceso de templado se realiza convirtiendo la austenita en martensita, a través de un enfriamiento rápido
a través de agua o un tipo de líquido y posterior a temperatura ambiente, el proceso se debe realizar de manera uniforme esto para evitar que el tubo se flexione o deforme por el cambio brusco de temperatura. Es importante tener en cuenta que la estructura de martensita es muy dura y frágil; por lo cual hay que realizar un proceso de revenido para completar el proceso. (Vicente Stagnetto, Alejandro Cuevas, Gustavo Kehr, 2009; Vinc’enzo, n.d).

d) TRATAMIENTO DE REVENIDO. Este proceso es un complemento del tratamiento del temple y tiene como objetivo llevar al tubo o acero a una cambio estable donde se reduce la dureza y la fragilidad del acero y consiste en calentar el tubo a una temperatura inferior a la de transformación o crítica y posteriormente de un enfriamiento controlado; como resultado se obtiene un cambio estructural a una martensita revenida con las propiedades mecánicas que varían según las diferentes temperaturas de revenido a las cuales se realiza el proceso para obtener un diferente grado de acero. El proceso de revenido tiene efectos que afectan a los tubos incrementando levemente el diámetro promedio y posiblemente cambia la redondez del tubo. (Vicente Stagnetto, Alejandro Cuevas, Gustavo Kehr, 2009; Vinc’enzo, n.d.).

Posterior a los tratamientos térmicos se realiza una sub proceso de calibración y enderezado del tubo que se encuentran dentro del macro proceso de tratamiento térmico.

e) CALIBRACIÓN. Este sub proceso tiene como objetivo fabricar un producto tubular revenido con las especificaciones dimensionales adecuadas; a través de un equipo con rodillos que se encuentran agrupados de dos o tres. (Vicente Stagnetto, Alejandro Cuevas, Gustavo Kehr, 2009).

f) ENDEREZADO. Con este sub proceso se realiza la eliminación de los defectos de rectitud que se obtuvieron al momento de realizar un proceso de tratamiento térmico, es decir reducir la ovalidad y la flexión o
torcedura, se realiza a través de un equipo con rodillos verticales colocados enfrentados entre sí; además se puede realizar con temperaturas ambientes o altas temperaturas según la especificación del producto final. (Vicente Stagnetto, Alejandro Cuevas, Gustavo Kehr, 2009).

En la Figura 7 se muestra las etapas del tratamiento térmico donde se observa las curvas y diferencia entre los mismos.

g) PROCESO DE CONTROLES NO DESTRUCTIVOS.

Antes de iniciar la inspección a través de controles no destructivos se realiza una limpieza a través de aire comprimido dentro del tubo para eliminar la calamina suelta. Posterior se realiza la inspección visual externa e interna para evaluar defectos que se hayan presentados en procesos anteriores.

Los controles no destructivos (CND) o inglés Nondestructive Testing (NDT) son métodos de inspección automatizados que se emplean para detectar defectos en los tubos, sin originar ningún efecto en las propiedades del material o producto o daño al mismo; además son principales para el proceso de fabricación ya contribuyen en la calidad y productividad. (Vicente Stagnetto, Alejandro Cuevas, Gustavo Kehr, 2009).
Los controles no destructivos utilizados en el proceso de fabricación de los en Tenaris son:

a) **Método de inspección electromagnética**, denominado como EMI; este método se utiliza para la inspección de la superficie interna y externa del tubo, para lo cual se magnetizan en forma circular para detectar defectos longitudinales o se magnetiza en forma longitudinal para detectar defectos transversales; según el tipo de defecto a detectar.(Vicente Stagnetto, Alejandro Cuevas, Gustavo Kehr, 2009).

En la Figura 8 se muestra un equipo y un tubo para visualizar la forma de realizar esta prueba.

![Figura 8. Inspección Electromagnética. Fuente: (“ISP - Inserpetrol: We are pipe experts,” n.d.).](image)

b) **Controles por ultrasonido, denominado como UT**; este método utiliza energía acústica de alta frecuencia para conseguir la verificación y realizar la medición del espesor de la pared; sirve para detectar las fallas, la evaluación de fallas, mediciones dimensionales; caracterización de materiales.(Vicente Stagnetto, Alejandro Cuevas, Gustavo Kehr, 2009).

En la Figura 9 se muestra un equipo y el sistema por ultrasonidos.
c) **Método de corriente inducida (Eddy), denominado ET**; este método se realiza de una corriente eléctrica inducida dentro del cuerpo de un conductor cuando dicho conductor se mueve a través del campo magnético no uniforme o se encuentra en una región donde hay un cambio en el flujo magnético. (Vicente Stagnetto, Alejandro Cuevas, Gustavo Kehr, 2009).

En la Figura 10 se muestra el método por corriente inducida.
d) **Inspección por partículas magnéticas, denominado como MPI;** este método es utilizado para verificar defectos superficiales y sub superficiales en el tubo; a través de partículas magnéticas secas o húmedas y campos magnéticos que al momento que el flujo magnético se ve distorsionado localmente por la presencia de una discontinuidad.

(Vicente Stagnetto, Alejandro Cuevas, Gustavo Kehr, 2009).

A continuación en la Figura 11 se muestra un diagrama del método de inspección a través de partículas magnéticas.

![Figura 11. Indicación de las partículas magnética.](image)

h) **PROCESO DE TERMINACIÓN**

Dentro del proceso de terminación se tiene subprocesos que se realizan para obtener un producto terminado los cuales son:

- **Prueba Hidráulica.** Esta prueba se realiza a todos los tubos a través de una máquina de prueba hidrostática, donde se llena previamente el tubo con un fluido; comúnmente con una emulsión de agua y aceite y se controla la presión del fluido hasta alcanzar un valor específico de ensayo; dicha presión varía de acuerdo al diámetro externo del tubo, espesor de pared, grado de acero, tipo
de tubo (tubing o casing, etc) y normas aplicables.(Vicente Stagnetto, Alejandro Cuevas, Gustavo Kehr, 2009).

A continuación en la Figura 12 se muestra un equipo donde se realiza la prueba hidrostática de la tubería.

![Figura 12. Equipo de Prueba Hidrostática. Fuente: (“Equipo de Prueba Hidrostática,” n.d.).](image)

✓ **Refrentead y Biselado.** Este proceso se lo realiza en el Centro Productivo de Tenaris en Machachi que será detallo posteriormente en el documento.

✓ **Roscado.** Este proceso se lo realiza en el Centro Productivo de Tenaris en Machachi que será detallo posteriormente en el documento.

✓ **Apretado de Cuplas (Acoples).** Este proceso se lo realiza en el Centro Productivo de Tenaris en Machachi que será detallo posteriormente en el documento.

✓ **Paso de Mandril.** Este proceso se lo realiza en el Centro Productivo de Tenaris en Machachi que será detallo posteriormente en el documento.
✓ **Estencilado y Medición.** Este proceso se lo realiza en el Centro Productivo de Tenaris en Machachi que será detallo posteriormente en el documento.

A continuación se muestra la Figura 13 donde se tiene el resumen del proceso en forma de flujo.

![Diagrama de proceso de laminado en caliente](image)

Figura 13. Proceso de Laminado en Caliente.

Fuente: (Mazon, 2015).

1.4 Descripción de los Procesos del Centro Productivo de Tenaris Ecuador.

La empresa Tenaris Ecuador S.A. nació en el año 2012 como un proyecto para fomentar la matriz productiva en el país con enfoque hacia la industria petrolera; se construyó el Centro Productivo enfocado hacia la producción de roscas de la tubería petrolera para exploración y conducción de crudo (petróleo); las instalaciones se
encuentran ubicadas en la provincia de Pichincha, Cantón Mejía sobre la Panamericana Sur Km 16.5 y vía al Barrio San Alfonso. El Centro Productivo de Tenaris Ecuador tiene 7 000 m2 de área, las mismas que se encuentran distribuidas de la siguiente manera: 3.000 m2 para almacenamiento de la materia prima y producto terminado, 1000 m2 de las instalaciones industriales donde se tiene un galpón de 780 m2, oficinas con 100 m2 y 120 m2 para bodegas de almacenamientos de insumos de operaciones, repuestos de equipos, residuos peligrosos, etc.

Relacionado a la incidencia que la planta de Tenaris en Ecuador proyectaba, se mencionó: “Actualmente, el país importa la totalidad de este tipo de insumo de otros países. Con la planta, Tenaris espera abastecer el 100% de la demanda de tubería para la extracción petrolera (denominada tubería de pozo o OCGT) en el mercado ecuatoriano.” (Revista Líderes, 2013).

La empresa Tenaris Ecuador se enfoca dentro de sus estrategias a cumplir con los estándares de calidad y de producción de acuerdo a los objetivos internos proyectados. La empresa inicia su operación en Ecuador en el año 2013 con su centro productivo en el cantón de Machachi; el mismo que se destinó a realizar la terminación (roscado) de la tubería petrolera.

En los años 2013, 2014 y 2015, el Centro Productivo fabricó rosca en tubería petrolera por ambos extremos bajo los lineamientos de calidad de las normas API (American Petroleum Institute) y de normas de su propia ingeniería.

La realización del producto se llevó a cabo bajo un sistema de gestión de calidad de la empresa basado en las normas ISO 9001:2008 y API-Q1; fue una de las primeras empresas en este tipo de negocio en el país con tecnología de punta.

A continuación, se realiza la descripción de la problemática del Centro Productivo de Tenaris Ecuador, a través de la Figura 14 donde se presenta el mapa de proceso, el cual consta de 14 procesos de cadena de valor y se muestra dentro del gráfico los procesos productivos a los cuales se va a realizar el estudio en mención.
Figura 14. Mapa de procesos (Cadena de valor) de centro productivo
Fuente: Tenaris Ecuador S.A.

Procesos de Fabricación

Venta de Producto → Pedido de Materia Prima → Solicitud a Proveedores → Recepción e Inspección de Materia Prima → Planificación de Producción

Roscado → Inspección de Rosca → Pruebas No Destructivas (NDT) → Acoplado y Paso de Mandril → Pesaje, Medición y Marcación (BME)

Certificación de Calidad → Entrega de Producto Terminado → Almacenamiento de Producto → Embarque
A continuación, se presenta una breve descripción de cada uno de los procesos de cadena de valor:

a) **Ventas de Productos**: Proceso donde el Departamento de Comercialización realiza la presentación, participa en licitaciones y ofrece los productos que tiene el Centro Productivo Tenaris Ecuador S.A. a los clientes potenciales, donde se crea las órdenes de compra, contratos, etc con el cliente, con este input se procede al proceso de Pedido de Materia Prima.

b) **Pedido de Materia Prima**: Proceso donde el Departamento de Logística realiza el pedido de la materia prima al proveedor correspondiente de acuerdo al pedido del Departamento de Comercialización y a la disponibilidad de fabricación de los proveedores.

c) **Solicitud a Proveedores**: Proveedor que envía el producto de acuerdo a lo solicitado al Centro Productivo de Tenaris Ecuador S.A.

d) **Recepción e Inspección de Materia Prima**: El Departamento de Calidad y el Departamento de Logística realizan la recepción del producto (tubería) en cantidad y en especificaciones de acuerdo a lo solicitado por el Departamento de Comercialización.

e) **Planificación de la Producción**: Proceso donde el Departamento de Logística realiza la planificación de la producción de acuerdo a los pedidos (ventas) realizados por el Departamento de Comercialización de acuerdo a la disponibilidad y capacidad de producción del Centro Productivo de Tenaris Ecuador S.A.

f) **Entrega de Materia Prima**: El Departamento de Logística es la responsable de realizar la entrega del producto (tubería) de acuerdo a la planificación de producción realizada de acuerdo al requerimiento del Departamento de Comercialización.
g) **Roscado API**: El Departamento de Producción es el encargado de realizar la fabricación de las piezas (rosca) en la tubería de acuerdo a lo solicitado en la planificación de producción.

En la Figura 15 se muestra una tubería cuando se inicia a realizar la rosca en el torno de la empresa.

![Figura 15. Tubería a ser roscada. Fuente: Tenaris Ecuador.](image1.png)

h) **Inspección de Rosca**: El Departamento de Producción es el encargado de realizar la inspección del producto fabricado (rosca) de acuerdo a las especificaciones. En la Figura 16 se muestra la inspección de la rosca con un instrumento.

![Figura 16. Inspección de la rosca de la tubería. Fuente: Tenaris Ecuador.](image2.png)
i) **Pruebas No Destructivas (NDT):** Dentro de este proceso el Departamento de Producción es el encargado de realizar la calidad del producto terminado con la verificación de ciertos parámetros de acuerdo a la Prueba no Destructiva.

En la Figura 17 se muestra la inspección de la rosca a través de partículas magnéticas húmedas.

![Imagen de inspección de rosca a través de partículas magnéticas húmedas](image17.jpg)

Figura 17. Inspección de la rosca de la tubería a través de partículas magnéticas húmedas

Fuente: Tenaris Ecuador

j) **Acoplado y Paso de Mandril:** Dentro de este proceso el Departamento de Producción realiza la colocación de un accesorio (acople o cupla); este dependerá del tipo de pieza fabricada y de la parte de la tubería a ser colocada.

En la Figura 18 se muestra un accesorio (cupla o acople) antes de la colocación en la rosca de la tubería.

![Imagen de accesorio (Cupla o Acople)](image18.jpg)

Figura 18. Accesorio (Cupla o Acople).

Fuente: Tenaris Ecuador
En la Figura 19 se muestra el funcionamiento del accesorio o cupla al momento de unir los dos tubos.

![Imagen de accesorio de tubería](image19.png)

Figura 19. Accesorio (Cupla o Acople).
Fuente: (“OCTG products,” n.d.).

Paso de Mandril: En este proceso el Departamento de Producción realiza la prueba de paso del mandril; siendo esta una herramienta que sirve para verificar la correcta colocación del accesorio en la tubería.

En la Figura 20 se muestra el paso del mandril en la punta a través del equipo que se encuentra en la empresa.

![Imagen de paso de mandril](image20.png)

Figura 20. Paso de Mandril en tubería con accesorio o acople.
Fuente: Tenaris Ecuador.

k) Pesaje, Medición y Marcación (BME): Este proceso es donde el Departamento de Producción es el que realiza la última fase de la tubería en conjunto con la pieza y colocado el accesorio donde se verifica la correcta colocación de la misma.
En la Figura 21 se muestra la inspección dimensional del accesorio o acople colocado en el proceso anterior.

Además, se realiza la medición del tubo en forma automática a través del sistema de la empresa y el marcado manual de acuerdo a la orden de producción realizada y planificada con lo cual se tiene la identificación del producto elaborado para su trazabilidad.

En la Figura 22 se muestra la marcación que se realizaba a la tubería cuando se encontraba lista para ser entregada al Departamento de Logística.

Figura 21. Medición de marcas en el accesorio o acople.
Fuente: Tenaris Ecuador.

Figura 22. Marcación de tubería terminada.
Fuente: Tenaris Ecuador.
l) **Certificación de Calidad**: Dentro de este proceso el Departamento de Calidad debe realizar una inspección aleatoria durante las fases de construcción y posterior de esta, para garantizar el cumplimiento de las especificaciones requeridas de acuerdo a lo solicitado por el cliente y por las normas de construcción y calidad del producto.

Posterior a la verificación se emite un certificado de calidad donde se garantiza el cumplimiento del producto de acuerdo a las normas de calidad y construcción del producto.

m) **Entrega de Producto Terminado**: De acuerdo al cumplimiento del producto el Departamento de Calidad y el Departamento de Producción realizan la entrega del producto terminado al Departamento de Logística para su posterior almacenamiento en las áreas asignadas.

En la Figura 23 se muestra la tubería en la estación final para el retiro del material por parte del departamento de logística.

![Imagen de la Figura 23](image)

Figura 23. Producto terminado esperando para el retiro del departamento de logística.

Fuente: Tenaris Ecuador.

n) **Almacenamiento de Producto**: El Departamento de Logística realiza el almacenamiento del producto terminado de acuerdo al tipo de producto terminado en los lugares asignados en el patio de almacenamiento.
En la Figura 24 se muestra la tubería almacenada en un lugar designado del patio de almacenamiento.

![Figura 24. Almacenamiento de tubería.](image)

Fuente: Tenaris Ecuador

o) **Embarque**: El Departamento de Logística realiza el despacho del producto terminado en tiempo y forma al sitio requerido por el cliente de acuerdo a lo convenido con el Departamento de Comercialización.

En la Figura 25 se muestra el embarque de la tubería a través del equipo y el personal calificado para su entrega al cliente.

![Figura 25. Embarque de tubería para entrega al cliente.](image)

Fuente: Tenaris Ecuador.

A continuación, en la Figura 26 se presentan los datos del número de piezas elaboradas del proceso de “Fabricación” obtenidas desde octubre (mes de inicio de operaciones) a junio 2014 del Centro Productivo.

Fuente: Tenaris Ecuador.

A continuación en la Figura 27 se presentan el Porcentaje de Producto No Conforme (PNC) obtenidos desde octubre (mes de inicio de operaciones) a junio 2014 del Centro Productivo.

Fuente: Tenaris Ecuador.
Vinculados al crecimiento de producción y del producto no conforme del período analizado, se presentaron reclamos de clientes, los mismos que se muestran en la Figura 28.

![Gráfico de Reclamos Periodo Octubre 2013 a Junio 2014](image)

Figura 28. Reclamos de Clientes del Centro Productivo Tenaris Ecuador (octubre 2013 - junio 2014)

Fuente: Tenaris Ecuador.

Considerando los reclamos de los clientes por mes, se observa que en el mes de noviembre 2013 y diciembre 2013 se presenta un reclamo por problemas de calidad en estética del producto (uno por mes), los mismos que fueron corregidos de forma inmediata en las instalaciones del cliente. Mientras que para el mes de junio 2014 se presenta un reclamo a un cliente por incumpliendo a la funcionalidad del producto; esta queja generó un costo de aproximadamente 30.000 USD a la empresa por la corrección de las piezas dañadas; que implicó rubros de logística y nuevamente costos de mano de obra; adicional a este valor el prestigio de la empresa que no puede ser cuantificable.

El trabajo de investigación estará enfocado en disminuir los niveles de productos no conformes y evitar reclamos de clientes por funcionalidad de producto a través de herramientas de calidad basadas en Lean Manufacturing como son: 5 ‘S y eliminación de mudas.
2 MARCO TEÓRICO

2.1 HERRAMIENTAS DE CALIDAD

2.2 Antecedentes de Lean Manufacturing.

Es importante tener claro que Lean Manufacturing es la descripción inglesa del Sistema de Producción Toyota (TPS); donde se muestra que la primera compañía en poner en práctica de una manera eficiente los recursos fue la FORD por manos de Henry Ford; donde en el año 1913 Ford construyó el complejo industrial de Highland Park, en el cual se ensamblaban vehículos del modelo T con alta eficiencia; varios de las contribuciones que se realizaron en esa planta cambiaron costumbres manufactureras. “La clave de la producción en masa no era sólo ensamblar en línea, sino que, a través de las partes intercambiables y de fácil ensamble, la línea de ensamblaje se hacía posible”. (Villaseñor Contreras & Galindo Cota, 2009, p.12). Como se indica tales contribuciones como las partes intercambiables, la estandarización del trabajo y la línea de ensamblaje fueron claves en el aporte para el desarrollo del Lean Manufacturing.

Sin embargo, Ford trabajó en la línea de producción realizando el mismo vehículo (sin grandes modificaciones ni opciones) durante 19 años, con lo cual evitó realizar cambios en la línea (alistamientos) y permitía aplicar los principios clásicos de la fina división del trabajo y la especialización de los operadores. (Rivera Cadavid, 2013, p.93).

Al mismo tiempo, por la segunda guerra mundial se inició a tener clientes más exigentes, requiriendo mayores opciones y mayor variedad de productos en cantidades más pequeñas.

En el 1902, Sakichi Toyoda, quien con el tiempo sería el fundador con su hijo Kiichiro de la Corporación Toyota Motor Company, inventó un dispositivo que detenía el telar cuando se rompía el hilo e indicaba con una señal visual al operador
que la máquina necesitaba atención. Dicho mecanismo de “automatización con un toque humano” permitió aislarse al hombre la máquina. Con este dispositivo de manera simple y práctica medida un solo operario podía controlar varias máquinas a la vez, lo que dio como fruto una enorme mejora de la productividad que proporcionó una preocupación permanente por mejorar los métodos de trabajo. Por sus contribuciones al desarrollo industrial del Japón, Sakiichi Toyoda es conocido como el “Rey de los inventores Japoneses”. En 1929, Toyoda vende los derechos de sus patentes de telares a la empresa Británica Platt Brothers y encarga a su hijo Kiichiro que invierta en la industria automotriz naciendo, de este modo, la compañía Toyota. La compañía enfrentó de la misma manera que el resto de las empresas japonesas, después de la segunda guerra mundial, el reto de reconstruir una industria competitiva en un contexto de post-guerra. Los japoneses se concienciaron de la precariedad de su posición en el escenario económico mundial, pues, desprovistos de materias primas, sólo podían contar con ellos mismos para sobrevivir y desarrollarse. (Matias & Idoipe, 2013, p.12).

Sin embargo, la empresa Toyota debía realizar grandes cambios para poder mantener los desafíos que se presentaban en ese momento. En aquel momento, la empresa Toyota tenía que cambiar, con lo cual iniciaron a estudiar los métodos de producción de las empresas Americanas y en especial en la empresa FORD; consecuentemente estaba obligado a adaptar el proceso de FORD a sus procesos a través del énfasis de la optimización del trabajo en cada máquina o estación de trabajo para lograr un mejor y más continuo flujo del producto a través de todos sus procesos y al obtener una alta calidad, bajos costos, tiempos de entrega cortos y flexibles. Como describe Womack y Jones (1996) Se puede decir que, sin lugar a dudas, Henry Ford fue el primero que realmente pensó esbeltamente (lean thinker). (Villaseñor Contreras & Galindo Cota, 2009, p.12).

El término Lean Manufacturing fue acuñado por un miembro del equipo del proyecto de investigación realizado por MIT para conocer las mejores prácticas de las industrias automotrices a nivel global (Womack, Jones y Roos, 1990). Estos autores encontraron que las prácticas de Toyota eran efectivas y trataron de
sintetizar el aprendizaje realizado alrededor de ellas en una obra seminal titulada "La Máquina que cambió al mundo (The Machine that changed the World)". (Rivera Cadavid, 2013, p.94).

La producción esbelta o conocida también como Sistema de Producción Toyota, pretende enunciar hacer más con menos –menos tiempo, menos espacio, menos esfuerzos humanos, menos maquinaria, menos materiales –, siempre y cuando se le éste dando al cliente lo que desea. Dos importantes libros popularizaron el término de esbelto (Lean):

Womack, Jones y Roos fueron los que bautizaron al sistema con el nombre de Lean Manufacturing (Manufactura esbelta, traducido al español), siendo este un conjunto de técnicas que Toyota había venido trabajando en sus plantas por décadas, con el propósito de eliminar los desperdicios dentro de sus procesos de producción. (Villaseñor Contreras & Galindo Cota, 2009).

La puesta en marcha del Sistema de Producción Toyota ha permitido que la empresa Toyota goce de un crecimiento consistentemente con el paso de los años, brillando sobre varias crisis petroleras y de los mercados financieros (Rivera Cadavid, 2013).

2.3 Principios de Lean Manufacturing

“Se presentan a continuación los cinco principios centrales que los autores Womack y Jones (1996) proponen:

a) Especificar el Valor: ¿Qué esperan los clientes? ¿Por qué estarán dispuestos a pagar? ¿Qué combinación de características, disponibilidad y precio será la que prefieran?
b) Análisis de la Cadena de Valor: Una Cadena de Valor es la secuencia de actividades necesaria para entregarle al cliente un producto o servicio. Analizar y graficar la cadena de valor permite distinguir entre las actividades que agregan valor y las que no lo hacen. Esta diferenciación servirá de punto de partida para las actividades de mejoramiento y eliminación del desperdicio.

c) Flujo Continuo: Las empresas deben tratar de que el valor fluya continuamente, no por lotes (batches). De ahí ha surgido el término de una pieza a la vez (one piece flow). La creación de lotes favorece la aparición de inventarios en diferentes lugares de la planta, y los inventarios crean demoras y mayores costos.

d) El cliente “hala” (Customer Pull): Este principio ha sido difundido por la popularidad del Justo a Tiempo. El sistema de producción debe entregar a los clientes los productos que necesitan en el momento preciso, y a raíz de esto activar los recursos productivos solamente cuando la siguiente estación en el proceso consume las unidades que estaban listas para él. Es decir, la actividad de producción no responde únicamente a planes y pronósticos realizados con anticipación, sino que reacciona a los volúmenes reales de la demanda y las ventas.

e) Mejoramiento Continuo: El eslogan comercial de Lexus (la marca de autos de lujo de Toyota) es La apasionada búsqueda de la perfección. El mejoramiento continuo (Kaizen) es la convicción de que los esfuerzos de mejoramiento nunca llegan a un final. Es necesario mantener la disciplina de mejoramiento para que se convierta en un motor permanente de avance para la empresa. (Rivera Cadavid, 2013, p.94).

2.4 Estructura del Lean Manufacturing.

Lean es un sistema con muchas dimensiones que incide especialmente en la eliminación el desperdicio o despilfarro mediante la aplicación de las técnicas que
este sistema tiene. Lean supone un cambio cultural en la organización empresarial con un profundo compromiso de la dirección de la compañía que decida efectuarlo. En estas condiciones es complicado hacer un esquema simple que refleje los múltiples pilares, fundamentos, principios, técnicas y métodos que contempla y que no siempre son homogéneos teniendo en cuenta que se manejan términos y conceptos que varían según la fuente consultada. Indicar, en este sentido, que los académicos y consultores no se ponen de acuerdo a la hora de identificar claramente si una herramienta es o no lean.

De forma tradicional se ha recurrido al esquema de la “Casa del Sistema de Producción Toyota” para visualizar rápidamente la filosofía que encierra el Lean y las técnicas disponibles para su aplicación. Se explica utilizando una casa porque ésta constituye un sistema estructural que es fuerte siempre que los cimientos y las columnas lo sean; una parte en mal estado debilitaría todo el sistema. En la Figura 29 se representa una adaptación actualizada de la “Casa de Lean Manufacturing.” (Matias & Idoipe, 2013, p. 17).
Donde se muestra que el techo de la casa está constituido por los fines perseguidos que se identifican con la mejor calidad, el más bajo costo, el menor tiempo de entrega o tiempo de maduración (Lead-time). Sujetando este techo se encuentran los dos pilares que sustentan el sistema: Justo a Tiempo (JIT) y Jidoka.

Figura 29. Adaptación de la Casa Lean Manufacturing.

Fuente: (Matias & Idoipe, 2013, p. 18)
La base de la casa consiste en la estandarización y estabilidad de los procesos: el heijunka o nivelación de la producción y la aplicación sistemática de la mejora continua. A estos cimientos tradicionales se les ha añadido el factor humano como clave en la implantación del Lean, factor éste que se manifiesta en múltiples facetas como son el compromiso de la dirección, la formación de equipos dirigidos por un líder, la formación y capacitación del personal, los mecanismos de motivación y los sistemas de recompensa.

Todos los elementos de esta casa se construyen través de la aplicación de múltiples técnicas que han sido divididas según se utilicen para el diagnóstico del sistema, a nivel operativo, o como técnicas de seguimiento. Es importante utilizar este esquema de manera flexible en una primera aproximación al pensamiento Lean.

El esquema es una forma de trasladar al papel todas las facetas del sistema. Cada empresa, en función de sus características, experiencias, mercado, personal y objetivos, tanto a corto como a medio plazo, debe confeccionar un plan de implantación con objetivos acotados; seleccionando e implantando, paso a paso, las técnicas más adecuadas.(Matias & Idoipe, 2013, p. 19).

El nombre de Producción esbelta fue inspirado en el Sistema de Producción Toyota, el mismo que tiene como base disminuir los desperdicios dentro del proceso, por lo cual tiene a volveré esbelto de ahí el nombre.(Villaseñor Contreras & Galindo Cota, 2009, p. 28).

En el desarrollo del documento se detallará un pequeño concepto de cada de las herramientas expuestas en la Casa de Lean Manufacturing.

2.5 Herramientas del Lean Manufacturing.

a) **KAIZEN.**

“Es el término japonés para el mejoramiento continuo, y es el proceso para hacer mejoras incrementalmente, no importa lo pequeñas que sean, y alcanzar las metas
de Lean de eliminar todos los desperdicios, que generan un costo sin agregar valor. Kaizen enseña a trabajar efectivamente a los individuos en grupos pequeños, a solucionar problemas, documentado y mejorando los procesos recolectando y analizando datos y a manejarse por sí mismos.” (Villaseñor Contreras & Galindo Cota, 2009, p. 85).

Al respecto Imai (2002) menciona que “Kaizen significa mejoramiento. Por otra parte, significa mejoramiento continuo en la vida personal, familiar, social y de trabajo. Cuando se aplica al lugar del trabajo, Kaizen significa mejoramiento continuo que involucra a todos, gerentes y trabajadores por igual” (Citado en Villaseñor Contreras & Galindo Cota, 2009, p. 85).

“Kaizen significa “cambio para mejorar”; deriva de las palabras KAI-cambio y ZEN bueno. Kaizen es el cambio en la actitud de las personas. Es la actitud hacia la mejora, hacia la utilización de las capacidades de todo el personal, la que hace avanzar el sistema hasta llevarlo al éxito”.(Matias & Idoipe, 2013, p. 27).

Es importante tener en cuenta que si la idea se efectúa con quien la sugirió y el mismo participa en su implementación, logrando que los empleados no solamente proponen ideas, sino que responden por su implementación y resultados. Esto enaltea el sentido de pertenencia del empleado hacia la empresa y su responsabilidad con la misma. En definitiva, la pauta del mejoramiento permite un ambiente favorable para la implementación de cambios que favorezcan a la compañía y a los trabajadores. Kaizen es una de las herramientas de cualquier programa de progreso y avance continuado en el desarrollo empresarial, sin importar con qué nombre se le conozca. (Rivera Cadavid, 2013).

b) **MAPAS DE LA CADENA DE VALOR (VALUE STREAM MAPS - VSM).**

El mapa de la cadena de valor es un modelo gráfico que representa la cadena de valor, mostrando tanto el flujo de materiales como el flujo de información desde el proveedor hasta el cliente. Por concerniente, el objetivo es reflejar en un papel de manera sencilla, todas las actividades productivas para identificar la cadena de valor
y detectar, a nivel general, donde se producen los mayores desperdicios o despilfarros del proceso.

El Mapa de Cadena de Valor suministra visualmente la identificación de las actividades que no aportan valor agregado a la organización con el fin de eliminarlas y ganar en eficiencia. Es una herramienta sencilla que facilita una visión panorámica de toda la cadena de valor. Actualmente, ya existen en el mercado diferentes programas de software que facilitan la labor de elaboración de estos modelos (Diagramas de Flujos) a través bibliotecas de simbología normalizada. Algunos ejemplos son Smartdraw, eVsm, SigmaFlow o Microsoft Visio. (Matias & Idoipe, 2013).

Estos mapas son sustancialmente representaciones de alto nivel del flujo del producto (y la información) desde que se pone la orden, pasando por los proveedores, hasta que el material llega a la empresa para ser transformado y finalmente se despacha el producto terminado a los clientes. El vital objetivo de estos mapas es el de distinguir oportunidades de mejoramiento exponiendo los lugares en los que se malgasta tiempo a través de la preexistencia de inventarios y demoras innecesarias. Se realiza una distinción de las actividades con el tiempo que agregan valor y los que no lo hacen, encontrando que la proporción de tiempo de valor agregada suele ser mínima. Es en estas actividades que no agregan valor (desperdicios) que Lean Manufacturing concentra sus esfuerzos de mejoramiento. (Rivera Cadavid, 2013).

c) SMED (SINGLE MINUTE EXCHANGE OF DIE, CAMBIOS RÁPIDOS).

Cuando es necesario producir una variedad de productos en la misma infraestructura, será necesario realizar puesta a punto a punto de la maquinaria o cambio rápidos. La puesta a punto tiene el alcance de todas las actividades que se ejecutan desde que sale la última unidad del modelo anterior hasta que sale la primera unidad buena del siguiente modelo. Shigeo Shingo clasificó las actividades que ocurren durante la puesta a punto en actividades internas y externas. Donde, las actividades internas son todas aquellas que deben realizarse con la máquina
Mientras, que las actividades externas son las que pueden realizarse sin que la máquina se deba detener. A continuación se describe ejemplos: preparar las siguientes materias primas, preparar las siguientes herramientas de corte o de inspección, despejar el espacio de trabajo, precalentar un molde son todas actividades externas. Cambiar la herramienta de corte, cambiar un mandril suele ser una actividad interna. Lo que se ha encontrado es que aplicando un sencillo procedimiento se pueden ahorrar grandes cantidades de tiempo en la puesta a punto de los equipos. (Rivera Cadavid, 2013).

SMED por sus siglas en inglés (Single-Minute Exchange of Dies), es una metodología o conjunto de técnicas que persiguen la reducción de los tiempos de puesta a punto o cambios rápidos o la preparación de máquina. Esto se alcanza estudiando detalladamente el proceso e incorporando cambios radicales en la máquina, utillaje, herramientas e incluso el propio producto, que disminuyan tiempos de preparación o puesta a punto. Estos cambios implican la eliminación de ajustes y estandarización de operaciones a través de la instalación de nuevos mecanismos de alimentación/retirada/ajuste/centrado rápido como plantillas y anclajes funcionales.

Es una metodología clara, fácil de aplicar y que consigue resultados rápidos y positivos, generalmente con poca inversión, aunque requiere método y constancia en el propósito.

La reducción en los tiempos de puesta punto o de preparación merece especial consideración y es importante por varios motivos. Cuando el tiempo de cambio es alto los lotes de producción son grandes y, por tanto, la inversión en inventario es elevada. Cuando el tiempo de cambio es insignificante se puede producir diariamente la cantidad necesaria eliminando casi totalmente la necesidad de invertir en inventarios. (Matias & Idoipe, 2013).

d) ESTANDARIZACIÓN.

La “estandarización” junto con las 5S y SMED supone unos de los cimientos principales del Lean Manufacturing sobre los que deben fundamentarse el resto de
las herramientas de Lean Manufacturing. Una definición precisa de lo que significa la estandarización, que contemple todos los aspectos de la filosofía lean, es la siguiente: “Los estándares son descripciones escritas y gráficas que nos ayudan a comprender las técnicas y técnicas más eficaces y fiables de una fábrica y nos proveen de los conocimientos precisos sobre personas, máquinas, materiales, métodos, mediciones e información, con el objeto de hacer productos de calidad de modo fiable, seguro, barato y rápidamente”. (Matías & Idoipe, 2013, p. 45).

La estandarización en el medio de fabricación japonés, se ha transformado en el punto de inicio y la terminación de la mejora continua y, posiblemente, en la principal herramienta del éxito de su sistema. Iniciando de las condiciones normales, primero se define un estándar del modo de hacer las cosas; a continuación se mejora, se verifica el efecto de la mejora y se estandariza de nuevo un método que ha demostrado su eficacia. La mejora continua es la repetición de este ciclo. En este punto reside una de las claves del pensamiento Lean: “Un estándar se crea para mejorararlo”. (Matías & Idoipe, 2013, p. 45).

Además, el trabajo estandarizado es un conjunto de procedimiento de trabajo que establecen el método y secuencia para cada proceso. En una hoja, instructivo de trabajo estandarizado ayuda a ilustrar la secuencia de operaciones dentro del proceso, incluyendo el tiempo de ciclo. (Villaseñor Contreras & Galindo Cota, 2009)

El trabajo estandarizado provee de las bases para tener altos niveles de productividad, calidad y seguridad. Los trabajadores desarrollan ideas Kaizen para que continuamente se mejoren estas tres áreas.” (Villaseñor Contreras & Galindo Cota, 2009, p. 59).

Los estándares proveen la incorporación del conocimiento individual en el acervo de la empresa, además de facilitar el entrenamiento de nuevos trabajadores y los análisis de procesos para mejoramiento continuo. El estándar no debe convertirse en una restricción ni camisa de fuerza. Se debe tener mecanismos ágiles y claros para describir e implantar estándares actuales, y para revisarlos, mejorarlos e implantar procedimientos mejorados. (Rivera Cadavid, 2013, p. 98).
En los procesos que aspiran a mejorar continuamente su calidad es necesario crear y cumplir los procedimientos operativos estandarizados. En la actualidad las empresas crean sus propias hojas o instructivos de trabajo estandarizado de acuerdo a la realidad de las mismas.

e) MANTENIMIENTO PRODUCTIVO TOTAL (TPM, TOTAL PRODUCTIVE MAINTENANCE).

Tradicionalmente se consideró que el tiempo dedicado al mantenimiento era tiempo “perdido”, no productivo. El objetivo de este concepto es convertir las actividades de mantenimiento en actividades productivas. El factor clave aquí es el mantenimiento autónomo, los operadores deben aprender a realizar las operaciones necesarias para el correcto mantenimiento de sus equipos. Debería ser intuitivo que TPM tiene estrechas relaciones con 5S, dado que la primera actividad del mantenimiento es la limpieza. (Rivera Cadavid, 2013).

El TPM como “Mantenimiento Productivo Total” es una función no sólo personal de mantenimiento sino de todo el personal participante en el proceso productivo. Esto exige un repartimiento de las funciones por distintos niveles, desde el operario directamente implicado con el equipo, pasando por el personal tradicionalmente responsable del mantenimiento, hasta los responsables de definir los equipos. En síntesis, todos los miembros de la planta, incluyendo la dirección, tienen que estar implicados. (Cuatrecasas & Torrell, 2010).

f) JIDOKA.

Jidoka es un término japonés, que significa automatización con un toque humano o autonómación. Esta palabra, que no debe confundirse con automatización, define el sistema de control autónomo propuesto por el Lean Manufacturing. Bajo la representación de Lean, el objetivo radica en que el proceso tenga su propio autocontrol de calidad, de modo que, si existe una irregularidad durante el proceso, este se paralizará, ya sea automática o manualmente por el operario, impidiendo que las piezas defectuosas avancen en el proceso. Dado que sólo se producirán
piezas con cero defectos, se minimiza el número de piezas defectuosas a reparar y la probabilidad de que éstas pasen a etapas posteriores del proceso.

Con este sistema máquinas y operarios se convierten en un inspector de calidad. No hay distinción entre empleados de la línea (que fabrican los artículos) e inspectores de calidad (que comprueban la bondad de la fabricación). Las fases de inspección, si son necesarias, se realizan dentro de la misma línea y cada operario garantiza la calidad de su trabajo. En esta situación el énfasis se desplaza de la inspección para hallar defectos a la inspección para prevenir defectos. En otro contexto, se muestra más interés en controlar el proceso y menos el producto. Todas las unidades producidas deben ser buenas, no se permite el lujo de tener piezas defectuosas ya que no está prevista la producción de piezas adicionales. (Matias & Idoipe, 2013).

Otro concepto de JIDOKA dice que es la automatización con sentido humano (autonomation) es uno de los dos pilares de la casa de Lean (junto con Justo a Tiempo). Radica en cambios en el diseño del proceso (y del producto), junto con la utilización de sensores y actuadores para prevenir errores tanto humanos como de máquina en el proceso. Jidoka es una herramienta esencial para garantizar la calidad del producto y del proceso. Shigeo Shingo estudió las causas de los defectos y concluyó que los defectos siempre son causados por errores, bien sea del humano, de la máquina o del material (Shingo, 1986). Para combatir los errores en los materiales se debe trabajar en certificación de proveedores. Los errores de máquina los previene Jidoka, y los errores humanos un subconjunto de Jidoka llamado Poka-Yoke, que consiste en configurar las operaciones, equipos y productos de tal manera que sea difícil (o imposible) cometer un error. Es decir, el proceso se convierte en uno a prueba de errores. Jidoka y Poka-Yoke reúnen prácticas de diseño (de producto y de proceso) y el uso de dispositivos mecánicos semi-automáticos que prevengan los fallos y errores. Otro punto de Jidoka es el uso de Andón, que permiten el seguimiento del estado del proceso con el uso de indicadores visuales, y que proporcionan los interruptores de emergencia que permiten que el operador detenga la línea cuando detecta que un error se ha producido o se va a producir. (Rivera Cadavid, 2013).
Además, se describe que la Manufactura Esbelta incrementa drásticamente la importancia de hacer las cosas bien a la primera. Otro concepto del Andón dice que es una herramienta visual que muestra el estado actual de las operaciones, solo con pasar por el lugar de trabajo. (Villaseñor Contreras & Galindo Cota, 2009, p. 41).

g) **JUSTO A TIEMPO (JUST IN TIME, JIT).**

El significado es bastante simple de entender y dice que es: Tratar de que los materiales y productos se entreguen en el momento justo en el que se van a usar, de tal manera que se reduzca la cantidad promedio de inventarios de materia prima, productos en proceso y productos terminados. Las discrepancias de esto nunca se estudiaron realmente a fondo, y lo que terminó sucediendo es que la empresa o compañía del cliente asignó a sus proveedores tiempos de respuesta más rápidos y entregas más frecuentes en lotes más pequeños, sin que los sistemas logísticos de cliente o proveedor estuvieran preparados.

Posteriormente, los proveedores si eran más pequeños de la empresa tenían que elegir crear mayores inventarios de producto terminado para satisfacer la demanda inesperada y cambiante del gran cliente. Esto generaba efectos exactamente opuestos a los que se esperan en el sistema Toyota, en el cual el gran cliente debe contribuir agresivamente al avance técnico del pequeño proveedor para que este modifique su forma de producir y modernice su sistema aplicando las herramientas Lean.

Justo a Tiempo es la implementación del sistema Pull, en el cual simplemente se produce cuando el proceso siguiente solicita unidades del anterior. Si se mantiene una cierta cantidad de inventario de producto terminado, se puede pensar que el cliente se presenta y toma una de esas unidades. En ese momento, esa unidad tiene asociada una tarjeta (kanban), que se envía al proceso anterior y señala la necesidad de volver a completar el inventario de producto terminado. La última etapa del proceso toma una unidad que ya pasó por el proceso precedente, la procesa y completa el vacío en el inventario final. Entonces, la penúltima estación recibe la señal de que hay un espacio en su inventario, y debe tomar una unidad del proceso
anterior para resolver este problema, y así sucesivamente. Si no hay demanda ni intercambio de kanbans no se activan los recursos productivos, reduciendo varias de las clases de desperdicio que se espera eliminar con Lean.

Utilizando el Kaban para el control de producción es posible que la línea o celda produzca exactamente lo necesario en el momento justo, sin recurrir a una lista de trabajos programada centralmente. Cada centro de trabajo entiende qué debe hacer cuando recibe las señales a través de los kanbans. (Rivera Cadavid, 2013, p. 99).

En japonés, Kaban tiene el significado “tarjeta” o “señal”. Por lo tanto, Kanban se refiere al uso de tarjetas para tener el control de los inventarios en el sistema de jalar.

h) SISTEMAS DE TRABAJO FLEXIBLES.

Denominados celdas o células de manufactura, pero con un enfoque Toyota. El significado de celdas se encuentra enfocado a la raíz de la agrupación y la dedicación. Dentro de Toyota se indica que se ha organizado el trabajo por familias de productos, pero no solamente en la manufactura propiamente dicha. Por lo tanto, la celda es la agrupación de una familia de productos con un grupo específico de máquinas es decir los recursos y espacios, dentro de una ubicación geográficamente adyacente y con un grupo de personas establecidas a ellos y ellas. De tal manera, que el trabajo de desarrollo de productos también se hace por equipos interdisciplinarios dedicados al proyecto y el trabajo contable y administrativo se organiza alrededor de grandes familias de procesos y productos. (Rivera Cadavid, 2013, p. 97)

Por lo cual, uno de los primeros pasos en la puesta en marcha de un sistema Lean es la creación de flujo en la planta, lo que produce un layout orientado al producto. En este tipo de distribución las estaciones de trabajo se sitúan una al lado de la otra siguiendo las fases del proceso productivo y el producto avanza a medida que se hacen las operaciones correspondientes. Asimismo, se realiza una secuencia eficiente que permite un movimiento continuo y suave de las materias primas para fabricar los productos desde el inicio al final. El diseño que mejor cumple los
requerimientos básicos de la gestión Lean es la denominada “célula flexible” (o de trabajo), que responde al concepto de flujo de actividades muy cercanas y que adopta la forma física de “U”. Lo primordial de la distribución en U es que la entrada y la salida de una línea se encuentran en la misma posición. El flujo continuo transforma varios procesos que trabajan de forma independiente en una celda de trabajo conjunta donde todos los procesos van ligados uno después del otro. (Matias & Idoipe, 2013, p. 70).

Cada celda se encuentra planteada para producir una familia o conjunto de partes o una cantidad limitada de familias de partes. Una familia de partes es un grupo de piezas o subconjuntos del producto principal que poseen similitudes en la forma geométrica y el tamaño, o en las fases de fabricación. La celda contiene un equipo específico de producción y técnicas y soportes personalizados para mejorar la producción de las familias de partes. En esta situación, cada celda se convierte en una fábrica dentro de la fábrica. (Matias & Idoipe, 2013, p. 70).

i) **HEIJUNKA (PRODUCCIÓN SUAVIZADA).**

Heijunka es la técnica que sirve para planificar y nivelar la demanda de clientes en volumen y variedad durante un periodo de tiempo, normalmente un día o turno de trabajo. Obviamente, esta herramienta no es aplicable si hay nula o poca variación de tipos de producto.

Para la implementación del Heijunka se debe poseer un excelente conocimiento de la demanda de clientes y los efectos de esta demanda en los procesos y, también, pide un exacto cuidado a los principios de estandarización y estabilización. Los pedidos de los clientes son regularmente invariables si se consideran en promedio dentro de un periodo adecuadamente grande de tiempo, pero son impredecibles si se analizan con un rango de tiempo pequeño y fuera de un programa pactado. En el primer caso, las variaciones de la producción se deben al propio proceso (planificación, tamaño de los lotes, incidentes, oportunidades de negocio, etc.). En el segundo caso, es la aplicación extrema del tamaño unitario del lote lo que lleva a las empresas a intentar el ajuste instantáneo de la demanda, soportando todas las
variaciones de los pedidos. Con una producción continua nivelada, suavizada y en pequeños lotes, se logra producir con el mínimo nivel de despilfarro posible. (Matias & Idoipe, 2013, p. 69).

Heijunka, o producción nivelada, es una técnica que adapta la producción a la demanda fluctuante del cliente, conectado toda la cadena de valor desde los proveedores hasta los clientes. La palabra japonesa heijunka significa literalmente “trabaje llano y nivelado”. Se debe satisfacer la demanda con las entregas requerida por el cliente, pero esta demanda es fluctuante, mientras las fábricas necesitan y prefieren que ésta sea “nivelada” o estable.

La concepción de fabricar en lotes pequeños de muchos modelos, libres de cualquier defecto, en periodos cortos de tiempo con cambios rápidos, en lugar de ejecutar lotes grandes de un modelo después de otro. (Rajadell Carreras & Sánchez García, 2000, p. 67).

A continuación en la Figura 30 se indica el sistema de fabricación tradicional por lotes y el sistema de fabricación nivelado.
50

Figura 30. Producción suavizada (Heijunka).
Fuente: (Rajadell Carreras & Sánchez García, 2000, p. 69)

j) 5S.
En el punto 2.5.1 se realiza una descripción clara y extensa de las 5s debido a que esta herramienta es una de las importantes y primeras que deben ser implementadas para poder realizar una mejora en la organización.

2.5.1 5S.
Antes de comenzar cualquier mejora es preciso tener un lugar de trabajo limpio y ordenado. Hiroyuki Hirano desarrolló una metodología para conseguir trabajar con los elementos indispensables y ordenados en un área de trabajo limpia. (Javier Santos, Wysk, & Torres, 2015, p. 167).
De la manera que Kaizen contribuye con la disciplina del mejoramiento continuo, 5S es el cimiento de la cultura Lean. 5S provienen de cinco palabras japonesas que han sido utilizadas para manifestar una evolución desde el orden y la limpieza del sitio de trabajo hasta la disciplina personal. (Rivera Cadavid, 2013, p. 95).

a) **Seiri:** Siendo ésta la primera de las 5S la misma que representa seleccionar o clasificar y eliminar del área de trabajo todos los elementos innecesarios o inútiles para la tarea que se realiza. Para lograr esto se debe realizar una clasificación adecuada de lo necesario realizando la pregunta clave: “¿es esto es útil o inútil?”. Consiste en separar lo que es necesario de lo que no y controlar el flujo de cosas para evitar estorbos y elementos innecesarios que ocasionen desperdicios como el incremento de manipulaciones y transportes, pérdida de tiempo en localizar cosas, elementos o materiales obsoletos, falta de espacio, etc. (Matias & Idoipe, 2013, p. 38).

b) **Seiton:** Radica en ordenar los elementos clasificados en la “S” anterior como necesarios, de modo que se encuentren con facilidad, además definir el lugar de ubicación identificándolo para facilitar su búsqueda y el retorno a su posición inicial. La forma que más se opone a lo que simboliza seiton, es la de “ya lo ordenaré mañana”, que acostumbra a convertirse en “dejar cualquier cosa en cualquier sitio”. (Matias & Idoipe, 2013, p. 39).

Adicional a lo descrito se tiene que el famoso lema “un lugar para cada cosa y cada cosa en su lugar”. Donde también se refiere a que los objetos que efectivamente se van a usar deben tener una ubicación que corresponda con la frecuencia de su uso y que ayuden a mantener el lugar de trabajo ordenado y despejado, asimismo de hacer evidente la falta o posición incorrecta de cualquier elemento de trabajo. (Rivera Cadavid, 2013, p. 96)

c) **Seiso:** Conocido como Limpieza e Inspección; su significado es limpiar, inspeccionar el entorno para identificar los defectos y eliminarlos, es decir anticiparse para prevenir defectos. Su aplicación comporta:

i. **Constituir la limpieza como parte del trabajo diario.**
ii. Apoderarse de la limpieza como una tarea de inspección necesaria.

iii. Concentrar tanto o más en la eliminación de los focos de suciedad que en sus consecuencias.

iv. Conservar los elementos en circunstancias óptimas, lo que supone reponer los elementos que faltan (tapas de máquinas, técnicas, documentos, etc.), adecuarlos para su uso más eficiente (empalmes rápidos, reubicaciones, etc.), y arreglar aquellos que no funcionan (relojes, utillajes, etc.) o que están reparados “provisionalmente”. Se trata de dejar las cosas como “el primer día”.

La limpieza es el primer tipo de inspección que se hace de los equipos, de ahí su gran importancia. A través de la limpieza se evalúa si un motor pierde aceite, si constan de fugas de cualquier tipo, si hay tuercas sin apretar, cables sueltos, etc. Se debe limpiar para inspeccionar, inspeccionar para detectar, detectar para corregir. (Matías & Idoipe, 2013, p. 39).

d) **Seiketsu:** Conocido como Estandarizar, esta etapa consiente en consolidar las metas una vez asumidas las tres primeras “S”, porque estandarizar lo conseguido asegura unos efectos perdurables. Estandarizar persigue un método para hacer un determinado procedimiento de manera que la organización y el orden sean factores fundamentales.

Un estándar es la mejor manera, la más práctica y fácil de trabajar para todos, ya sea con un documento, un papel, una fotografía o un dibujo. El principal enemigo del seiketsu es una conducta errática, cuando se hace “hoy sí y mañana no”, lo más probable es que los días de incumplimiento se multipliquen. La aplicación comporta las siguientes ventajas:

i. Conservar los niveles conseguidos con las tres primeras “S”.

ii. Construir y cumplir estándares de limpieza y comprobar que éstos se aplican correctamente.

iii. Transferir a todo el personal la idea de la importancia de aplicar los estándares.

iv. Desarrollar los hábitos de la organización, el orden y la limpieza.
v. Evitar errores en la limpieza que a veces pueden provocar accidentes. (Matías & Idoipe, 2013, p. 40).

e) **Shitsuke**: Se puede traducir como Disciplina y su objetivo es convertir en hábito la utilización de los métodos estandarizados y aceptar la aplicación normalizada. Su aplicación está ligado al desarrollo de una cultura de autodisciplina para hacer perdurable el proyecto de las 5S. Este objetivo la convierte en la fase más fácil y más difícil a la vez. La más fácil porque consiste en aplicar regularmente las normas establecidas y mantener el estado de las cosas. La más difícil porque su aplicación depende del grado de asunción del espíritu de las 5S a lo largo del proyecto de implantación. El líder de la implantación lean establecerá diversos sistemas o mecanismos que permitan el control visual, como, por ejemplo: flechas de dirección, rótulos de ubicación, luces y alarmas para detectar fallos, tapas transparentes en las máquinas para ver su interior, utillajes de colores según el producto o la máquina, etc. (Matías & Idoipe, 2013, p. 41).

Esta es muy difícil de realizar en el Ecuador debido a la cultura que se tiene; cuando se llegue a que el trabajo de las 5S se convierta en parte automática de cada persona, e inclusive se inicie llevar a aplicar hacia la vida personal los aspectos de las 5 S; será cuando la clasificación, el orden, la limpieza y la disciplina se integren en la forma de pensar y actuar de las personas de manera natural.

2.6 **Modelo para Implementación de Lean Manufacturing.**

Actualmente, se cuenta con una ventaja que los desarrolladores del sistema no poseyeron, la cual de mirar hacia atrás en el tiempo. Los autores actuales tienen la ventaja de la perspectiva, de la posibilidad de examinar las relaciones entre diferentes variables y componentes del sistema. Es esta posición predilecta, es la que permitió la elaboración del modelo de implementación por parte del grupo del Dr. Groesbeck. Además, el autor adaptó la propuesta original para incluir cuatro fases en el proceso de mejoramiento, e incluir formalmente la necesidad del Kaizen, del mejoramiento continuo como actividad y corazón permanente de cualquier

Como se explicó en el punto 2.1.4 del documento cada una de las herramientas del Lean Manufacturing se tiene claramente su significado.

A continuación se realiza un breve análisis del modelo de implementación; donde se tiene al Kaizen en todo el proceso, representado una cultura de mejoramiento continuo. Donde puede describirse como que el fundamento del Kaizen es respetar la dignidad de cada persona y tratar, muy a propósito de aprovechar la inteligencia, experiencia y capacidades de cada individuo. (Rivera Cadavid, 2013, p. 103).

En la parte inicial del modelo, se encuentra el Mapa de la Cadena de Valor; que son importantes debido a que esto es la forma gráfica de conocer el alcance del proceso productivo que se va a estudiar. Este mapa permite conocer la información de tiempos de procesamiento, tiempos de espera en inventario y lead times totales, facilita la detección de oportunidades de mejoramiento. (Rivera Cadavid, 2013, p. 103).
Concretamente, el Mapa de la Cadena de Valor (VSM), la herramienta que nos permite una visión global, debería revisarse cada 6 meses. La revisión del VSM actual y del VSM futuro cada 6 meses nos proporciona la visión de la dirección que debe tomar la mejora continua de nuestra compañía para poder cumplir y mejorar los resultados de ésta, permitiendo alcanzar y exceder los objetivos de negocio.(Cuatrecasas, Peligros Espada, Cuatrecasas Castellsagués, Monteros, & García Martín, 2013, p. 73).

Seguido se encuentra Sistemas de trabajo flexibles debe ser formada entre 4 y 12 equipos o estaciones de trabajo, y entre uno y siete trabajadores como regla empírica. La formación de celdas en necesaria para la implementación de las herramientas posteriores.(Rivera Cadavid, 2013, p. 104).

Paralelamente a los sistemas de trabajo flexibles se encuentra las 5 S, esta herramienta es más que un esquema de orden y limpieza; además esta genera pertenecía, disciplina y estandarización. (Rivera Cadavid, 2013, p. 104).

Trabajo estándar es la siguiente columna; donde estandarizar las operaciones y procedimientos de trabajo son necesariamente importante, para entrenamientos de la estación de trabajo o celda y además su continua actualización; para lo cual se be haber pasado por la organización de celdas y la aplicación de 5S. (Rivera Cadavid, 2013, p. 104).

SMED, como se dijo en el punto anterior 2.1.4 esta herramienta es la que está enfocada en disminuir el tiempo de producción y eliminar las actividades innecesarias en la puesta a punto de los equipos. (Rivera Cadavid, 2013, p. 104).

TPM, para la implementación de la herramienta es tener implementado 5 S; con lo cual el TPM no lleva a poder cambiar hacia un mantenimiento más autónomo y productivo con el apoyo de los operadores de las maquinarias, por lo cual estos deben conocer perfectamente sus procesos y equipos; además del personal especializado en mantenimiento ya que existirá ciertos componentes del equipo con un grado de dificultad y su mantenimiento debe ser realizado con personal calificado. (Rivera Cadavid, 2013, p. 104).
Jidoka, para la implementación de esta herramienta es un prerrequisito que los operadores y los técnicos conozcan a fondo su proceso y las etapas de transformación que sufre el producto; esto para observar y realizar mejoras en el procedimiento y el equipo con las contribuciones de automatización. (Rivera Cadavid, 2013, p. 104).

JIT; como se describió en el punto 2.1.4; para realizar entregas más frecuentes y justo al momento en el que se necesitan, es necesario realizar lotes más pequeños lo que sin el SMED no es posible; además el esquema JIT no permite consumir tiempo en la realización de inspecciones de ingreso por lo cual el JIDOKA debe ser implementado; mediante esta herramienta se supone que es posible confiar en la calidad del proveedor certificado que ha pasado por un proceso de entrenamiento y asistencia técnica. (Rivera Cadavid, 2013, p. 105).

Heijunka (Producción Suavizada), para poder realizar la producción suavizada existe la necesidad acentuada de poder hacer asilamientos frecuentes (SMED), de que la calidad esté asegurada (Jidoka) y de que la programación de producción se pueda cumplir sin sobresaltos (TPM). Por tales razones JIT y Heijunka son las dos técnicas que tienen más prerrequisitos y que se consideran más sofisticadas en su implementación. (Rivera Cadavid, 2013, p. 105).

Los Objetivos de la implementación de las herramientas Lean se describen a continuación:

Existirán varios modelos de implementación como modelos de negocio; se debe tener en consideración que en el fondo las implementaciones se basan en potenciar 4 grandes objetivos de negocio.

a) Aproximación al pull, al cliente, más que push.
b) Flexibilidad para ajustar la producción necesaria en cada momento.
c) Eliminar desperdicios
d) Hacerlo bien a la primera (FTQ – First Time Quality)(Cuatrecasas et al., 2013, p. 74)
FASES DE LA APROXIMACIÓN AL LEAN A SU IMPLEMENTACIÓN.

a) Creación de varios equipos de trabajadores y supervisores que reúnan un conjunto de datos iniciales.

b) Formación sobre Lean Manufacturing: adaptado al caso y orientado a los empleados que en los talleres de trabajo, decidirán qué acciones se debe llevar a cabo en cada fase.

c) Análisis de todas las operaciones y flujo de la fábrica.

d) Creación de Mapas de Valor, el cual es un diagrama simple de cada uno de los pasos, involucrados en los flujos de proceso, material e información, necesarios para llevar a un producto/servicio desde la orden hasta el cliente.

e) Análisis global de la transformación:
 a) Definición y diseño del layout de la planta en tres niveles: layout general, layout para cada proceso y layout para cada operación de cada proceso. Rutas para los empleados y los materiales deben ser considerados (spaguetti flow).

 b) Descripción de las tareas en cada puesto de trabajo que asigna las tareas específicas a cada trabajador, que asigna las tareas específicas a cada trabajador, y discriminando entre aquellas que añaden valor al producto de las que no, incluyendo esperas y movimientos de operario.

 c) Análisis de equilibrado de línea considerando operaciones y puestos de trabajo.

 d) Análisis de las operaciones: la capacidad debe ser ajustada a la demanda. Es necesario determinar la cantidad de cualquier tipo del recurso hasta conseguir el ajuste.

 e) Análisis de los puestos de trabajo: es necesario volver a asignar ciertos recursos para garantizar la capacidad necesaria que permita obtener un flujo en el proceso. La prioridad viene dada por lo puestos de trabajo con tareas que incluyan esperas, movimientos excesivos de operarios y otros tipos de desperdicios.

 f) El Mapa de Valor futuro, incluyendo las mejoras previsibles y planificadas.

 g) Implementación final.
h) Aplicación de las herramientas visuales y señales para cada fase del proceso de producción, que permitan un flujo continuo y nivelado de la producción. (Cuatrecasas et al., 2013, p. 74).

2.7 Implementación de 5 S.

El objetivo principal de la implantación de esta herramienta reside en educar a los operadores y toda la organización para conseguir introducir el hábito de mantener el entorno y los recursos de trabajo organizados, ordenados y limpios con el esfuerzo mínimo por su parte.

Por esta herramienta 5S se crea una actitud en la organización de respeto por el orden y la limpieza. Es importante tener en cuenta que la actitud no tiene las bases en carteles o eslóganes que se colocan en la empresa, sino su fortaleza de cultura está en los operadores a través de un hábito que permitirá que otras herramientas de mejora se implanten con facilidad. Por este motivo, en la filosofía Just in Time, las 5S aparecen en primer lugar. (Javier Santos, Wysk, & Torres, 2015, p. 167).

Previo a la implantación de las 5S, se debe tener el apoyo de los miembros de la alta gerencia debido a que esta herramienta supone inversión de tiempo por parte de los operarios y empleados de la empresa, debido a la aparición de nuevas tareas que deben mantenerse en el tiempo. (Javier Santos, Wysk, & Torres, 2015, p. 168).

Además, se debe:

a) Preparar un material didáctico para explicar a los operarios la importancia de las 5S y los conceptos básicos de la metodología.

b) Para empezar la implantación de la herramienta 5S, se debe escoger un área piloto y concentrarse en ella, debido a que la misma servirá como aprendizaje y punto de partida para el despliegue al resto de la organización. El área seleccionada no debe ser muy amplia y además es donde se pueda obtener resultados espectaculares en poco tiempo o donde el personal se encuentre más
motivado con el proyecto. Los hábitos de comportamiento que se consiguen con las 5S lograrán que las demás técnicas Lean se implanten con mayor facilidad.

c) Se debe diseñar el plan trabajo; debido a que algunas preguntas que deben tener respuesta antes de comenzar con la formación básica son: ¿cuándo va a trabajar el equipo?, ¿quién formaran parte de él?, ¿se va a remunerar el trabajo?, ¿cambiará el sistema de incentivos?, entre otras preguntas que el personal en capacitación puede realizar.

d) Además, se debe preparar la formación y metodología completa para el grupo de operadores; donde la herramienta 5S propone que, por cada “S”: 1) Se realice la formación, después 2) se ponga en práctica, y 3) se ponga en común la experiencia. Además se debe disponer de un registro fotográfico. (Javier Santos et al., 2015, p. 170).

El principio de las 5S puede ser utilizado para romper con los viejos procedimientos existentes y adoptar una cultura nueva a efectos de incluir el mantenimiento del orden, la limpieza e higiene y la seguridad como un factor esencial dentro del proceso productivo, de la calidad y de los objetivos generales de la organización. Es por esto que es de suma importancia la aplicación de la estrategia de las 5S como inicio del camino hacia una cultura Lean.

Al momento que se tengan los resultados de la implantación del área piloto, se puede ampliar a otras áreas, con lo cual se puede lograr que con los participantes del primer grupo se convierte ahora en facilitadores de nuevos grupos.

En la Figura 32 se resume los principios básicos y su implantación en cinco pasos o fases:
Figura 32. Que son las 5 S.
Fuente: (Matias & Idoipe, 2013, p. 37)

Existe una metodología sencilla probada con éxito en muchas empresas, descrita por el autor de las 5S, Hiroyuki Hirano. La metodología de las 5 S está recogida en multitud de documentos y cursos, y todo ellos recomiendan los mismos pasos previos a la implantación de esta herramienta.

En cualquiera de ellas se sigue de forma sistemática el orden de las 5S. El procedimiento que se sigue es el siguiente:

a) Se forma al Equipo.
b) Se utilizan las herramientas de cada de ellas.
c) Se establecen indicadores que permitan verificar el estado de la implantación.(Javier Santos et al., 2015, p. 170).

A continuación enunciamos como se realiza la implantación por cada una de las S de la herramienta Lean.

a) **Seleccionar o Eliminar.**

En la práctica existe diferentes métodos un procedimiento muy sencillo consiste en usar tarjetas rojas para identificar elementos susceptibles de ser prescindibles y se decide si hay que considerarlos como un desecho.(Matias & Idoipe, 2013, p. 40).
El objetivo de colocar las tarjetas en lugar de retirar directamente los elementos es que posibilita la realización de una foto, que se utilizará en un cartel para se observe la evolución del área de trabajo, es decir el antes y después.

Se puede unificar este método con agrupar los elementos en tres categorías minimo las mismas que se pueden extender si se desea con más detalles esto dependerá del especialista o técnico que se encuentre a cargo de la implantación las tres categorías son:

✓ Los que se utilizan habitualmente
✓ Los que es probable que se utilicen
✓ Los que no se usaran nunca.

Los elementos que se hayan identificados en las dos últimas categorías deben retirarse de la zona de trabajo; sin embargo los del grupo de elementos que es probablemente se utilicen se podrían almacenarse en una zona especial y cerca del lugar de trabajo, para evitar tirar los elementos de uso poco frecuente.(Javier Santos et al., 2015, p. 171).

b) Ordenar.

Para la implementación de esta herramienta se realiza de la siguiente manera:

✓ Marcar los límites de las áreas de trabajo, almacenaje y zonas de paso.
✓ Disponer de un lugar adecuado, evitando duplicidades, cada cosa en su lugar y un lugar para cada cosa.

Con lo cual la decisión del lugar exacto donde colocar las cosas y como ordenar es muy importante debido a que se debe considerar la frecuencia de uso y bajo criterios de seguridad, calidad y eficacia. Esto quiere decir alcanzar el nivel de orden preciso para producir con calidad y eficiencia,
dotando a los empleados de una ambiente laboral que favorezca la correcta ejecución del trabajo. (Matías & Idoipe, 2013, p. 39).

El uso de carteles o identificación muestran numerosas ventajas; una de las más importantes es que facilita a las personas de reciente incorporación la localización de cada una de las secciones de la fábrica. Las piezas pueden codificar para realizar un orden dentro de las estanterías o anaqueles; se puede incorporar indicadores de cantidad, de tal forma que visualmente contribuyan con la gestión de los niveles de inventario.

Adicional a lo descrito anteriormente, se debe tomar en cuenta que la implementación de la primera S se haya completado adecuadamente debido a que caso contrario se realizaría el ordenamiento de objetos innecesarios. El objetivo de esta herramienta es reducir los desperdicios en búsquedas y facilitar los movimientos de objetos por la fábrica. Hyroyuki propone no sólo ordenar, sino aprovechar para realizar mejoras en algunas tareas para facilitar su realización. (Javier Santos et al., 2015).

En la Figura 33 se muestra la implementación del orden y lo descrito por Hyroyuki.

![Figura 33. El pilar de orden a veces implica mejorar las tareas.](image_url)

Fuente: (Javier Santos et al., 2015)

Existe estrategia de la pintura en esta “S”, está dirigida primordialmente a los pisos, paredes y el principal objetivo es separar las zonas de paso de
las áreas de trabajo. Además para la seguridad dentro de la planta es importante debido a que a la delimitación de las zonas de trabajo existirán zonas que los operarios deban circular con precaución. Los colores usuales utilizados son amarillos, azules, verdes y grises para las áreas de la planta.

c) **Limpieza.**

La aplicación de esta herramienta se describió en el punto 2.6; contribuyendo adicionalmente a lo mencionado es importante que si durante el proceso de limpieza se identifica algún desorden, se debe identificar las causas principales para establecer las acciones correctoras que se evalúen oportunas.

Adicional, por la falta de limpieza también supone riesgos como se muestra en la Figura 34, por ejemplo el aceite en el suelo produce resbalones, la viruta puede clavarse en los zapatos e incluso atravesarlos, etc. (Javier Santos et al., 2015, p. 172).

![Figura 8.4. La falta de limpieza puede producir resbalones.](image)

Figura 34. Falta de limpieza puede producir resbalones.

Fuente: (Javier Santos et al., 2015, p.173).

La limpieza debe convertirse en un hábito, al final de la implementación la medida de la limpieza general, se pueden incorporar elementos de inspección que se realizan de forma simultánea a la limpieza.
d) **Estandarización.**

Esta herramienta no es una estrategia y no persigue un objetivo concreto, como los anteriores. La estandarización es un estado que se alcanza cuando se mantiene las tres “S” anteriores, e intenta facilitar a los trabajadores conservarlo en el tiempo.

Si a la estandarización añade la palabra “preventivo” a cada uno de las tres “S” anteriores, de forma que el objetivo ahora es evitar que se necesaria su aplicación. Por ejemplo, la suciedad se dispersa por la fábrica si un trabajador pisa un charco de aceite, lo que obliga a limpiar constantemente. La limpieza preventiva buscará eliminar la fuente de suciedad (en este caso la fuga de aceite). Sin embargo, lo razonable sería aprovechar para iniciar un estudio sobre el mantenimiento del equipo, que traerá como consecuencia la implantación de un plan de mantenimiento.

Para conseguir el objetivo de la Estandarización, que consiste en convertir las 3 S anteriores en hábito, se deben asignar responsabilidades al trabajado. En otras palabras, integrar las tareas de orden y limpieza en las tareas regulares (rutinas diarias) y, es preciso, vigilar su cumplimiento mediante el uso de auditorías 5S. (Javier Santos et al., 2015, p.173).

e) **Autodisciplina**

La disciplina es importante para mantener el camino propuesto. De modo que conocer los beneficios que supone la tarea que se está realizando también ayuda a mantener la motivación. Dentro de la empresa, sin la disciplina, el lugar de trabajo será un desorden, sucio, etc. Se debe tener claro desde el principio que esto ocurrirá si no existe disciplina, ya que se pueden ahorrar los esfuerzos que supone la implantación de las 5S.

La disciplina supone a veces imponer al principio ciertas actividades que, con el paso del tiempo, se convierten en hábitos. Pocas personas tienen la
Delegar la autoridad de imponer tareas a las demás dentro de la empresa. Contar con el apoyo de la dirección de la empresa, y del jefe de sección en la que se implanta, es básico, como también lo es controlar a las personas que lideran el grupo de operarios y que, en ocasiones, no coinciden con el jefe de sección. Por lo cual es el pilar que sostiene los cuatro pilares anteriores porque conduce al hábito.(Javier Santos et al., 2015, p. 175).

En la Tabla 2 se presenta un resumen de la implantación de las 5S.

Tabla 2. Resumen de 5 S.

<table>
<thead>
<tr>
<th>SEIRI</th>
<th>SEITON</th>
<th>SEIDO</th>
<th>SEIKETSU</th>
<th>SHITSUKI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Separar y eliminar</td>
<td>Arreglar e identificar</td>
<td>Proceso diario de limpieza</td>
<td>Seguimiento de los primeros 3 pasos, asegurar un ambiente seguro</td>
<td>Construir el hábito</td>
</tr>
<tr>
<td>Separar los artículos necesarios de los no necesarios</td>
<td>Identificar los artículos necesarios</td>
<td>Limpiar cuando se ensucia</td>
<td>Definir métodos de orden y limpieza</td>
<td>Hacer el orden y la limpieza con los trabajadores de cada puesto</td>
</tr>
<tr>
<td>Dejar solo los artículos necesarios en el lugar de trabajo</td>
<td>Marcar áreas en el suelo para elementos y actividades</td>
<td>Limpiar periódicamente</td>
<td>Aplicar el método general en todos los puestos de trabajo</td>
<td>Formar a los operarios de cada puesto para que hagan orden y limpieza</td>
</tr>
<tr>
<td>Eliminar los elementos no necesarios</td>
<td>Poner todos los artículos en su lugar definido</td>
<td>Limpiar sistemáticamente</td>
<td>Desarrollar un estándar específico por puesto de trabajo</td>
<td>Actualizar la formación de los operarios cuando hay cambios</td>
</tr>
<tr>
<td>Verificar periódicamente que no haya elementos no necesarios</td>
<td>Verificar que haya “un lugar para cada cosa y cada cosa en su lugar”</td>
<td>Verificar sistemáticamente la limpieza de los puestos de trabajo</td>
<td>Verificar que exista un estándar actualizado en cada puesto de trabajo</td>
<td>Crear un sistema de auditoría permanente de planta visual y 5S</td>
</tr>
</tbody>
</table>

Fuente: Kaizen Institute. Tomado de (Matías & Idoipe, 2013, p. 41).

2.8 Eliminación de Mudas (Desperdicios).

En el entorno Lean la eliminación sistemática del desperdicio se realiza a través de tres pasos que tiene como objetivo la eliminación sistemática del desperdicio y todo
aquello que resulte improductivo, inútil o que no aporte valor agregado y que recibe el nombre de Hoshin (Brújula):

a) Reconocer el desperdicio y el valor agregado dentro de nuestros procesos.
b) Actuar para eliminar el desperdicio aplicando la técnica Lean más adecuada.
c) Estandarizar el trabajo con mayor carga de valor añadido para, posteriormente, volver a iniciar el ciclo de mejora.

La principal idea del Hoshin es buscar, por todos los involucrados soluciones de inmediata aplicación tanto en la mejora de la organización del puesto de trabajo como en las instalaciones o flujo de producción.

Los procesos, las tareas, las operaciones, …los podemos clasificar en:

a) Procesos de VA (valor agregado), aquellos que el cliente percibe.
b) Procesos de NVA (no valor agregado) pero imprescindible. Aquellos que el cliente no percibe, pero necesarios, tales como puesta a punto, limpiezas, transportes, identificaciones, mantenimientos, etc.
c) Procesos NVA y no necesarios, como esperas, errores, averías, paros inventarios, etc.

Estos NVA, Taiichi Ohno los describió como los siete desperdicios; por lo cual la descripción, conocimiento y clasificación es de gran utilidad para poder capturar adecuadamente el NVA en los procesos de observación.

En la Figura 35 y Anexo 1 se muestra el formato estándar de captura de VA / NVA.
2.8.1 Análisis de la Demanda. Operaciones.

Si se desea no tener desperdicios de NVA. En el propio diseño del proceso de producto/servicio, se debe conocer como maximizar la función de las operaciones. Este acercamiento a la maximización la realizaremos mediante 2 herramientas: el diagrama de precedencia y el diagrama de flujo.

a) Diagrama de precedencia.

Es una herramienta que nos contribuye información visual que cubre todas las operaciones y los flujos en el proceso de fabricación, del producto o servicio.

Es sustancial que deben sobresalir y presentarse todas las operaciones; además, que deben respetar todos los flujos posibles. No solo los mejores, menos costosos, de más calidad, los más fáciles,...¡todos! Como más abierto sea el “árbol”, más posibilidades de escoger flujo.

Así, que una operación sea precedente a otra, se debe responder a la pregunta: ¿Es obligatorio que la operación A anteceda a B? Y nunca permite una respuesta a la pregunta no realizada ¿Es mejor, es más conveniente, que la operación A anteceda a B?

Figura 35. Formato estándar de captura de VA/NVA.
Fuente: (Cuatrecasas et al., 2013, p. 78)
En la Figura 36 se muestra un diagrama de precedencia de las operaciones de elaboración de una pizza.

![Diagrama de precedencia](image)

Figura 36. Diagrama de precedencia de las operaciones de elaboración de una pizza.
Fuente: (Cuatrecasas et al., 2013, p. 84).

b) Diagrama de Flujo.

Es una herramienta que nos contribuye información visual sobre la elección seleccionada de flujo respecto al diagrama de precedencia.

De todos los posibles flujos que el diagrama de precedencia nos ofrecía solo escogeremos uno. Esta selección se debe basar en criterios SQVC (Seguridad, Calidad, Volumen, Costos).

En la Tabla 3 se muestra el diagrama de flujo de la elaboración de una pizza.

Tabla 3. Diagrama de flujo de la elaboración de una pizza, con los motivos SQVC anotados de esta elección.
2.8.2 Estudio de los Métodos de Trabajo.

Por medio del estudio de movimientos se puede estudiar cualquier trabajo para lograr la simplificación del mismo. Siempre que se trate de reducir el trabajo es necesario cambiar el método de trabajo porque no es solamente la destreza de los operadores para realizarlo lo que señala su índice de productividad.

Se entiende por reducción del trabajo un método sistemático para la implementación organizada del sentido común con el objeto de identificar e investigar los problemas del trabajo, desarrollando metodologías más fáciles y mejores para hacer las cosas e instituir las modificaciones resultantes. Sus características son:

a) El uso de una metodología para desarrollar las innovaciones.
b) El empleo metódico de la actitud analítica.
c) El estímulo del sentido común y de la inspiración de creación.
d) El control de las ideas destacadas desordenadas.

El estudio de métodos persigue diversos propósitos, los más importantes son:

<table>
<thead>
<tr>
<th>Operación</th>
<th>Q (Calidad)</th>
<th>V(Volumen)</th>
<th>C(Costo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparar Ingredientes</td>
<td>Reducir LT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hacer masa</td>
<td>Reducir LT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hacer salsa</td>
<td>Reducir LT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rallar Queso</td>
<td>pre preparar</td>
<td>lote económico</td>
<td></td>
</tr>
<tr>
<td>Laminar champiñones</td>
<td>pre preparar</td>
<td>lote económico</td>
<td></td>
</tr>
<tr>
<td>Cortar jamón</td>
<td>pre preparar</td>
<td>lote económico</td>
<td></td>
</tr>
<tr>
<td>Dar forma masa</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introducir tomate</td>
<td>mejora calidad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introducir champiñones</td>
<td></td>
<td>de menos VA a más</td>
<td></td>
</tr>
<tr>
<td>Introducir queso</td>
<td>de menos VA a más</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introducir jamón</td>
<td>de menos VA a más</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anchoas</td>
<td>de menos VA a más</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orégano</td>
<td>mejora calidad</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horno</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: (Cuatrecasas et al., 2013, p. 84).
a) Optimizar los procesos y procedimientos.

b) Perfeccionar la disposición y el diseño de la fábrica, taller, equipo y lugar de trabajo.

c) Preservar el esfuerzo humano y reducir la fatiga innecesaria.

d) Administrar el uso de materiales, máquinas y mano de obra.

e) Acrecentar la seguridad.

f) Crear mejores condiciones de trabajo.

g) Hacer más fácil, rápido, sencillo y seguro el trabajo. (Criollo, 2005, p. 36).

El procedimiento del estudio de métodos, donde se menciona sin excluir otros medios para conseguir mejoras, la reducción busca innovaciones deducidas analíticamente por medio de un método sistemático de ataque. Este método consta de los siguientes pasos:

a) Seleccionar el trabajo que debe mejorarse.

b) Registrar los detalles del trabajo.

c) Analizar los detalles del trabajo.

d) Desarrollar un nuevo método para hacer el trabajo.

e) Adiestrar a los operarios en el nuevo método de trabajo.

f) Aplicar el nuevo método de trabajo.

Para realizar la selección del trabajo se debe considerar que no se puede mejorar al mismo instante todos los aspectos de trabajo de una empresa, la primera cuestión que debe resolverse es con qué criterio debe seleccionarse el trabajo que se quiere mejorar.

Por lo cual la selección se debe considerar:

a) Desde el punto de vista humano.

b) Desde el punto de vista económico.

c) Desde el punto de vista funcional del trabajo.

Para realizar el proceso de fabricación se utilizan diagramas de proceso de operaciones, de proceso de flujo de recorrido y de hilos, para las relaciones
hombre – máquina en las estaciones de trabajo se emplean las formas denominadas diagramas hombre – máquina y de proceso de grupo; para realizar las operaciones que ejecutan los trabajadores se utiliza el diagrama de proceso bimanual (mano izquierda- mano derecha).

El estudio de métodos maneja una serie de preguntas que deben realizarse sobre cada detalle con el objeto de demostrar existencia, lugar, orden, persona y forma en que se ejecuta.

Las preguntas a que nos referimos y la forma de usarlas es la siguiente:

¿Por qué existe cada detalle? O ¿Qué es esta operación?
¿Para qué sirve cada uno de ellos? O ¿Qué ocurre si no se hace?
¿Quién debe hacer el detalle? O ¿Quién la hace?
¿Cuándo debe ejecutarse el detalle? O ¿Cuándo se hace?
¿Dónde debe hacerse el detalle? O ¿Dónde se hace?
¿Cómo se ejecuta el detalle? O ¿Cómo se hace?
¿Por qué hay que hacerla?
¿Cuánto cuesta hacerla?

Con las respuestas obtenidas con las cuales nos conducen a tomar las siguientes acciones: Eliminar, Cambiar y reorganizar y simplificar.(Criollo, 2005).

2.8.3 Diagramas de Procesos.

Esta es una herramienta de análisis es una representación gráfica de los pasos que se siguen en una secuencia de actividades que constituyen un proceso o un procedimiento, identificándolos mediante símbolos de acuerdo con su naturaleza; además, incluye toda la información que se considera necesaria para el análisis, tal como distancias recorridas, cantidad considerada y tiempo requerido. (Criollo, 2005).

Con fines analíticos y como ayuda para descubrir y eliminar ineficiencias, es conveniente clasificar las acciones que tiene lugar durante un proceso dado en

71
cinco categorías, conocías bajo los términos de operaciones, transportes, inspecciones, retrasos o demoras y almacenajes.

Los diagramas del proceso de operación es la representación gráfica de los puntos en los que se incorporan materiales en el proceso y del orden de las inspecciones y de todas las operaciones, menos las incluidas en la manipulación de los materiales, además, puede comprender cualquier otra información que se considere necesaria para el análisis. El objetivo de este diagrama es suministrar una imagen clara de toda la secuencia de sucesos del proceso. Por lo cual, permite estudiar las fases del proceso en forma metodología o mejorar la disposición de los locales y el manejo de los materiales con el fin de disminuir demoras, comparar dos métodos y estudiar las operaciones para eliminar el tiempo improductivo.(Criollo, 2005).

Existen programas que realizan los diagramas de proceso siendo uno de esto el Microsoft Visio el mismo que facilita la elaboración de estos modelos a través de bibliotecas de simbología normalizada. (Matias & Idoipe, 2013).

Microsoft Visio, se describe que trabaja visualmente, el mismo que simplifica y comunica información compleja con diagramas vinculados a datos; adicional realizara la diagramación avanzada de forma sencilla; debido a que crea diagramas de flujo, diagramas de red, organigramas, planos de planta, diseños de ingeniería y más con plantillas y formas modernas. Aumenta la productividad con la conocida experiencia de Office y consigue que la diagramación avanzada sea más fácil que nunca.(“Microsoft Visio,” n.d.).

2.9 Los Siete Desperdicios.

Para inicios de la eliminación de las mudas es importante tener claro el concepto de desperdicio vs valor agregado.

Por lo cual, valor agregado se define cuando todas las actividades tienen el único objetivo de transformar las materias primas o en algunos casos sub productos del estado en que se han recibido a otro superior terminado donde algún cliente esté
dispuesto a comprar. Esto debido a que las actividades que agregan valor son las realmente sostienen al negocio; por lo cual el enfoque del personal operativo en estas actividades debe ser la principal preocupación. (Matias & Idoipe, 2013, p. 21).

Otro concepto de valor agregado es mirar con a través de los ojos del cliente el proceso y discernir las actividades o pasos que agregan valor de los que no. Esto se puede aplicar a cualquier tipo de proceso. Se muestra un ejemplo en la Figura 37 del proceso para pintar un mueble. (Villaseñor Contreras & Galindo Cota, 2009, p. 20).

Revisar la orden para saber cuál es el mueble que sigue.
Buscar el mueble en el área de pulido
Mover el mueble a la cabina
Acomodar el mueble dentro de la cabina
Preparar la mezcla
Probar la mezcla

Primera pasa de mezcla al mueble
Segunda pasa de mezcla al mueble

Dejar la pistola
Buscar la escalera
Acomodar el mueble para pintar la parte superior
Acomodar la escalera
Preparar la pintura negra

Pintar con la pintura negra el mueble

Esperar que se seque
Sacar el mueble de la cabina

Figura 37. Adaptación de la Figura Desperdicio en el proceso de pintado de un mueble.
Fuente: (Villaseñor Contreras & Galindo Cota, 2009, p. 20).

El punto es minimizar el tiempo que se gasta en operaciones que no agregan valor mediante el acomodo de herramientas, equipos y materiales tan cerca como sea posible dentro de proceso. (Villaseñor Contreras & Galindo Cota, 2009).
Hiroyuki Hirano define como trabajo como “todo aquello que aporta valor al producto” (Javier Santos et al., 2015, p. 23).

Mientras, que desperdicio o muda se define como todo lo que no agrega valor al producto o lo que no es totalmente fundamental para fabricarlo. También se puede definir como todo despilfarro o desaprovechamiento de los recursos y talento; es decir no aprovechar adecuadamente los materiales, maquinaria, equipo, talento humano, tiempo, etc. Además, muda como término japonés que significa “vagancia, residuos o desperdicios”.

Hiroyuki Hirano define despilfarro como “cualquier cosa que no sea el mínimo absolutamente esencial”. Esta definición considera que pocas actividades se salvan de ser eliminadas y así ocurrió en Toyota (Javier Santos et al., 2015, p. 23).

Es importante no confundir desperdicio con lo necesario, por no añadir valor debido a que por error podemos eliminarlo y eso puede causar confusión y rechazo. Además, se debe tener en consideración que van a existir actividades necesarias para el sistema o proceso aunque estas no agregan valor al producto, por lo cual deben ser asumidas por la empresa como desperdicios.

El reconocimiento de los desperdicios de cada empresa debe ser el primer paso para la selección de las técnicas más adecuadas. El firme convencimiento de la existencia de multitud de desperdicios en la empresa ayudará a la hora de diagnosticar el sistema y aplicar las medidas más eficientes (Matias & Idiope, 2013, p. 22).

Toyota ha identificado siete tipos de desperdicios que no agregan valor al proceso de manufactura los cuales se describen en la Figura 38.
Teniendo claro los conceptos de valor agregado y desperdicio, se procede a enumerar los 7 desperdicios que se conocen para tenerlos en consideración dentro de las actividades o procesos, para poder identificarlos de manera rápida y correcta, por lo cual tener un correcto levantamiento de información sin sesgar.

A continuación se describe los siete desperdicios o mudas que se han identificado, los cuales pueden ser identificados de manera ágil y sencilla.

a) EXCESO DE INVENTARIOS.

Algún suministro en exceso o materiales no necesarios para producir productos y/o servicios. Dentro de estos se puede tener materiales obsoletos, defectuosos, caducados, rotos, etc, pero los mismos nos son dados de baja. Además, estos sobre inventarios necesitan de atenciones, mantenimientos, vigilancia y balance, etc.; como grandes espacios dentro del almacén, excesivos mecanismos para el manejo.

La expresión “inversión en stock” es un error, porque no ofrecen retribución sobre las inversiones y, por tanto, no pueden ser considerados como tales en ningún momento. Este desperdicio por inventario es el resultado de tener una mayor cantidad de existencias de materiales de las que son necesarias para satisfacer las necesidades más inmediatas. Si se presenta una acumulación de material antes y
después del proceso, es una muestra del que el flujo del proceso no es continuo. (Matías & Idoipe, 2013, p. 22)

En la Figura 39 se muestra el exceso de inventarios.

![Figura 39. Exceso de Inventarios. Fuente: (MDC Consultoria Y Capacitación, 2015).](image)

b) **SOBREPRODUCCIÓN.**

Producir más de lo que se necesita o producir más rápido que lo necesario, es decir producir más cantidad de la requerida o de invertir o diseñar equipos con mayor capacidad de la necesaria. La sobreproducción es un desperdicio crítico porque no incita a la mejora ya que parece que todo funciona correctamente. Adicional, producir en exceso significa perder tiempo en fabricar un producto que no necesitaba para nada, lo que representa claramente un consumo de materia prima, mano de obra, energías, incremento de inventario, etc, innecesariamente. (Matías & Idoipe, 2013, p. 24).

También se describe como producir productos o subproductos para los que no existe ordenes de producción; este es producir un producto antes de que el consumidor lo requiera; lo cual provoca que las partes sean almacenadas y se incremente el inventario, así como el costo de mantenerlo. (Villaseñor Contreras & Galindo Cota, 2009, p. 21).

En la Figura 40 se muestra una imagen de sobre producción.
c) **TIEMPOS DE ESPERA.**

Este desperdicio es el tiempo perdido como resultado de una secuencia de trabajo o un proceso ineficiente. Los procesos que se encuentran mal diseñados pueden provocar que unos trabajadores u operarios permanezcan sin realizar ninguna actividad mientras que otros se encuentra con exceso de trabajo. (Matías & Idoipe, 2013).

Adicionalmente, otro concepto indica que los operadores esperan observando las máquinas trabajar o esperan por herramienta, partes etc. Es aceptable que la máquina espere al operador, pero es inaceptable que el operador espere a la máquina o a la materia prima. (Villaseñor Contreras & Galindo Cota, 2009, p. 24).

En la Figura 41 se muestra una imagen de tiempos de espera.
d) **TRANSPORTE.**

El desperdicio por transporte es el resultado de un movimiento o manipulación de material innecesario. Las máquinas, herramientas y las líneas de producción deben estar lo más cerca posible y los materiales deberían fluir directamente desde una estación de trabajo a la siguiente sin esperar en colas de inventario. (Matías & Idoipe, 2013, p. 25).

Movimiento innecesario de algunas partes durante la producción es un desperdicio. Esto puede causar daños al producto o a la parte, lo cual crea un retrabajo. (Villaseñor Contreras & Galindo Cota, 2009, p. 21).

En la Figura 42 se muestra una imagen de transporte.
e) **MOVIMIENTOS INNECESARIOS.**

Cualquier movimiento innecesario hecho por el personal durante sus actividades, tales como mirar, buscar, acumular partes, herramientas, etc. Caminar también puede ser un desperdicio. (Villaseñor Contreras & Galindo Cota, 2009).

En la Figura 43 se muestra un ejemplo de movimientos innecesarios.

79
f) **PROCESAR, SOBREPROCESAMIENTO O PROCESAMIENTO INCORRECTO.**

Se describe como no tener claro los requerimientos de los clientes causa que en la producción se hagan procesos innecesarios, los mismos que agregan costos en lugar de valor de producto. (Villaseñor Contreras & Galindo Cota, 2009).

Procesos que son aceptados como necesarios. (Javier Santos et al., 2015).

En la Figura 44 se muestra una imagen de sobreprocesamiento o procesar.

![Figura 44. Procesar o Sobreprocesamiento.](image)

Fuente: (MDC Consultoría Y Capacitación, 2015).

g) **PRODUCIR PARTE DEFECTUOSAS O RETRABAJOS.**

Producción de partes defectuosas. Reparaciones o retrabajo, scrap, reemplazos en la producción e inspección significa manejo, tiempo y esfuerzo desperdiciado. (Villaseñor Contreras & Galindo Cota, 2009).

Este desperdicio se genera por los errores, siendo uno de los más aceptados en la industria aunque significa una gran pérdida de productividad porque incluye el trabajo extra que debe realizarse como consecuencia de no haber ejecutado correctamente el proceso productivo la primera vez. Los procesos productivos
deberían estar diseñados a prueba de errores, para conseguir productos acabados con la calidad exigida, eliminando así cualquier necesidad de retrabajo o de inspecciones adicionales. También debería haber un control de calidad en tiempo real, de modo que los defectos en el proceso productivo se detecten justo cuando suceden, minimizando así el número de piezas que requieren inspección adicional y/o repetición de trabajos. (Matias & Idoipe, 2013, p. 26).

En la Figura 45 se muestra una imagen de retrabajos o productos defectuosos.

Figura 45. Productos defectuosos o relectura.
Fuente: (MDC Consultoría Y Capacitación, 2015).

2.10 Medición del Trabajo.

La medición del trabajo es un método investigativo basado en la aplicación de diferentes técnicas para determinar el contenido de una tarea definida fijando el tiempo que un trabajador calificado invierte en llevarla a cabo con arreglo a una norma de rendimiento preestablecida.

Los objetivos de la medición del trabajo son dos con los cuales se puede satisfacer la medición:

a) Incrementar la eficiencia del trabajo.

b) Proporcionar estándares de tiempo que servirán de información a otros sistemas de la empresa, como el de costos de programación de la producción, supervisión, etc.
Consecuentemente, la necesidad de aprovechar de mejor manera la mano de obra y reducir los costos de la producción, es necesario una mejor utilización de los recursos humanos y materiales.

Frederick W. Taylor introdujo, en 1881, las bases del sistema actual de la medición del trabajo a través del investigación científica de cada una de las operaciones que constituyen un trabajo con el objeto de hallar la manera menos costosa de ejecutarlo. (Criollo, 2005, p. 178).

Si se examina el proceso analítico que él siguió, se encuentra el siguiente orden:

a) Análisis de todas las operaciones con el objeto de eliminar aquellas que fueran innecesarias.

b) Determinación del mejor método de ejecución.

c) Estandarización de los métodos, materiales, herramientas, equipo y condiciones de trabajo.

d) Exacta determinación del tiempo que un operador calificado como normal necesita para ejecutar un trabajo. (Criollo, 2005, p. 178).

A continuación se realiza las siguientes definiciones:

Medición del trabajo. Es la parte cuantitativa del estudio del trabajo, que indica el resultado del esfuerzo físico desarrollado en función del tiempo permitido a un operario para terminar una tarea específica, siguiendo a un ritmo normal un método predeterminado. (Criollo, 2005, p. 179).

Tiempo estándar. Es el patrón que mide el tiempo requerido para terminar una unidad de trabajo, usando método y equipo estándar, por un trabajador que posee la habilidad requerida, desarrollando una velocidad normal que pueda mantener día tras día, sin mostrar síntomas de fatiga. (Criollo, 2005, p. 179).

Las aplicaciones del tiempo estándar son muchas, entre las cuales se pueden citar las siguientes:
a) Para determinar el salario devengable para esa tarea específica. Convertir el tiempo en valor monetario.

b) Ayuda a la planeación de la producción. Basarse en los tiempos estándares para las ventas y producción.

c) Facilita la supervisión.

d) Es una herramienta que ayuda a establecer estándares de producción precisos y justos.

e) Ayuda a establecer las cargas de trabajo.

f) Ayuda a formular un sistema de costos estándar.

g) Proporciona costos estimados.

h) Proporciona bases sólidas para establecer sistemas de incentivos y su control.

Las ventajas que se tiene con los tiempos estándar se aplican correctamente son:

a) Reducción de los costos; al descartar el trabajo improductivo y los tiempos ociosos, la razón de rapidez de producción es mayor, esto es, se produce mayor número de unidades en el mismo tiempo.

b) Mejora de las condiciones obreras; los tiempos estándar permiten establecer sistemas de pagos de salarios con incentivos, en los cuales los obreros, al producir un número de unidades superiores a la cantidad obtenida a la velocidad normal, perciben una remuneración extra.

La medición de trabajo como factor de eficiencia.

Donde se puede definir a la eficiencia como el grado de rendimiento en que se realiza un trabajo con respecto a una norma preestablecida. Adicional, el factor de eficiencia es el análisis de los factores relacionados con la eficiencia del trabajo el mismo que nos lleva el esquema de la Figura 46. (Criollo, 2005, p. 181).
2.10.1 Procedimiento para Medir el Trabajo.

Las medidas deben hacerse con la más escrupulosa justicia, es decir, con las mayores garantías de que la medida está perfectamente realizada.

Las medidas deben hacerse con el grado de exactitud estrictamente necesario, de acuerdo con la importancia de lo que se mide. (Criollo, 2005, p. 184).

Las Técnicas de mediciones del trabajo que se utilizan son las siguientes:

a) Por estimación de datos históricos.
b) Estudio de tiempos con cronómetro.
c) Por descomposición en micro movimientos de tiempos predeterminados (MTM, MODAPTS).
d) Método de las observaciones instantáneas (muestreo de trabajo).
e) Datos estándar y fórmulas de tiempo. (Criollo, 2005, p. 184)

El proceso de Estudio de Tiempos Cronometro es una técnica que se utiliza para determinar con la mayor exactitud posible, con base en un número limitado de observaciones, el tiempo necesario para levar a cabo una tarea determinada. Este se lleva a cabo cuando:

a) Se va a ejecutar una nueva operación, actividad o tarea.
b) Se presenta quejas de los trabajadores o de sus representantes sobre el tiempo que insume una operación.

c) Surgen demoras causadas por una operación lenta, que ocasiona retrasos en las demás operaciones.

d) Se pretende fijar los tiempos estándar de un sistema de incentivos.

e) Se detectan bajo rendimientos o excesivos tiempos muertos de alguna máquina o grupo de máquinas.

Los pasos básicos para la realización son:

a) Preparación.
 ✓ Selección de la operación.
 ✓ Selección del trabajador.
 ✓ Análisis de comprobación del método de trabajo.
 ✓ Actitud frente al trabajador.

b) Ejecución.
 ✓ Obtener y registrar la información.
 ✓ Descomponer la tarea en elementos.
 ✓ Cronometrar.
 ✓ Cálculo del tiempo observado.

c) Valoración.
 ✓ Ritmo normal del trabajador promedio.
 ✓ Técnicas de valoración.
 ✓ Cálculo del tiempo base o valorado.

d) Suplementos.
 ✓ Análisis de demoras.
 ✓ Estudio de fatiga.
 ✓ Cálculo de suplementos y sus tolerancias.

e) Tiempo estándar.
 ✓ Error de tiempo estándar.
 ✓ Cálculo de frecuencia de los elementos.
 ✓ Determinación de tiempos de interferencia.
 ✓ Cálculo de tiempo estándar.(Criollo, 2005, p. 185).
Medir el tiempo de la operación, tarea a la que comúnmente se le llama cronometraje; y los equipo para realizar la medición con los cronómetros, aparatos movidos regularmente por un mecanismo de relojería que puede ponerse en marcha y detenerse a voluntad del operador. Los datos con anotados en una hoja de observaciones. (Criollo, 2005, p. 195).

OBSERVACIONES PARA CALCULAR EL TIEMPO NORMAL.

La extensión de tiempos dependerá de la naturaleza de la operación individual. El número de ciclos que se deberá observarse para alcanzar un tiempo medio definido de una operación se establece a través de uno de los siguientes procedimientos:

a) Fórmulas estadísticas.
b) Ábaco de Lifson.
c) Tabla Westinghouse.
d) Criterio de la General Electric.

Fórmulas estadísticas. A través de estas fórmulas se determina el número de N de observaciones necesarias para obtener el tiempo de reloj representativo con un error de e%, con riesgo fijado de R%. Se aplica la siguiente fórmula:

\[
N = \left(\frac{K \sigma}{e \bar{x}} \right)^2 + 1
\]

En donde:

\(\bar{x} \) = La media aritmética de los tiempos de reloj.
K = el coeficiente de riesgo cuyos valores son:
K=1 para riesgo de error de 32%.
K= 2 para riesgo de error 5%.
K=3 para riesgo de error de 0.3%.
La desviación típica de la curva de la distribución de frecuencias de los tiempos de reloj obtenidos σ es igual a:

$$\sigma = \sqrt{\frac{\sum f (X_i - \bar{x})^2}{n}}$$

En donde:

X_i = los valores obtenidos del tiempo de reloj.
\bar{x} = la media aritmética del tiempo de reloj.
N = frecuencia de cada tiempo de reloj tomado.
n = número de mediciones efectuadas.
e = error expresado en forma decimal.(Criollo, 2005, p. 205).

Estos cálculos actualmente se los puede realizar de forma automática en el software Minitab.

2.10.2 Estadístico de Anderson – Darling.

El estadístico Anderson-Darling mide qué tan bien siguen los datos una distribución específica. Para un conjunto de datos y distribución en particular, mientras mejor se ajuste la distribución a los datos, menor será este estadístico. Por ejemplo, usted puede utilizar el estadístico de Anderson-Darling para determinar si los datos cumplen el supuesto de normalidad para una prueba t.

Las hipótesis para la prueba de Anderson-Darling son:

H_0: Los datos siguen una distribución especificada.

H_1: Los datos no siguen una distribución especificada.

Utilice el valor “p” correspondiente (si está disponible) para probar si los datos provienen de la distribución elegida. Si el valor “p” es menor que un nivel de
significancia elegido (por lo general 0.05 o 0.10), entonces rechace la hipótesis nula de que los datos provienen de esa distribución.

También puede utilizar el estadístico de Anderson-Darling para comparar el ajuste de varias distribuciones con el fin de determinar cuál es la mejor. Sin embargo, para concluir que una distribución es la mejor, el estadístico de Anderson-Darling debe ser sustancialmente menor que los demás. Cuando los estadísticos están cercanos entre sí, se deben usar criterios adicionales, como las gráficas de probabilidad, para elegir entre ellos. En la Tabla 4 se muestran los valores de Anderson – Darling.

<table>
<thead>
<tr>
<th>Distribución</th>
<th>Anderson-Darling</th>
<th>Valor p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exponencial</td>
<td>9.599</td>
<td>p < 0.003</td>
</tr>
<tr>
<td>Normal</td>
<td>0.641</td>
<td>p < 0.089</td>
</tr>
<tr>
<td>Weibull de 3 parámetros</td>
<td>0.376</td>
<td>p < 0.432</td>
</tr>
</tbody>
</table>

Fuente: (Minitab, 2013)

Ejemplo de comparación de distribuciones.

En la Figura 47 se muestra, gráficas de probabilidad son para los mismos datos. Tanto la distribución normal como la distribución de Weibull de 3 parámetros ofrecen un ajuste adecuado a los datos.
Si intenta determinar qué distribución siguen los datos y tiene múltiples estadísticos de Anderson-Darling, generalmente es correcto compararlos. La distribución con el menor estadístico de Anderson-Darling tiene el ajuste más cercano a los datos. Si las distribuciones tienen estadísticos de Anderson-Darling similares, seleccione uno sobre la base del conocimiento práctico.

Algunos comandos generan un estadístico de Anderson-Darling, o AD*, ajustado. El estadístico de Anderson-Darling no ajustado utiliza la función escalonada no paramétrica basada en el método de Kaplan-Meier de calcular puntos de la gráfica, mientras que el estadístico de Anderson-Darling ajustado utiliza otros métodos para calcular los puntos de la gráfica.(Minitab, 2013).

2.10.3 Diagrama de Pareto.

¿Qué es un diagrama de Pareto?

Un diagrama de Pareto es un tipo específico de gráfica de barras donde los valores graficados están establecidos de mayor a menor. Utilice un diagrama de Pareto para identificar los defectos que se originan con mayor periodicidad, las causas más comunes de los defectos o las causas más frecuentes de quejas de los clientes.

El diagrama de Pareto debe su nombre a Vilfredo Pareto y su principio de la "regla 80/20". Es decir, el 20% de las personas controlan el 80% de la riqueza; o el 20% de la línea de producto puede generar el 80% de los desechos; o el 20% de los clientes puede generar el 80% de las quejas, etc.(Elementos básicos de un diagrama de Pareto, 2017).

Elementos que hay que considerar cuando se utiliza un diagrama de Pareto.

El diagrama de Pareto es fácil de comprender y utilizar; sin embargo, es importante tener en cuenta lo siguiente:

a) Datos recolectados durante un corto período de tiempo, principalmente de procesos inestables, pueden llevar a conclusiones incorrectas. Debido a que los datos podrían no ser confiables, usted podría obtener una idea incorrecta de la distribución de defectos y causas. Cuando el proceso no está en control, las causas pueden ser inestables y los pocos problemas vitales pueden cambiar de una semana a la siguiente. Los períodos de tiempo cortos podrían no ser representativos de la totalidad de su proceso.

b) Los datos recopilados durante largos períodos de tiempo pueden incluir cambios. Busque en los datos estratificación o cambios en la distribución del problema en el tiempo.

c) Elija categorías cuidadosamente. Si su análisis de Pareto inicial no produce resultados útiles, es recomendable que se asegure de que sus categorías sean significativas y de que su categoría "otro" no sea demasiado grande.

d) Elija criterios de ponderación cuidadosamente. Por ejemplo, el costo podría ser una medida más útil para asignar prioridades en comparación con el número de ocurrencias, especialmente cuando difieren los costos de varios defectos.

e) Concentrarse en los problemas con la mayor repetición debería reducir el número total de elementos que necesitan reparación. Concentrarse en los problemas con el mayor costo debería aumentar los beneficios financieros de la mejora.

f) La meta de un análisis de Pareto es obtener la máxima recompensa de los esfuerzos de calidad, pero eso no quiere decir que los problemas pequeños
y fáciles de resolver deban ignorarse hasta que se hayan resuelto los problemas más grandes.
La investigación realizada en el Centro Productivo Tenaris Ecuador se realizó en tres fases: (ver Figura 48).

Figura 48. Fases para la implementación del sistema Lean Manufacturing.

A continuación, una descripción de estas fases:

FASE 1. ESTADO INICIAL DE LOS PROCESOS DE FABRICACIÓN DEL CENTRO PRODUCTIVO DE TENARIS ECUADOR: Donde se realizó la evaluación de la situación inicial de los Procesos de Fabricación del Centro Productivo de Tenaris Ecuador para la identificación de actividades que integran cada uno de los procesos.
FASE 2: SELECCIÓN E IMPLEMENTACIÓN DE LA HERRAMIENTAS LEAN MANUFACTURING EN LOS PROCESOS DE FABRICACIÓN. Para el desarrollo de esta fase se realizó la priorización de las herramientas de Lean Manufacturing en la empresa, de acuerdo a la situación inicial de la Fase 1.

FASE 3: VERIFICACIÓN DE LAS MEJORAS ALCANZADAS CON LA HERRAMIENTAS LEAN MANUFACTURING. Dentro del desarrollo de esta fase se realizó la aplicación de las herramientas seleccionadas en la Fase 2 y se recolectaron los datos obtenidos para verificar la mejora alcanzada en los procesos de fabricación del Centro Productivo de Tenaris Ecuador.

A continuación, se presenta la metodología que se utilizó para la aplicación de las herramientas:

1. Análisis del Estado Inicial de los procesos de Fabricación del Centro Productivo de Tenaris Ecuador. Constó de los siguientes pasos.
 a. Levantamiento de Diagrama de Flujo inicial de los procesos de Fabricación.
 b. Levantamiento de información inicial para la identificación de mudas, dentro de este levantamiento se realiza la medición del trabajo con el método de Estudio de Tiempos con Cronómetro.
 c. Toma de 5 muestras iniciales para el cálculo del número de muestras requeridas con el método “Fórmulas Estadísticas”.
 d. Prueba de Normalidad de los datos obtenidos.
 e. Tabulación de los datos para realizar priorización con un diagrama de Pareto.

2. Selección de herramientas de calidad basadas en Lean Manufacturing para los procesos de Fabricación del Centro Productivo de Tenaris Ecuador. Constó de los siguientes pasos:
 a. Elaboración de una matriz de priorización inicial para obtener el impacto de cada herramienta Lean Manufacturing en las actividades de no valor agregado y actividades de valor del negocio detectadas.
b. Elaboración de una matriz de priorización final basada en costos y tiempo de implementación de cada herramienta obtenida de la matriz inicial.

3. Implementación de herramientas de calidad basadas en Lean Manufacturing para los procesos de Fabricación del Centro Productivo de Tenaris Ecuador. Constó de los siguientes pasos:

 a. Implementación de 5S en los procesos de Fabricación del Centro Productivo de Tenaris Ecuador.
 b. Implementación de la Gestión Visual en los procesos de Fabricación del Centro Productivo de Tenaris Ecuador.
 c. Implementación de la Estandarización en los procesos de Fabricación del Centro Productivo de Tenaris Ecuador.
 i. Mejora de Actividades de Valor Agregado para el Negocio y Eliminación de Actividades de No Valor Agregado en los procesos de Fabricación del Centro Productivo de Tenaris Ecuador.
 ii. Actualización de los diagramas de Flujo de los procesos de Fabricación.

4. Verificación de los niveles de mejora alcanzados de las herramientas de calidad basadas en Lean Manufacturing para los procesos de Fabricación del Centro Productivo de Tenaris Ecuador.

 a. Levantamiento de información para la identificación de mudas.
 b. Toma de muestras iniciales para cálculo del número de muestras requeridas de acuerdo al método “Fórmulas Estadísticas”.
 c. Prueba de Normalidad de los datos.
 d. Tabulación de los datos y priorización a través del diagrama de Pareto.

En los siguientes numerales se presenta el desarrollo de las fases indicadas:
3.1 Análisis del Estado Inicial de Los Procesos de “Fabricación” del Centro Productivo de Tenaris Ecuador

Se procedió al análisis del estado inicial de los procesos, considerando los siguientes pasos:

a) Levantamiento del Diagrama de Flujo de los Procesos de Fabricación - Se realizó el levantamiento de los procesos de Fabricación (ver Figura 14 Mapa de Procesos) a través de Diagramas de Flujo de cada uno de ellos, con el objetivo de encontrar las fuentes de desperdicios.

✓ Recolección de la información en sitio y siguiendo la secuencia de los procesos.
✓ Comunicación del recorrido a realizar a todas las áreas y personal operativo de cada uno de los procesos.
✓ Recorrido a lo largo de los procesos de inicio a final.
✓ Levantamiento del diagrama de flujo de procesos.
✓ Confirmación de la información levantada con el personal de Tenaris involucrado de cada proceso, para asegurar su validez.

b) Levantamiento de información para la identificación de mudas con el objetivo de eliminar sistemáticamente el desperdicio y las actividades que no agregan valor de acuerdo al principio Hoshin (Brújula) y a los 7 desperdicios clásicos; a continuación se enlistan los pasos realizados:

✓ Reconocimiento de las actividades que no agregan valor y desperdicios.
✓ Levantamiento de la información de los desperdicios en el formato presentado en el Anexo 2. “Formato de Valor Agregado – No Valor Agregado”. Este formato contiene casillas para registrar las actividades que agregan valor y no agregan valor, y se lo diseñó para que el investigador marque con una raya cada vez que observaba en sitio si las actividades agregaban valor (al cliente o al negocio) o no agregaba valor.
Levantamiento de 5 muestras u observaciones iniciales para la posterior definición de las muestras totales.

Dentro de este levantamiento se realizó la medición del trabajo, donde se aplicó el método de Estudio de Tiempos con Cronómetro que considera que: El tiempo que se toma para la medición de cada actividad determinada es cuando se vuelve a ejecutar la misma operación.

Los pasos que se realizaron para el Estudio de Tiempo fueron:

- Selección de la operación.
- Selección de los trabajadores que desempeñan la operación o proceso.
- Cronometraje y/o grabación de videos de la operación.
- Obtención y registro de la información del tiempo normal en el formato que se presenta en el Anexo2. “Formato de Valor Agregado – No valor Agregado”.

c) Con las muestras iniciales tomadas se realizó el cálculo del número de muestra u observaciones requeridas utilizando el método “Fórmulas Estadísticas”. Este cálculo fue realizado con el software Minitab y las fórmulas aplicadas fueron:

- Fórmula para el número de observaciones necesarias.

\[
N = \left(\frac{K \sigma}{e \bar{x}} \right)^2 + 1
\]

En donde:

- \(N\) = Número de observaciones necesarias.
- \(e\) = Porcentaje de error.
- \(\bar{x}\) = La media aritmética de los tiempos de reloj.
- \(\sigma\) = Desviación estándar.
- \(K\) = El coeficiente de riesgo cuyos valores son:
K=1 para riesgo de error de 32%.
K= 2 para riesgo de error 5%.

Para el cálculo de la desviación típica de la curva de la distribución de frecuencias de los tiempos de reloj obtenidos σ es igual a:

$$\sigma = \sqrt{\frac{\sum f(Xi - \bar{x})^2}{n}}$$

En donde:

$Xi =$ Los valores obtenidos de los tiempos de reloj.
$\bar{x} =$ La media aritmética de los tiempos de reloj.
n= Número de mediciones efectuadas.

d) Se realizó el levantamiento de las muestras de acuerdo al número encontrado en el paso anterior; este levantamiento se realizó de la misma forma que se detalló en el punto 2, utilizando el formato presentado en el Anexo 2. “Formato Valor Agregado – No Valor agregado”.

e) Posterior a este levantamiento se realizó una validación de normalidad de los datos a través del método de Anderson – Darling con el software Minitab.

A continuación, se realizó la tabulación de las actividades que no agregan valor versus las actividades que no agregan valor (desperdicios), para conocer el porcentaje de cada una de ellas.

f) Con la tabulación realizada, se procedió a realizar un diagrama de Pareto para priorizar los desperdicios a cuáles se deben atacar.

A continuación, se presenta la aplicación de los pasos descritos para cada uno de los procesos de fabricación:

✓ Roscado.
3.1.1 Estado Inicial del Proceso de Roscado del Centro Productivo de Tenaris Ecuador.

3.1.1.1 Diagrama de Flujo del Proceso de Roscado.

En la siguiente Figura 49 se presenta el diagrama de flujo levantado del Proceso de Roscado.
Op. 010 - Recepción de Orden de Producción

OP.15 - Puesta a punto de Torno de acuerdo al producto declarado en orden de producción

Op. 020 - Recepción de Tubería para Roscar

Tubo cumple de acuerdo a orden de producción?

SI

Op. 025 - Cambio de Tubería con la correcta

Op. 026 - Cambio de Orden de Producción con la correcta

No

Op. 22 - Notificar a Coordinador de Calidad, Producción y área de Logística

Op. 23 - Ingreso de tubería correcta.

Op. 25 - Cambio de Tubería con la correcta

Op. 26 - Cambio de Orden de Producción con la correcta

Op. 50 - Tubo ingresa a torno a ser procesado

Op. 51 - Torno inicia a realizar medidas

Op. 52 - Torno inicia a roscar

Op. 55 - Retiro de Limalla y viruta de acero

Op. 60 - Salida de Tubo posterior al proceso de roscado

Fin

Figura 49: Diagrama de Flujo de Proceso de Roscado.
3.1.1.2 Levantamiento de Información Proceso de Roscado

En la Tabla 5 se muestran los datos de la clasificación de actividades y tiempos obtenidos de las primeras 5 observaciones realizadas; las actividades se encuentran clasificadas en: de valor agregado, de valor agregado al negocio y de no valor agregado.

Tabla 5 Datos Iniciales del Proceso de Roscado.

<table>
<thead>
<tr>
<th>Nomenclatura</th>
<th>NVA</th>
<th>VAN</th>
<th>VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actividades No Agregan Valor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actividades Agregan Valor al Negocio</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Actividades Agregan Valor</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notas: Operación de Transformación = Manejo de Torno.

En la Tabla 6 se presentan los tiempos cronometrados de las 5 observaciones realizadas transformadas de minutos a segundos:
En la Figura 50 se indica el cálculo del tamaño de la muestra aplicando el software Minitab, considerando: los valores de media aritmética y desviación estándar, tipo de distribución normal, nivel de confianza del 95% e intervalo de confianza bilateral.

![Estadísticos descriptivos: Proceso Roscado](image)

3.1.1.3 Tabulación y Estadística de los Datos Obtenidos del Proceso de Roscado

En la Tabla 7 se presentan los datos de la clasificación de actividades y tiempos obtenidos de las observaciones realizadas de acuerdo al número de muestra.
calculado; las actividades se encuentran clasificadas en: de valor agregado, de valor agregado al negocio y de no valor agregado.

Tabla 7 Datos Finales del Proceso Roscado.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Torre A. Yanguicela</td>
<td>12</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:08:57</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Torre C. Arevalo</td>
<td>15</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:08:43</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Torre C. Arevalo</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:08:50</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Torre C. Arevalo</td>
<td>11</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:08:39</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Torre A. Yanguicela</td>
<td>15</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:08:35</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>Torre A. Yanguicela</td>
<td>13</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:08:49</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Torre C. Arevalo</td>
<td>15</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:08:51</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Torre C. Arevalo</td>
<td>12</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:08:59</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Torre C. Arevalo</td>
<td>14</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:08:49</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Torre A. Yanguicela</td>
<td>15</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:08:53</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Torre A. Yanguicela</td>
<td>12</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:08:48</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Torre A. Yanguicela</td>
<td>13</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:08:55</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Torre C. Arevalo</td>
<td>14</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:08:58</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Torre C. Arevalo</td>
<td>15</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:08:51</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>

Total 2:12:39 360

Nomenclatura.

- **NVA** Actividades No Agregan Valor
- **VAN** Actividades Agregan Valor al Negocio
- **VA** Actividades Agregan Valor

Nota: Operación de Transformación = Manejo de Torno.

En la Tabla 8 se presentan los tiempos cronometrados de las observaciones realizadas transformadas de minutos a segundos:
Tabla 8. Valores de tiempo de trabajo de Observaciones del Proceso de Roscado.

<table>
<thead>
<tr>
<th># Observaciones</th>
<th>Tiempo minutos</th>
<th>Tiempo segundos</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>08:57</td>
<td>537</td>
</tr>
<tr>
<td>2</td>
<td>08:43</td>
<td>523</td>
</tr>
<tr>
<td>3</td>
<td>08:50</td>
<td>530</td>
</tr>
<tr>
<td>4</td>
<td>08:39</td>
<td>519</td>
</tr>
<tr>
<td>5</td>
<td>08:35</td>
<td>515</td>
</tr>
<tr>
<td>6</td>
<td>08:49</td>
<td>529</td>
</tr>
<tr>
<td>7</td>
<td>09:02</td>
<td>542</td>
</tr>
<tr>
<td>8</td>
<td>08:51</td>
<td>531</td>
</tr>
<tr>
<td>9</td>
<td>08:59</td>
<td>539</td>
</tr>
<tr>
<td>10</td>
<td>08:49</td>
<td>529</td>
</tr>
<tr>
<td>11</td>
<td>08:53</td>
<td>533</td>
</tr>
<tr>
<td>12</td>
<td>08:48</td>
<td>528</td>
</tr>
<tr>
<td>13</td>
<td>08:55</td>
<td>535</td>
</tr>
<tr>
<td>14</td>
<td>08:58</td>
<td>538</td>
</tr>
<tr>
<td>15</td>
<td>08:51</td>
<td>531</td>
</tr>
</tbody>
</table>

En la Figura 51 se presentan los datos estadísticos descriptivos de los tiempos cronometrados correspondientes a las muestras tomadas. Se observa que la media aritmética es de 530,60 segundos, con una desviación estándar de 7,41, un valor mínimo de 515,00 segundos y un máximo de 542,00 segundos.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Conteo total</th>
<th>Media</th>
<th>Desv.Estad.</th>
<th>Mínimo</th>
<th>Máximo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proceso Roscado</td>
<td>15</td>
<td>530,60</td>
<td>7,41</td>
<td>515,00</td>
<td>542,00</td>
</tr>
</tbody>
</table>

Figura 51. Cálculos estadísticos descriptivos del tiempo (segundos) - Proceso Roscado (Pantalla Minitab).

En la Figura 52, se encuentra el gráfico de la Prueba de Normalidad con los datos de tiempo realizados usando el método de Anderson – Darling con el software Minitab. Se observa que el valor de “p” es mayor que 0,05; por lo cual se valida que los datos siguen una distribución normal.
Una vez validada la normalidad de datos, se realizó la tabulación de los tipos de actividad (de valor agregado, de valor agregado al negocio y de no valor agregado); estos datos se presentan en la Tabla 9.

En la Tabla 10 se presenta el Porcentaje de Actividades de VA y NVA, del Proceso de Roscado; se observa que el 51% son Actividades de VA, el 27% de VAN y el 22% son de Actividades de NVA, considerando el número de repeticiones de la actividad se muestra que existe actividades de VAN y NVA que tienen mayor porcentaje de participación, las cuales son: Manejo de Herramienta con el 12%, Inspección con el 11% y Espera con el 14%.
Para la priorización de las mejoras en las actividades de valor agregado para el negocio (VAN) y/o eliminación de desperdicios (NVA) se tabularon los datos a través de un Diagrama de Pareto. Este diagrama se presenta en la Figura 53 y en el que se muestra que el 92 % del número de actividades de NVA y VAN se concentran en el 44% de la clasificación: Espera, Manejo de Herramienta, Inspección y Caminado; estas actividades deben ser las primeras en ser gestionadas en el proceso.
Figura 53. Diagrama de Pareto de Proceso de Roscado.

Si bien las actividades del valor agregado para el negocio “Manejo de Herramienta”, “Inspección” y “Manejo de Producto” se encuentran en las categorías de priorización, la estrategia inicial de mejora definida por el equipo, se enfocó en la eliminación de mudas (Espera, Caminado), por lo cual las acciones implementadas se enmarcaron bajo esta premisa.

3.1.2 Estado Inicial del Proceso de Inspección de Rosca del Centro Productivo de Tenaris Ecuador.

3.1.2.1 Diagrama de Flujo del Proceso de Inspección de Rosca.

En la siguiente Figura 54 se presenta el diagrama de flujo levantado del Proceso de Inspección de Rosca.
Figura 54. Diagrama de Flujo de Proceso de Inspección de Rosca.
3.1.2.2 Levantamiento de Información Proceso de Inspección de Rosca

En la Tabla 11 se muestran los datos de la clasificación de actividades y tiempos obtenidos de las primeras 5 observaciones realizadas; las actividades se encuentran clasificadas en: de valor agregado, de valor agregado al negocio y de no valor agregado.

Tabla 11 Datos Iniciales del Proceso de Inspección de Rosca.

FORMATO DE VALOR AGREGADO - NO VALOR AGREGADO

<table>
<thead>
<tr>
<th>Proceso de Inspección de Rosca</th>
<th># Observación</th>
<th>Tiempo minutos</th>
<th>Tiempo segundos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>11:27</td>
<td>687</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>11:20</td>
<td>680</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>11:15</td>
<td>675</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>11:30</td>
<td>690</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>10:59</td>
<td>659</td>
</tr>
</tbody>
</table>
En la Figura 55 se indica el cálculo del tamaño de la muestra aplicando el software Minitab, considerando: los valores de media aritmética y desviación estándar, tipo de distribución normal, nivel de confianza del 95% e intervalo de confianza bilateral.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Conteo total</th>
<th>Media</th>
<th>Desv.Est.</th>
<th>Mínimo</th>
<th>Máximo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proceso Ins. Rosca</td>
<td>5</td>
<td>678,20</td>
<td>12,24</td>
<td>659,00</td>
<td>690,00</td>
</tr>
</tbody>
</table>

Estadísticos descriptivos: Proceso Inspección de Rosca

Tamaño de la muestra para estimación

<table>
<thead>
<tr>
<th>Método</th>
<th>Parámetro</th>
<th>Media</th>
<th>Distribución</th>
<th>Normal</th>
<th>Desviación estándar</th>
<th>12,24 (estimación)</th>
<th>Nivel de confianza</th>
<th>95%</th>
<th>Intervalo de confianza</th>
<th>Bilateral</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Resultados

| Margen de error | Tamaño de la muestra | 5 | 26 |

3.1.2.3 Tabulación y Estadística de los Datos Obtenidos del Proceso de Inspección de Rosca

En la Tabla 13 se presentan los datos de la clasificación de actividades y tiempos obtenidos de las observaciones realizadas de acuerdo al número de muestra calculado; las actividades se encuentran clasificadas en: de valor agregado, de valor agregado al negocio y de no valor agregado.
Tabla 13 Datos Finales del Proceso de Inspección de Rosca.

NOTA: Operación de Transformación = Inspección de Producto.
Inspección = Verificación de Equipos de Medición.

En la Tabla 14 se presentan los tiempos cronometrados de las observaciones realizadas transformadas de minutos a segundos:

≈ 111
Tabla 14. Valores de tiempo de trabajo de Observaciones del Proceso de Inspección de Rosca

<table>
<thead>
<tr>
<th># Observación</th>
<th>Tiempo minutos</th>
<th>Tiempo segundos</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>11:24</td>
<td>684</td>
</tr>
<tr>
<td>2</td>
<td>11:29</td>
<td>689</td>
</tr>
<tr>
<td>3</td>
<td>11:35</td>
<td>695</td>
</tr>
<tr>
<td>4</td>
<td>11:18</td>
<td>678</td>
</tr>
<tr>
<td>5</td>
<td>10:57</td>
<td>657</td>
</tr>
<tr>
<td>6</td>
<td>11:15</td>
<td>675</td>
</tr>
<tr>
<td>7</td>
<td>11:21</td>
<td>681</td>
</tr>
<tr>
<td>8</td>
<td>11:19</td>
<td>679</td>
</tr>
<tr>
<td>9</td>
<td>11:28</td>
<td>688</td>
</tr>
<tr>
<td>10</td>
<td>11:12</td>
<td>672</td>
</tr>
<tr>
<td>11</td>
<td>11:17</td>
<td>677</td>
</tr>
<tr>
<td>12</td>
<td>11:14</td>
<td>674</td>
</tr>
<tr>
<td>13</td>
<td>11:15</td>
<td>675</td>
</tr>
<tr>
<td>14</td>
<td>11:19</td>
<td>679</td>
</tr>
<tr>
<td>15</td>
<td>11:05</td>
<td>665</td>
</tr>
<tr>
<td>16</td>
<td>11:18</td>
<td>678</td>
</tr>
<tr>
<td>17</td>
<td>11:27</td>
<td>687</td>
</tr>
<tr>
<td>18</td>
<td>11:09</td>
<td>669</td>
</tr>
<tr>
<td>19</td>
<td>11:16</td>
<td>676</td>
</tr>
<tr>
<td>20</td>
<td>10:59</td>
<td>659</td>
</tr>
<tr>
<td>21</td>
<td>11:18</td>
<td>678</td>
</tr>
<tr>
<td>22</td>
<td>11:05</td>
<td>665</td>
</tr>
<tr>
<td>23</td>
<td>11:01</td>
<td>661</td>
</tr>
<tr>
<td>24</td>
<td>11:08</td>
<td>668</td>
</tr>
<tr>
<td>25</td>
<td>11:11</td>
<td>671</td>
</tr>
<tr>
<td>26</td>
<td>11:14</td>
<td>674</td>
</tr>
</tbody>
</table>

En la Figura 56 se presentan los datos estadísticos descriptivos de los tiempos cronometrados correspondientes a las muestras tomadas. Se observa que la media aritmética es de 675,15 segundos, con una desviación estándar de 9,33, un valor mínimo de 657,00 segundos y un máximo de 695,00 segundos.
Estadísticos descriptivos: Proceso Ins. Rosca.

<table>
<thead>
<tr>
<th>Variable</th>
<th>total</th>
<th>Media</th>
<th>Desv.Est.</th>
<th>Mínimo</th>
<th>Máximo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proceso Ins. Rosca.</td>
<td>26</td>
<td>675,15</td>
<td>9,33</td>
<td>657,00</td>
<td>695,00</td>
</tr>
</tbody>
</table>

Figura 56. Cálculos estadísticos descriptivos del tiempo (segundos) - Proceso de Inspección de Rosca (Pantalla Minitab).

En la Figura 57, se encuentra el gráfico de la Prueba de Normalidad con los datos de tiempo realizados usando el método de Anderson – Darling con el software Minitab. Se observa que el valor de “p” es mayor que 0,05; por lo cual se valida que los datos siguen una distribución normal.

![Prueba de Normalidad de Proceso Inspección de Rosca](image)

Una vez validada la normalidad de datos, se realizó la tabulación de los tipos de actividad (de valor agregado, de valor agregado al negocio y de no valor agregado); estos datos se presentan en la Tabla 15.
<table>
<thead>
<tr>
<th>ACTIVIDAD</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manejo Torno o transformación</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>8</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>7</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Manejo Herramienta</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>26</td>
<td>27</td>
<td>26</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>27</td>
<td>26</td>
<td>28</td>
<td>29</td>
<td>28</td>
</tr>
<tr>
<td>Manejo de Producto</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>7</td>
<td>10</td>
<td>8</td>
<td>9</td>
<td>11</td>
<td>10</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>Inspección</td>
<td>11</td>
<td>12</td>
<td>13</td>
<td>11</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>12</td>
<td>11</td>
<td>11</td>
<td>13</td>
<td>14</td>
</tr>
<tr>
<td>Caminado</td>
<td>29</td>
<td>30</td>
<td>28</td>
<td>27</td>
<td>24</td>
<td>24</td>
<td>26</td>
<td>24</td>
<td>25</td>
<td>29</td>
<td>28</td>
<td>29</td>
<td>28</td>
<td>27</td>
</tr>
<tr>
<td>Espera</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Reproceso</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Inventario</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Sobreproducción</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Otros</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>85</td>
<td>89</td>
<td>86</td>
<td>79</td>
<td>81</td>
<td>79</td>
<td>84</td>
<td>88</td>
<td>91</td>
<td>88</td>
<td>82</td>
<td>83</td>
<td>87</td>
<td>88</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACTIVIDAD</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manejo Torno o transformación</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>148</td>
</tr>
<tr>
<td>Manejo Herramienta</td>
<td>26</td>
<td>28</td>
<td>26</td>
<td>27</td>
<td>27</td>
<td>29</td>
<td>28</td>
<td>30</td>
<td>26</td>
<td>27</td>
<td>29</td>
<td>29</td>
<td>717</td>
</tr>
<tr>
<td>Manejo de Producto</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>220</td>
</tr>
<tr>
<td>Inspección</td>
<td>15</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>14</td>
<td>12</td>
<td>11</td>
<td>12</td>
<td>12</td>
<td>10</td>
<td>11</td>
<td>10</td>
<td>312</td>
</tr>
<tr>
<td>Caminado</td>
<td>24</td>
<td>26</td>
<td>26</td>
<td>25</td>
<td>25</td>
<td>24</td>
<td>27</td>
<td>25</td>
<td>29</td>
<td>27</td>
<td>28</td>
<td>28</td>
<td>693</td>
</tr>
<tr>
<td>Espera</td>
<td>2</td>
<td>52</td>
</tr>
<tr>
<td>Reproceso</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>39</td>
</tr>
<tr>
<td>Inventario</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>Sobreproducción</td>
<td>0</td>
</tr>
<tr>
<td>Otros</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>82</td>
<td>86</td>
<td>85</td>
<td>86</td>
<td>83</td>
<td>84</td>
<td>81</td>
<td>85</td>
<td>83</td>
<td>82</td>
<td>84</td>
<td>84</td>
<td>2195</td>
</tr>
</tbody>
</table>
En la Tabla 16 se presenta el Porcentaje de Actividades de VA y NVA, del Proceso de Inspección de Rosca; se observa que el 7% son Actividades de VA, el 57% de VAN y el 36% son de Actividades de NVA, considerando el número de repeticiones de la actividad se muestra que existe actividades de VAN y NVA que tienen mayor porcentaje de participación, las cuales son: Manejo de Herramienta con el 33%, Caminando con el 32% e Inspección con el 14%.

Tabla 16. Porcentaje de Actividades de VA y NVA. Proceso de Inspección de Rosca.

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Promedio del número de repeticiones por Actividad</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manejo Torno o transformación</td>
<td>5,69</td>
<td>7%</td>
</tr>
<tr>
<td>Manejo Herramienta</td>
<td>27,58</td>
<td>33%</td>
</tr>
<tr>
<td>Manejo de Producto</td>
<td>8,46</td>
<td>10%</td>
</tr>
<tr>
<td>Inspección</td>
<td>12,00</td>
<td>14%</td>
</tr>
<tr>
<td>Caminado</td>
<td>26,65</td>
<td>32%</td>
</tr>
<tr>
<td>Espera</td>
<td>2,00</td>
<td>2%</td>
</tr>
<tr>
<td>Reproceso</td>
<td>1,50</td>
<td>2%</td>
</tr>
<tr>
<td>Inventario</td>
<td>0,54</td>
<td>1%</td>
</tr>
<tr>
<td>Sobreproducción</td>
<td>0,00</td>
<td>0%</td>
</tr>
<tr>
<td>Otros</td>
<td>0,00</td>
<td>0%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>84,42</td>
<td>100%</td>
</tr>
</tbody>
</table>

Para la priorización de las mejoras en las actividades de valor agregado para el negocio (VAN) y/o eliminación de desperdicios (NVA) se tabularon los datos a través de un Diagrama de Pareto. Este diagrama se presenta en la Figura 58 y en el que se muestra que el 84 % del número de actividades de NVA y VAN se concentran en el 33% de la clasificación: Manejo de Herramienta, Caminado e Inspección; estas actividades deben ser las primeras en ser gestionadas en el proceso.
Figura 58. Diagrama de Pareto de Proceso de Inspección de Rosca.

Si bien las actividades del valor agregado para el negocio “Manejo de Herramienta”, “Inspección” y “Manejo de Producto” se encuentran en las categorías de priorización, la estrategia inicial de mejora definida por el equipo, se enfocó en la eliminación de mudas (Espera, Caminado, Reproceso), por lo cual las acciones implementadas se enmarcaron bajo esta premisa.

3.1.3 Estado Inicial del Proceso de Pruebas No Destructivas (NDT) del Centro Productivo de Tenaris Ecuador.

3.1.3.1 Diagrama de Flujo del Proceso de NDT.

En la siguiente Figura 59 se presenta el diagrama de flujo levantado del Proceso de NDT.
Figura 59. Diagrama de Flujo de Proceso de NDT.
3.1.3.2 Levantamiento de Información Proceso de NDT

En la Tabla 17 se muestran los datos de la clasificación de actividades y tiempos obtenidos de las primeras 5 observaciones realizadas; las actividades se encuentran clasificadas en: de valor agregado, de valor agregado al negocio y de no valor agregado.

Tabla 17. Datos Iniciales del Proceso de NDT.

<table>
<thead>
<tr>
<th>Area/Proceso</th>
<th>Producto</th>
<th>Fecha</th>
<th>Elaboró:</th>
<th>Observación 1</th>
<th>Observación 2</th>
<th>Observación 3</th>
<th>Observación 4</th>
<th>Observación 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabricación de Tuberia</td>
<td>Tubing 3 1/2</td>
<td>23/7/2014</td>
<td>Mauricio Gueney</td>
<td>02:19</td>
<td>139</td>
<td>02:25</td>
<td>145</td>
<td>02:21</td>
</tr>
<tr>
<td>Fabricación de Tuberia</td>
<td>Tubing 3 1/2</td>
<td>23/7/2014</td>
<td>Mauricio Gueney</td>
<td>02:21</td>
<td>141</td>
<td>02:28</td>
<td>148</td>
<td>02:21</td>
</tr>
</tbody>
</table>

Nota: Operación de Transformación = Inspección de Producto.
Inspección = Verificación de Equipos de Medición.

En la Tabla 18 se presentan los tiempos cronometrados de las 5 observaciones realizadas transformadas de minutos a segundos:

Tabla 18. Valores de tiempo de trabajo del Proceso de NDT

<table>
<thead>
<tr>
<th>Proceso NDT</th>
<th># Observaciones</th>
<th>Tiempo de Trabajo (minutos)</th>
<th>Tiempo de Trabajo (segundos)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>02:19</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>02:25</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>02:21</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>02:28</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>02:21</td>
<td>141</td>
</tr>
</tbody>
</table>
En la Figura 60 se indica el cálculo del tamaño de la muestra aplicando el software Minitab, considerando: los valores de media aritmética y desviación estándar, tipo de distribución normal, nivel de confianza del 95% e intervalo de confianza bilateral.

Estadísticos descriptivos: Proceso NDT

<table>
<thead>
<tr>
<th>Variable</th>
<th>Conteo total</th>
<th>Media</th>
<th>Desv.Est.</th>
<th>Mínimo</th>
<th>Máximo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proceso NDT</td>
<td>5</td>
<td>142,80</td>
<td>3,63</td>
<td>139,00</td>
<td>148,00</td>
</tr>
</tbody>
</table>

Tamaño de la muestra para estimación

<table>
<thead>
<tr>
<th>Método</th>
<th>Parámetro</th>
<th>Media</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Distribución</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td>Desviación estándar</td>
<td>3,63 (estimación)</td>
</tr>
<tr>
<td></td>
<td>Nivel de confianza</td>
<td>95%</td>
</tr>
<tr>
<td></td>
<td>Intervalo de confianza</td>
<td>Bilateral</td>
</tr>
</tbody>
</table>

Resultados

<table>
<thead>
<tr>
<th>Tamaño de la muestra</th>
<th>Margen de error</th>
<th>Tamaño de la muestra</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Figura 60. Cálculo del tamaño de la muestra. Proceso NDT (Pantalla Minitab).

3.1.3.3 Tabulación y Estadística de los Datos Obtenidos Proceso de NDT.

En la Tabla 19 se presentan los datos de la clasificación de actividades y tiempos obtenidos de las observaciones realizadas de acuerdo al número de muestra calculado; las actividades se encuentran clasificadas en: de valor agregado, de valor agregado al negocio y de no valor agregado.
Tabla 19 Datos Finales del Proceso de NDT

Nota: Operación de Transformación = Inspección de Producto.
Inspección = Verificación de Equipos de Medición.

En la Tabla 20 se presentan los tiempos cronometrados de las observaciones realizadas transformadas de minutos a segundos:

Tabla 20. Valores de tiempo de trabajo de finales del Proceso de NDT.

<table>
<thead>
<tr>
<th>Proceso NDT</th>
<th># Observaciones</th>
<th>Tiempo minutos</th>
<th>Tiempo segundos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>02:18</td>
<td>138</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>02:15</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>02:21</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>02:24</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>02:17</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>02:15</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>02:25</td>
<td>145</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>02:24</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>02:09</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>02:11</td>
<td>131</td>
</tr>
</tbody>
</table>
En la Figura 61 se presentan los datos estadísticos descriptivos de los tiempos cronometrados correspondientes a las muestras tomadas. Se observa que la media aritmética es de 139,80 segundos, con una desviación estándar de 6,32, un valor mínimo de 129,00 segundos y un máximo de 148,00 segundos.

<table>
<thead>
<tr>
<th>Variable</th>
<th>total</th>
<th>Media</th>
<th>Desv.Est.</th>
<th>Mínimo</th>
<th>Máximo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proceso NDT.</td>
<td>10</td>
<td>139,80</td>
<td>6,32</td>
<td>129,00</td>
<td>148,00</td>
</tr>
</tbody>
</table>

Figura 61. Cálculos estadísticos descriptivos del tiempo (segundos) - Proceso de NDT (Pantalla Minitab).

En la Figura 62, se encuentra el gráfico de la Prueba de Normalidad con los datos de tiempo realizados usando el método de Anderson – Darling con el software Minitab. Se observa que el valor de “p” es mayor que 0,05; por lo cual se valida que los datos siguen una distribución normal.

Una vez validada la normalidad de datos, se realizó la tabulación de los tipos de actividad (de valor agregado, de valor agregado al negocio y de no valor agregado); estos datos se presentan en la Tabla 21.

Tabla 21. Tabulación de Datos de Clasificación de actividades VA y NVA del Proceso de NDT.

<table>
<thead>
<tr>
<th>ACTIVIDAD</th>
<th># Repeticiones de Actividad durante proceso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operación de transformación</td>
<td>6 6 5 6 6 6 6 6 6 6 58</td>
</tr>
<tr>
<td>Manejo Herramienta</td>
<td>3 2 3 2 3 2 3 2 3 3 26</td>
</tr>
<tr>
<td>Manejo de Producto</td>
<td>2 2 2 1 2 2 1 1 2 1 16</td>
</tr>
<tr>
<td>Inspección</td>
<td>0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Caminado</td>
<td>2 2 2 2 2 2 2 2 2 2 20</td>
</tr>
<tr>
<td>Espera</td>
<td>3 3 3 3 3 3 3 3 3 3 29</td>
</tr>
<tr>
<td>Reproceso</td>
<td>0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Inventario</td>
<td>0 1 0 0 0 1 2 0 0 0 4</td>
</tr>
<tr>
<td>Sobreproducción</td>
<td>0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>Otros</td>
<td>0 0 0 0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>16 16 14 15 14 17 17 14 15 15 153</td>
</tr>
</tbody>
</table>

En la Tabla 22 se presenta el Porcentaje de Actividades de VA y NVA, del Proceso de NDT; se observa que el 38% son Actividades de VA, el 27% de VAN y el 35% son de Actividades de NVA, considerando el número de repeticiones de la actividad se muestra que existe actividades de VAN y NVA que tienen mayor porcentaje de participación, las cuales son: Espera con el 19%, Manejo de Herramienta con el 17% y Caminado con el 13%.
Para la priorización de las mejoras en las actividades de valor agregado para el negocio (VAN) y/o eliminación de desperdicios (NVA) se tabularon los datos a través de un Diagrama de Pareto. Este diagrama se presenta en la Figura 63 y en el que se muestra que el 79 % del número de actividades de NVA y VAN se concentran en el 33% de la clasificación: Espera, Manejo de Herramienta y Caminado; estas actividades deben ser las primeras en ser gestionadas en el proceso.
Figura 63. Diagrama de Pareto de Proceso de NDT.

Si bien las actividades del valor agregado para el negocio “Manejo de Herramienta” y “Manejo de Producto” se encuentran en las categorías de priorización, la estrategia inicial de mejora definida por el equipo, se enfocó en la eliminación de mudas (Espera, Caminado), por lo cual las acciones implementadas se enmarcaron bajo esta premisa.

3.1.4 Estado Inicial del Proceso de Acoplado y Paso del Mandril en Punta del Centro Productivo de Tenaris Ecuador.

3.1.4.1 Diagrama de Flujo Del Proceso Acoplado y Paso del Mandril.

En la siguiente Figura 64 se presenta el diagrama de flujo levantado del Proceso de Acoplado y Paso Mandril.

Dentro del Proceso de Acoplado y Paso del Mandril, se presentaron dos sub procesos siendo estos los siguientes: el Sub Proceso de Pre Acoplado que se realiza en una estación de trabajo con un operador y el Sub Proceso de Acoplado Automático el cual es realizado en un equipo de manera automática bajo
vigilancia del mismo operador para las actividades. En la Figura 64 se encuentran identificados los dos subprocesos.

Figura 64. Diagrama de Flujo de Proceso de Acoplado y Paso del Mandril
3.1.4.2 Levantamiento de Información Sub Proceso de Pre Acoplado.
En la Tabla 23 se muestran los datos de la clasificación de actividades y tiempos obtenidos de las primeras 5 observaciones realizadas; las actividades se encuentran clasificadas en: de valor agregado, de valor agregado al negocio y de no valor agregado.

Tabla 23. Datos Iniciales del Sub Proceso de Pre Acoplado.

<table>
<thead>
<tr>
<th>ACTIVIDADES DE VALOR AGREGADO</th>
<th>ACTIVIDADES DE VALOR AGREGADO AL NEGOCIO</th>
<th>ACTIVIDADES DE NO VALOR AGREGADO (DESPERDICIOS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>----------------</td>
<td>----------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Sub Proceso de Pre Acoplado</td>
<td>A. Yanguicela</td>
<td>2</td>
</tr>
<tr>
<td>Sub Proceso de Pre Acoplado</td>
<td>A. Yanguicela</td>
<td>2</td>
</tr>
<tr>
<td>Sub Proceso de Pre Acoplado</td>
<td>R. Tayan</td>
<td>2</td>
</tr>
<tr>
<td>Sub Proceso de Pre Acoplado</td>
<td>R. Tayan</td>
<td>2</td>
</tr>
<tr>
<td>Sub Proceso de Pre Acoplado</td>
<td>R. Tayan</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nomenclatura.
- **NVA**: Actividades No Agregan Valor
- **VAN**: Actividades Agregan Valor al Negocio
- **VA**: Actividades Agregan Valor

Nota: Operación de Transformación = Colocación de Acople (Cupla).
Inspección = Verificación de Equipos de Medición.

En la Tabla 24 se presentan los tiempos cronometrados de las 5 observaciones realizadas transformadas de minutos a segundos:

Tabla 24. Valores de tiempo de trabajo del Sub Proceso de Pre Acoplado.
En la Figura 65 se indica el cálculo del tamaño de la muestra aplicando el software Minitab, considerando: los valores de media aritmética y desviación estándar, tipo de distribución normal, nivel de confianza del 95% e intervalo de confianza bilateral.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Conteo</th>
<th>Media</th>
<th>Desv.Est.</th>
<th>Mínimo</th>
<th>Máximo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proceso Pre Acoplado</td>
<td>5</td>
<td>180,20</td>
<td>9,44</td>
<td>169,00</td>
<td>195,00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Método</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Parámetro</td>
<td>Media</td>
<td>Normal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distribución</td>
<td>Normal</td>
<td>Normal</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desviación estándar</td>
<td>9,44</td>
<td>9,44</td>
<td>(estimación)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nivel de confianza</td>
<td>95%</td>
<td>95%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervalo de confianza</td>
<td>Bilateral</td>
<td>Bilateral</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Resultados</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Tamaño de la muestra</td>
<td>5</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Margen de error</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figura 65. Cálculo del tamaño de la muestra. Sub Proceso de Pre Acoplado (Pantalla Minitab).

3.1.4.3 Tabulación y Estadística de los Datos Obtenidos Sub Proceso de Pre Acoplado.
En la Tabla 25 se presentan los datos de la clasificación de actividades y tiempos obtenidos de las observaciones realizadas de acuerdo al número de muestra calculado; las actividades se encuentran clasificadas en: de valor agregado, de valor agregado al negocio y de no valor agregado.

Tabla 25 Datos Finales del Sub Proceso de Pre Acoplado.

FORMATO DE VALOR AGREGADO - NO VALOR AGREGADO

<table>
<thead>
<tr>
<th>Proceso N° Ope.</th>
<th>Nombre Operario</th>
<th>Operación de transformación</th>
<th>Manejo Herramienta (Movimiento Inecesario)</th>
<th>Manejo de tubo (Movimiento Inecesario)</th>
<th>Inspección</th>
<th>Caminado (Transportar)</th>
<th>Espera</th>
<th>Reproceso</th>
<th>Inventario</th>
<th>Sobreproducción</th>
<th>Otros</th>
<th>Tiempo de Trabajo (minutos)</th>
<th>Cantidad Total de Actividades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub Proceso de Pre Aceptado</td>
<td>A. Yanguicela</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02:47</td>
<td>18</td>
</tr>
<tr>
<td>Sub Proceso de Pre Aceptado</td>
<td>A. Yanguicela</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02:39</td>
<td>18</td>
</tr>
<tr>
<td>Sub Proceso de Pre Aceptado</td>
<td>R. Tayan</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>03:00</td>
<td>19</td>
</tr>
<tr>
<td>Sub Proceso de Pre Aceptado</td>
<td>R. Tayan</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>03:02</td>
<td>21</td>
</tr>
<tr>
<td>Sub Proceso de Pre Aceptado</td>
<td>R. Tayan</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02:47</td>
<td>18</td>
</tr>
<tr>
<td>Sub Proceso de Pre Aceptado</td>
<td>A. Yanguicela</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02:45</td>
<td>19</td>
</tr>
<tr>
<td>Sub Proceso de Pre Aceptado</td>
<td>A. Yanguicela</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02:35</td>
<td>19</td>
</tr>
<tr>
<td>Sub Proceso de Pre Aceptado</td>
<td>R. Tayan</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02:49</td>
<td>20</td>
</tr>
<tr>
<td>Sub Proceso de Pre Aceptado</td>
<td>R. Tayan</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>03:00</td>
<td>21</td>
</tr>
<tr>
<td>Sub Proceso de Pre Aceptado</td>
<td>A. Yanguicela</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02:56</td>
<td>20</td>
</tr>
<tr>
<td>Sub Proceso de Pre Aceptado</td>
<td>A. Yanguicela</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02:40</td>
<td>19</td>
</tr>
<tr>
<td>Sub Proceso de Pre Aceptado</td>
<td>R. Tayan</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>03:09</td>
<td>21</td>
</tr>
<tr>
<td>Sub Proceso de Pre Aceptado</td>
<td>R. Tayan</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02:42</td>
<td>20</td>
</tr>
<tr>
<td>Sub Proceso de Pre Aceptado</td>
<td>A. Yanguicela</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02:58</td>
<td>23</td>
</tr>
<tr>
<td>Sub Proceso de Pre Aceptado</td>
<td>A. Yanguicela</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02:59</td>
<td>18</td>
</tr>
<tr>
<td>Sub Proceso de Pre Aceptado</td>
<td>R. Tayan</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02:55</td>
<td>20</td>
</tr>
<tr>
<td>Sub Proceso de Pre Aceptado</td>
<td>A. Yanguicela</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02:58</td>
<td>22</td>
</tr>
</tbody>
</table>

Total 48:44 336

Nomenclatura.

NVA	Actividades No Agregan Valor
VAN	Actividades Agregan Valor al Negocio
VA	Actividades Agregan Valor

Nota: Operación de Transformación = Colocación de Acople (Cupla). Inspección = Verificación de Equipos de Medición.

En la Tabla 26 se presentan los tiempos cronometrados de las observaciones realizadas transformadas de minutos a segundos:
En la Figura 66 se presentan los datos estadísticos descriptivos de los tiempos cronometrados correspondientes a las muestras tomadas. Se observa que la media aritmética es de 171,50 segundos, con una desviación estándar de 9,62, un valor mínimo de 155,00 segundos y un máximo de 189,00 segundos.

<table>
<thead>
<tr>
<th>Sub Proceso de Pre Acoplado</th>
</tr>
</thead>
<tbody>
<tr>
<td># Observaciones</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>17</td>
</tr>
</tbody>
</table>

En la Figura 67, se encuentra el gráfico de la Prueba de Normalidad con los datos de tiempo realizados usando el método de Anderson – Darling con el software Minitab. Se observa que el valor de “p” es mayor que 0,05; por lo cual se valida que los datos siguen una distribución normal.
Una vez validada la normalidad de datos, se realizó la tabulación de los tipos de actividad (de valor agregado, de valor agregado al negocio y de no valor agregado); estos datos se presentan en la Tabla 27.

Tabla 27. Tabulación de Datos de Clasificación de actividades VA y NVA del Sub Proceso de Pre Acoplado.
<table>
<thead>
<tr>
<th>ACTIVIDAD</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operación de</td>
<td>2</td>
</tr>
<tr>
<td>transformación</td>
<td></td>
</tr>
<tr>
<td>Manejo Herramienta</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Manejo de Producto</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Inspección</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Caminado</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Espera</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Reproceso</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Inventario</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sobreproducción</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Otros</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>18</td>
<td>18</td>
<td>19</td>
<td>21</td>
<td>18</td>
<td>19</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>20</td>
<td>19</td>
<td>21</td>
</tr>
</tbody>
</table>

Tabla 27 Tabulación de Datos de Clasificación de actividades VA y NVA del Sub Proceso de Pre Acoplado. (Continuación).
En la Tabla 28 se presenta el Porcentaje de Actividades de VA y NVA, del Sub Proceso de Pre Acoplado; se observa que el 10% son Actividades de VA, el 61% de VAN y el 29% son de Actividades de NVA, considerando el número de repeticiones de la actividad se muestra que existe actividades de VAN y NVA que tienen mayor porcentaje de participación, las cuales son: Manejo de Herramienta con el 26%, Manejo de Producto con el 19% e Inspección con el 16%.

<table>
<thead>
<tr>
<th>ACTIVIDAD</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operación de transformación</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>34</td>
</tr>
<tr>
<td>Manejo Herramienta</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>89</td>
</tr>
<tr>
<td>Manejo de Producto</td>
<td>5</td>
<td>6</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>63</td>
</tr>
<tr>
<td>Inspección</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>53</td>
</tr>
<tr>
<td>Caminado</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>52</td>
</tr>
<tr>
<td>Espera</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>44</td>
</tr>
<tr>
<td>Reproceso</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Inventario</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sobreproducción</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Otros</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>20</td>
<td>23</td>
<td>18</td>
<td>20</td>
<td>22</td>
<td>336</td>
</tr>
</tbody>
</table>

Tabla 28. Porcentaje de Actividades de VA y NVA del Sub Proceso de Pre Acoplado.
Para la priorización de las mejoras en las actividades de valor agregado para el negocio (VAN) y/o eliminación de desperdicios (NVA) se tabularon los datos a través de un Diagrama de Pareto. Este diagrama se presenta en la Figura 68 y en el que se muestra que el 85 % del número de actividades de NVA y VAN se concentran en el 44% de la clasificación: Manejo de Herramienta, Manejo de Producto, Inspección y Caminado; estas actividades deben ser las primeras en ser gestionadas en el proceso.

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Promedio del número de repeticiones por Actividad</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operación de transformación</td>
<td>2,00</td>
<td>10%</td>
</tr>
<tr>
<td>Manejo Herramienta</td>
<td>5,24</td>
<td>26%</td>
</tr>
<tr>
<td>Manejo de Producto</td>
<td>3,71</td>
<td>19%</td>
</tr>
<tr>
<td>Inspección</td>
<td>3,12</td>
<td>16%</td>
</tr>
<tr>
<td>Caminado</td>
<td>3,06</td>
<td>15%</td>
</tr>
<tr>
<td>Espera</td>
<td>2,59</td>
<td>13%</td>
</tr>
<tr>
<td>Reproceso</td>
<td>0,06</td>
<td>0%</td>
</tr>
<tr>
<td>Inventario</td>
<td>0,00</td>
<td>0%</td>
</tr>
<tr>
<td>Sobreproducción</td>
<td>0,00</td>
<td>0%</td>
</tr>
<tr>
<td>Otros</td>
<td>0,00</td>
<td>0%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>19,76</td>
<td>100%</td>
</tr>
</tbody>
</table>

Nomenclatura.
- **NVA**: Actividades No Agregan Valor
- **VAN**: Actividades Agregan Valor al Negocio
- **VA**: Actividades Agregan Valor
Figura 68. Diagrama de Pareto de Sub Proceso de Pre Acoplado.

Si bien las actividades del valor agregado para el negocio “Manejo de Herramienta”, “Inspección” y “Manejo de Producto” se encuentran en las categorías de priorización, la estrategia inicial de mejora definida por el equipo, se enfocó en la eliminación de mudas (Espera, Caminado), por lo cual las acciones implementadas se enmarcaron bajo esta premisa.

3.1.4.4 Levantamiento de Información Sub Proceso de Acoplado Automático.

En la Tabla 29 se muestran los datos de la clasificación de actividades y tiempos obtenidos de las primeras 5 observaciones realizadas; las actividades se encuentran clasificadas en: de valor agregado, de valor agregado al negocio y de no valor agregado.
Tabla 29. Datos Iniciales del Sub Proceso de Acoplado Automático.

FORMATO DE VALOR AGREGADO - NO VALOR AGREGADO

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acoplado - Automático</td>
<td>A. Yanguicela</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:02:25</td>
<td>16</td>
</tr>
<tr>
<td>Acoplado - Automático</td>
<td>A. Yanguicela</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:02:37</td>
</tr>
<tr>
<td>Acoplado - Automático</td>
<td>R. Tayan</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:02:28</td>
</tr>
<tr>
<td>Acoplado - Automático</td>
<td>R. Tayan</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:02:31</td>
</tr>
</tbody>
</table>

Total 12:30 76

Nomenclatura.
- NVA: Actividades No Agregan Valor
- UAM: Actividades Agregan Valor a la Negociación
- VA: Actividades Agregan Valor

Nota: Operación de Transformación = Manejo de Equipo Acopladora.
Inspección = Verificación de Equipos de Medición.

En la Tabla 30 se presentan los tiempos cronometrados de las 5 observaciones realizadas transformadas de minutos a segundos:

Tabla 30. Valores de tiempo de trabajo del Sub Proceso de Acoplado Automático.

<table>
<thead>
<tr>
<th>Sub Proceso de Acoplado Automático</th>
<th># Observaciones</th>
<th>Tiempo minutos</th>
<th>Tiempo segundos</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0:02:25</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>0:02:37</td>
<td>157</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>0:02:29</td>
<td>149</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>0:02:28</td>
<td>148</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>0:02:31</td>
<td>151</td>
<td></td>
</tr>
</tbody>
</table>

En la Figura 69 se indica el cálculo del tamaño de la muestra aplicando el software Minitab, considerando: los valores de media aritmética y desviación estándar, tipo de distribución normal, nivel de confianza del 95% e intervalo de confianza bilateral.
Estadísticos descriptivos: Sub Proceso Acoplado Auto

<table>
<thead>
<tr>
<th>Variable</th>
<th>Conteo</th>
<th>total</th>
<th>Media</th>
<th>Desv.Est.</th>
<th>Mínimo</th>
<th>Máximo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proceso Acoplado</td>
<td>5</td>
<td>150,00</td>
<td>4,47</td>
<td>145,00</td>
<td>157,00</td>
<td></td>
</tr>
</tbody>
</table>

Tamaño de la muestra para estimación

<table>
<thead>
<tr>
<th>Método</th>
<th>Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parámetro</td>
<td>Media</td>
</tr>
<tr>
<td>Distribución</td>
<td>Normal</td>
</tr>
<tr>
<td>Desviación estándar</td>
<td>4,47 (estimación)</td>
</tr>
<tr>
<td>Nivel de confianza</td>
<td>95%</td>
</tr>
<tr>
<td>Intervalo de confianza</td>
<td>Bilateral</td>
</tr>
</tbody>
</table>

Resultados

<table>
<thead>
<tr>
<th>Margen de error</th>
<th>Tamaño de la muestra</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
</tr>
</tbody>
</table>

Figura 69. Cálculo del tamaño de la muestra. Sub Proceso Acoplado Automático (Pantalla Minitab).

3.1.4.5 Tabulación y Estadística de los Datos Obtenidos Sub Proceso de Acoplado Automático.

En la Tabla 31 se presentan los datos de la clasificación de actividades y tiempos obtenidos de las observaciones realizadas de acuerdo al número de muestra calculado; las actividades se encuentran clasificadas en: de valor agregado, de valor agregado al negocio y de no valor agregado.
Tabla 31 Datos Finales del Sub Proceso de Pre Acoplado.

FORMATO DE VALOR AGREGADO - NO VALOR AGREGADO

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acoplado - Automático</td>
<td>A. Yanguicela</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:02:23</td>
<td>15</td>
</tr>
<tr>
<td>Acoplado - Automático</td>
<td>A. Yanguicela</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:02:26</td>
<td>16</td>
</tr>
<tr>
<td>Acoplado - Automático</td>
<td>R. Tayan</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:02:20</td>
<td>17</td>
</tr>
<tr>
<td>Acoplado - Automático</td>
<td>R. Tayan</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:02:19</td>
<td>16</td>
</tr>
<tr>
<td>Acoplado - Automático</td>
<td>R. Tayan</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:02:20</td>
<td>16</td>
</tr>
<tr>
<td>Acoplado - Automático</td>
<td>A. Yanguicela</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:02:22</td>
<td>15</td>
</tr>
<tr>
<td>Acoplado - Automático</td>
<td>A. Yanguicela</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:02:27</td>
<td>16</td>
</tr>
<tr>
<td>Acoplado - Automático</td>
<td>A. Yanguicela</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:02:25</td>
<td>17</td>
</tr>
<tr>
<td>Acoplado - Automático</td>
<td>R. Tayan</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:02:28</td>
<td>16</td>
</tr>
<tr>
<td>Acoplado - Automático</td>
<td>R. Tayan</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:02:30</td>
<td>15</td>
</tr>
</tbody>
</table>

Total 0:24:00 159

Nomenclatura.

- NVA: Actividades No Agregan Valor
- VAN: Actividades Agregan Valor al Negocio
- VA: Actividades Agregan Valor

Nota: Operación de Transformación = Manejo de Equipo Acopladora.
Inspección = Verificación de Equipos de Medición.

En la Tabla 32 se presentan los tiempos cronometrados de las observaciones realizadas transformadas de minutos a segundos:
En la Figura 70 se presentan los datos estadísticos descriptivos de los tiempos cronometrados correspondientes a las muestras tomadas. Se observa que la media aritmética es de 144,08 segundos, con una desviación estándar de 3,48, un valor mínimo de 139,00 segundos y un máximo de 150,00 segundos.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Conteo</th>
<th>Media</th>
<th>Desv.Est.</th>
<th>Mínimo</th>
<th>Máximo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proceso Acoplado</td>
<td>12</td>
<td>144,08</td>
<td>3,48</td>
<td>139,00</td>
<td>150,00</td>
</tr>
</tbody>
</table>

Figura 70. Cálculos estadísticos descriptivos del tiempo (segundos) – Sub Proceso de Acoplado Automático (Pantalla Minitab).

En la Figura 71, se encuentra el gráfico de la Prueba de Normalidad con los datos de tiempo realizados usando el método de Anderson – Darling con el software Minitab. Se observa que el valor de “p” es mayor que 0,05; por lo cual se valida que los datos siguen una distribución normal.
Una vez validada la normalidad de datos, se realizó la tabulación de los tipos de actividad (de valor agregado, de valor agregado al negocio y de no valor agregado); estos datos se presentan en la Tabla 33.
Tabla 33. Tabulación de Datos de Clasificación de actividades VA y NVA del Sub Proceso de Pre Acoplado.

Tabulación de datos

<table>
<thead>
<tr>
<th>ACTIVIDAD</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>N° Repeticiones de Actividad durante proceso</td>
<td></td>
</tr>
<tr>
<td>Operación de transformación</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Manejo Herramienta</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Manejo de Producto</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Inspección</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Caminado</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Espera</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Reproceso</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Inventario</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sobre producción</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Otros</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>16</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>16</td>
<td>15</td>
<td>159</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nomenclatura.</th>
<th>NVA</th>
<th>VAN</th>
<th>VA</th>
</tr>
</thead>
<tbody>
<tr>
<td>NVA</td>
<td>Actividades No Agregan Valor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAN</td>
<td>Actividades Agregan Valor al Negocio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA</td>
<td>Actividades Agregan Valor</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

En la Tabla 34 se presenta el Porcentaje de Actividades de VA y NVA, del Sub Proceso de Acoplado Automático; se observa que el 13% son Actividades de VA, el 47% de VAN y el 41% son de Actividades de NVA, considerando el número de repeticiones de la actividad se muestra que existe actividades de VAN y NVA que tienen mayor porcentaje de participación, las cuales son: Espera con el 31%, Manejo de Producto con el 25% y Manejo de Herramienta con el 15%.
Para la priorización de las mejoras en las actividades de valor agregado para el negocio (VAN) y/o eliminación de desperdicios (NVA) se tabularon los datos a través de un Diagrama de Pareto. Este diagrama se presenta en la Figura 72 y en el que se muestra que el 82 % del número de actividades de NVA y VAN se concentran en el 33% de la clasificación: Espera, Manejo de Producto y Manejo de Herramienta; estas actividades deben ser las primeras en ser gestionadas en el proceso.
Si bien las actividades del valor agregado para el negocio “Manejo de Herramienta”, “Inspección” y “Manejo de Producto” se encuentran en las categorías de priorización, la estrategia inicial de mejora definida por el equipo, se enfocó en la eliminación de mudas (Espera, Caminado), por lo cual las acciones implementadas se enmarcaron bajo esta premisa.

3.1.5 Estado Inicial del Proceso de Pesaje, Medición y Marcación (BME) del Centro Productivo de Tenaris Ecuador.

3.1.5.1 Diagrama de Flujo del Proceso de BME.

En la siguiente Figura 73 se presenta el diagrama de flujo levantado del Proceso de BME.
Figura 73. Diagrama de Flujo de Proceso de BME.
3.1.5.2 Levantamiento de Información Proceso de BME

En la Tabla 35 se muestran los datos de la clasificación de actividades y tiempos obtenidos de las primeras 5 observaciones realizadas; las actividades se encuentran clasificadas en: de valor agregado, de valor agregado al negocio y de no valor agregado.

Tabla 35. Datos Iniciales del Proceso de BME.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Medición y Marcación</td>
<td>J. Quinalluisa</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02:31</td>
</tr>
<tr>
<td>Medición y Marcación</td>
<td>J. Quinalluisa</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02:47</td>
</tr>
<tr>
<td>Medición y Marcación</td>
<td>M. Tayupanta</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02:51</td>
</tr>
<tr>
<td>Medición y Marcación</td>
<td>M. Tayupanta</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02:54</td>
</tr>
<tr>
<td>Medición y Marcación</td>
<td>M. Tayupanta</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02:28</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>13:31</td>
</tr>
</tbody>
</table>

Nomenclatura.

<table>
<thead>
<tr>
<th>NVA</th>
<th>Actividades No Agregan Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAN</td>
<td>Actividades Agregan Valor al Negocio</td>
</tr>
<tr>
<td>VA</td>
<td>Actividades Agregan Valor</td>
</tr>
</tbody>
</table>

Nota: Operación de Transformación = Colocación de Protecciones, Inspección de Producto y Marcado.

Inspección = Verificación de Equipos de Medición.

En la Tabla 36 se presentan los tiempos cronometrados de las 5 observaciones realizadas transformadas de minutos a segundos:
Tabla 36. Valores de tiempo de trabajo del Proceso BME.

<table>
<thead>
<tr>
<th># Observaciones</th>
<th>Tiempo minutos</th>
<th>Tiempo segundos</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>02:31</td>
<td>151</td>
</tr>
<tr>
<td>2</td>
<td>02:47</td>
<td>167</td>
</tr>
<tr>
<td>3</td>
<td>02:51</td>
<td>171</td>
</tr>
<tr>
<td>4</td>
<td>02:54</td>
<td>174</td>
</tr>
<tr>
<td>5</td>
<td>02:28</td>
<td>148</td>
</tr>
</tbody>
</table>

En la Figura 74 se indica el cálculo del tamaño de la muestra aplicando el software Minitab, considerando: los valores de media aritmética y desviación estándar, tipo de distribución normal, nivel de confianza del 95% e intervalo de confianza bilateral.

Estadísticos descriptivos: Proceso BME

<table>
<thead>
<tr>
<th>Variable</th>
<th>Conteo</th>
<th>Media</th>
<th>Desv.Est.</th>
<th>Mínimo</th>
<th>Máximo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proceso BME</td>
<td>5</td>
<td>162,20</td>
<td>11,90</td>
<td>148,00</td>
<td>174,00</td>
</tr>
</tbody>
</table>

Tamaño de la muestra para estimación

<table>
<thead>
<tr>
<th>Método</th>
<th>Parámetro</th>
<th>Media</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Distribución</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td>Desviación estándar</td>
<td>11,9 (estimación)</td>
</tr>
<tr>
<td></td>
<td>Nivel de confianza</td>
<td>95%</td>
</tr>
<tr>
<td></td>
<td>Intervalo de confianza</td>
<td>Bilateral</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Resultados</th>
<th>Tamaño de la muestra</th>
<th>Margen de error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5</td>
<td>25</td>
</tr>
</tbody>
</table>

Figura 74. Cálculo del tamaño de la muestra. Proceso BME (Pantalla Minitab).
3.1.5.3 Tabulación y Estadística de los Datos Obtenidos Proceso de BME.

En la Tabla 37 se presentan los datos de la clasificación de actividades y tiempos obtenidos de las observaciones realizadas de acuerdo al número de muestra calculado; las actividades se encuentran clasificadas en: de valor agregado, de valor agregado al negocio y de no valor agregado.

Tabla 37 Datos Finales del Proceso de NDT.

FORMATO DE VALOR AGREGADO - NO VALOR AGREGADO

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>BME J. Quinaluisa</td>
<td>3 4 4 3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:02:28</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BME J. Quinaluisa</td>
<td>3 4 4 3</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:02:41</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BME M. Tayupanta</td>
<td>2 3</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:02:48</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BME M. Tayupanta</td>
<td>3 2</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:02:50</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BME M. Tayupanta</td>
<td>2 5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:02:39</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BME J. Quinaluisa</td>
<td>2 4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0:02:35</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BME J. Quinaluisa</td>
<td>3 4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:02:25</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BME J. Quinaluisa</td>
<td>3 3</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:02:38</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BME M. Tayupanta</td>
<td>3 5</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:02:40</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BME M. Tayupanta</td>
<td>3 4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0:02:54</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BME M. Tayupanta</td>
<td>3 3</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0:02:26</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BME J. Quinaluisa</td>
<td>2 3</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:02:37</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BME J. Quinaluisa</td>
<td>3 5</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:02:40</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BME J. Quinaluisa</td>
<td>3 3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0:02:49</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BME M. Tayupanta</td>
<td>3 3</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0:02:57</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BME M. Tayupanta</td>
<td>3 3</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:02:37</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BME M. Tayupanta</td>
<td>3 3</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:02:29</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BME J. Quinaluisa</td>
<td>2 4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0:02:39</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BME J. Quinaluisa</td>
<td>3 4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:02:28</td>
<td>21</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BME J. Quinaluisa</td>
<td>3 3</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:02:37</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BME M. Tayupanta</td>
<td>3 4</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0:02:59</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BME M. Tayupanta</td>
<td>2 5</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:02:40</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BME M. Tayupanta</td>
<td>3 5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:02:49</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BME J. Quinaluisa</td>
<td>3 3</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0:02:42</td>
<td>22</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BME J. Quinaluisa</td>
<td>3 2</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:02:55</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total 1:07:09 520

Nota: Operación de Transformación = Colocación de Protecciones, Inspección de Producto y Marcado.

Inspección = Verificación de Equipos de Medición.

En la Tabla 38 se presentan los tiempos cronometrados de las observaciones realizadas transformadas de minutos a segundos:

<table>
<thead>
<tr>
<th>Área/ Proceso: Fabricación de Tubería</th>
<th>Producto: Tubing 3 1/2</th>
<th>Fecha: 19/8/2014</th>
<th>Elaboró: Mauricio Guncay</th>
<th>FORM01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nomenclatura.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NVA Actividades No Agregan Valor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VAN Actividades Agregan Valor al Negocio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VA Actividades Agregan Valor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Para la Figura 75 se presentan los datos estadísticos descriptivos de los tiempos cronometrados correspondientes a las muestras tomadas. Se observa que la media aritmética es de 161,16 segundos, con una desviación estándar de 9,18, un valor mínimo de 145,00 segundos y un máximo de 179,00 segundos.

<table>
<thead>
<tr>
<th># Observaciones</th>
<th>Tiempo minutos</th>
<th>Tiempo segundos</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>02:28</td>
<td>148</td>
</tr>
<tr>
<td>2</td>
<td>02:41</td>
<td>161</td>
</tr>
<tr>
<td>3</td>
<td>02:49</td>
<td>169</td>
</tr>
<tr>
<td>4</td>
<td>02:50</td>
<td>170</td>
</tr>
<tr>
<td>5</td>
<td>02:39</td>
<td>159</td>
</tr>
<tr>
<td>6</td>
<td>02:35</td>
<td>155</td>
</tr>
<tr>
<td>7</td>
<td>02:25</td>
<td>145</td>
</tr>
<tr>
<td>8</td>
<td>02:38</td>
<td>158</td>
</tr>
<tr>
<td>9</td>
<td>02:40</td>
<td>160</td>
</tr>
<tr>
<td>10</td>
<td>02:51</td>
<td>171</td>
</tr>
<tr>
<td>11</td>
<td>02:36</td>
<td>156</td>
</tr>
<tr>
<td>12</td>
<td>02:37</td>
<td>157</td>
</tr>
<tr>
<td>13</td>
<td>02:40</td>
<td>160</td>
</tr>
<tr>
<td>14</td>
<td>02:49</td>
<td>169</td>
</tr>
<tr>
<td>15</td>
<td>02:57</td>
<td>177</td>
</tr>
<tr>
<td>16</td>
<td>02:37</td>
<td>157</td>
</tr>
<tr>
<td>17</td>
<td>02:29</td>
<td>149</td>
</tr>
<tr>
<td>18</td>
<td>02:38</td>
<td>158</td>
</tr>
<tr>
<td>19</td>
<td>02:28</td>
<td>148</td>
</tr>
<tr>
<td>20</td>
<td>02:37</td>
<td>157</td>
</tr>
<tr>
<td>21</td>
<td>02:59</td>
<td>179</td>
</tr>
<tr>
<td>22</td>
<td>02:40</td>
<td>160</td>
</tr>
<tr>
<td>23</td>
<td>02:49</td>
<td>169</td>
</tr>
<tr>
<td>24</td>
<td>02:42</td>
<td>162</td>
</tr>
<tr>
<td>25</td>
<td>02:55</td>
<td>175</td>
</tr>
<tr>
<td>Variable</td>
<td>Conteo</td>
<td>total</td>
</tr>
<tr>
<td>----------------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Proceso BME.</td>
<td>25</td>
<td>161,16</td>
</tr>
</tbody>
</table>

Figura 75. Cálculos estadísticos descriptivos del tiempo (segundos) - Proceso de BME (Pantalla Minitab).

En la Figura 76, se encuentra el gráfico de la Prueba de Normalidad con los datos de tiempo realizados usando el método de Anderson – Darling con el software Minitab. Se observa que el valor de “p” es mayor que 0,05; por lo cual se valida que los datos siguen una distribución normal.

![Prueba de Normalidad de Proceso de BME](image)

Figura 76. Prueba de Normalidad de Proceso BME.

Una vez validada la normalidad de datos, se realizó la tabulación de los tipos de actividad (de valor agregado, de valor agregado al negocio y de no valor agregado); estos datos se presentan en la Tabla 39.
Tabulación de datos

<table>
<thead>
<tr>
<th>ACTIVIDAD</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td># Repeticiones de Actividad durante proceso</td>
<td></td>
</tr>
<tr>
<td>Operación de transformación</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Manejo Herramienta</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Manejo de Producto</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Inspección</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Caminado</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Espera</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Reroceso</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Inventario</td>
<td>0</td>
</tr>
<tr>
<td>Sobreproducción</td>
<td>0</td>
</tr>
<tr>
<td>Otros</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>21</td>
<td>21</td>
<td>17</td>
<td>18</td>
<td>20</td>
<td>21</td>
<td>20</td>
<td>22</td>
<td>23</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td></td>
</tr>
</tbody>
</table>

Tabulación de datos

<table>
<thead>
<tr>
<th>ACTIVIDAD</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td># Repeticiones de Actividad durante proceso</td>
<td></td>
</tr>
<tr>
<td>Operación de transformación</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>67</td>
</tr>
<tr>
<td>Manejo Herramienta</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>90</td>
</tr>
<tr>
<td>Manejo de Producto</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>109</td>
</tr>
<tr>
<td>Inspección</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>70</td>
</tr>
<tr>
<td>Caminado</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>97</td>
</tr>
<tr>
<td>Espera</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>81</td>
</tr>
<tr>
<td>Reroceso</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Inventario</td>
<td>0</td>
</tr>
<tr>
<td>Sobreproducción</td>
<td>0</td>
</tr>
<tr>
<td>Otros</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>19</td>
<td>20</td>
<td>19</td>
<td>20</td>
<td>18</td>
<td>20</td>
<td>19</td>
<td>23</td>
<td>24</td>
<td>26</td>
<td>22</td>
<td>20</td>
<td>520</td>
</tr>
</tbody>
</table>

Nomenclatura.

- **NVA**: Actividades No Agregan Valor
- **VAN**: Actividades Agregan Valor al Negocio
- **VA**: Actividades Agregan Valor
En la Tabla 40 se presenta el Porcentaje de Actividades de VA y NVA, del Proceso de BME; se observa que el 13% son Actividades de VA, el 52% de VAN y el 35% son de Actividades de NVA, considerando el número de repeticiones de la actividad se muestra que existe actividades de VAN y NVA que tienen mayor porcentaje de participación, las cuales son: Manejo de Producto con el 21%, Caminado con el 19%, Manejo de Herramienta con el 17% y Espera con el 13%.

Tabla 40. Porcentaje de Actividades de VA y NVA del Proceso de NDT

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Promedio del número de repeticiones por Actividad</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operación de transformación</td>
<td>2,68</td>
<td>13%</td>
</tr>
<tr>
<td>Manejo Herramienta</td>
<td>3,60</td>
<td>17%</td>
</tr>
<tr>
<td>Manejo de Producto</td>
<td>4,36</td>
<td>21%</td>
</tr>
<tr>
<td>Inspección</td>
<td>2,80</td>
<td>13%</td>
</tr>
<tr>
<td>Caminado</td>
<td>3,88</td>
<td>19%</td>
</tr>
<tr>
<td>Espera</td>
<td>3,24</td>
<td>16%</td>
</tr>
<tr>
<td>Reroceso</td>
<td>0,24</td>
<td>1%</td>
</tr>
<tr>
<td>Inventario</td>
<td>0,00</td>
<td>0%</td>
</tr>
<tr>
<td>Sobreproducción</td>
<td>0,00</td>
<td>0%</td>
</tr>
<tr>
<td>Otros</td>
<td>0,00</td>
<td>0%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>20,8</td>
<td>100%</td>
</tr>
</tbody>
</table>

Nomenclatura.

<table>
<thead>
<tr>
<th>NVA</th>
<th>Actividades No Agregan Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAN</td>
<td>Actividades Agregan Valor al Negocio</td>
</tr>
<tr>
<td>VA</td>
<td>Actividades Agregan Valor</td>
</tr>
</tbody>
</table>

Para la priorización de las mejoras en las actividades de valor agregado para el negocio (VAN) y/o eliminación de desperdicios (NVA) se tabularon los datos a través de un Diagrama de Pareto. Este diagrama se presenta en la Figura 77 y en
el que se muestra que el 83 % del número de actividades de NVA y VAN se concentraron en el 44% de la clasificación: Manejo de Producto, Caminado, Manejo de Herramienta y Espera; las cuales deben ser las primeras atacadas para mejorar el proceso.

Figura 77. Diagrama de Pareto de Proceso de BME.

Si bien las actividades del valor agregado para el negocio “Manejo de Herramienta”, “Inspección” y “Manejo de Producto” se encuentran en las categorías de priorización, la estrategia inicial de mejora definida por el equipo, se enfocó en la eliminación de mudas (Espera, Caminado), por lo cual las acciones implementadas se enmarcaron bajo esta premisa.
3.2 Selección e Implementación de Herramientas de Calidad Basadas en Lean Manufacturing para la Aplicación al Proceso de “Fabricación” del Centro Productivo de Tenaris Ecuador.

Con el conocimiento del estado inicial de los procesos de Fabricación del Centro Productivo de Tenaris Ecuador se puede elegir las herramientas de Lean Manufacturing que tenga un impacto en el mejoramiento de la calidad y producción.

3.2.1 Selección de herramientas de calidad basadas en Lean Manufacturing para la aplicación al proceso de “Fabricación” del Centro Productivo de Tenaris Ecuador.

Para la selección de las Herramientas de Lean Manufacturing se realizó una matriz de priorización, considerando las actividades de valor agregado del negocio y las de no valor agregado identificadas para ser mejoradas y las Herramientas de Lean Manufacturing, para cada uno de los estados de los procesos de fabricación.

El objetivo de esta matriz de priorización es obtener el impacto de cada herramienta Lean Manufacturing versus las actividades identificadas a través del Diagrama de Pareto realizado en cada proceso de Fabricación. Para ello, se tomó el criterio descrito en la Tabla 41.

Tabla 41. Criterios de calificación de acuerdo al impacto de la herramienta evaluada.

<table>
<thead>
<tr>
<th>Calificación</th>
<th>Nivel de Impacto</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Alto</td>
</tr>
<tr>
<td>3</td>
<td>Medio</td>
</tr>
<tr>
<td>1</td>
<td>Bajo</td>
</tr>
</tbody>
</table>
a) Matriz de Priorización del Proceso de Roscado.

En la Tabla 42 se muestra la priorización de acuerdo al impacto de cada herramienta en las actividades priorizadas en el proceso de Roscado. Se observa que las primeras herramientas a ser implementadas son: Mapa de Cadena de Valor, 5 S, Estandarización y Gestión Visual.

<table>
<thead>
<tr>
<th>Desperdicios</th>
<th>Herramientas Lean Manufacturing</th>
<th>Espera</th>
<th>Manejo Herramienta</th>
<th>Inspección</th>
<th>Caminado</th>
<th>Total</th>
<th>Porcentaje</th>
<th>Posición</th>
</tr>
</thead>
<tbody>
<tr>
<td>JIT</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>12</td>
<td>6,2%</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Kaizen</td>
<td>3</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>14</td>
<td>7,2%</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Sistemas de Trabajos Flexibles</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>2,1%</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Mapas de Cadena de Valor</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>20</td>
<td>10,3%</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5S</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>20</td>
<td>10,3%</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Estandarización</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>18</td>
<td>9,3%</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>SMED</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>16</td>
<td>8,2%</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>TPM</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>12</td>
<td>6,2%</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Kanban</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td>10</td>
<td>5,2%</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Heijunka (Producción Suavizada)</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>10</td>
<td>5,2%</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Gestión Visual</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>16</td>
<td>8,2%</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Jidoka</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>16</td>
<td>8,2%</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Andon</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>14</td>
<td>7,2%</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Poka Yoque</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>12</td>
<td>6,2%</td>
<td>9</td>
<td></td>
</tr>
</tbody>
</table>

Total 194 100%
b) **Matriz de Priorización del Proceso de Inspección de Rosca.**

En la Tabla 43 se muestra la priorización de acuerdo al impacto de cada herramienta en los desperdicios presentados en el proceso de Inspección de Rosca, donde se observa que las primeras herramientas a ser implementadas son: Mapa de Cadena de Valor, 5 S, Estandarización y Gestión Visual.

<table>
<thead>
<tr>
<th>Herramientas Lean Manufacturing</th>
<th>Desperdicios</th>
<th>Manejo</th>
<th>Caminado</th>
<th>Inspección</th>
<th>Total</th>
<th>Porcentaje</th>
<th>Posición</th>
</tr>
</thead>
<tbody>
<tr>
<td>JIT</td>
<td>1 5 1</td>
<td>7</td>
<td>4,8%</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaizen</td>
<td>5 3 3</td>
<td>11 7,5%</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sistemas de Trabajos Flexibles</td>
<td>1 1 1</td>
<td>3 2,1%</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mapas de Cadena de Valor</td>
<td>5 5 5</td>
<td>15 10,3%</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5S</td>
<td>5 5 5</td>
<td>15 10,3%</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estandarización</td>
<td>5 5 5</td>
<td>15 10,3%</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMED</td>
<td>1 5 5</td>
<td>11 7,5%</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPM</td>
<td>1 1 5</td>
<td>7 4,8%</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kanban</td>
<td>1 5 5</td>
<td>11 7,5%</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heijunka (Producción Suavizada)</td>
<td>1 1 3</td>
<td>5 3,4%</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gestión Visual</td>
<td>5 5 5</td>
<td>15 10,3%</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jidoka</td>
<td>1 5 5</td>
<td>11 7,5%</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andon</td>
<td>1 5 3</td>
<td>9 6,2%</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poka Yoque</td>
<td>5 1 5</td>
<td>11 7,5%</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>146</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabla 43. Matriz de Priorización del Proceso de Inspección de Rosca.
c) **Matriz de Priorización del Proceso de NDT.**

En la Tabla 44 se muestra la priorización de acuerdo al impacto de cada herramienta en los desperdicios presentados en el proceso de NDT, donde se observa que las primeras herramientas a ser implementadas son: Mapa de Cadena de Valor, 5 S, Estandarización, y Gestión Visual.

Tabla 44. Matriz de Priorización del Proceso de NDT.

<table>
<thead>
<tr>
<th>Desperdicios</th>
<th>Herramientas Lean Manufacturing</th>
<th>Espera</th>
<th>Manejo Herramienta</th>
<th>Caminado</th>
<th>Total</th>
<th>Porcentaje</th>
<th>Posición</th>
</tr>
</thead>
<tbody>
<tr>
<td>JIT</td>
<td>5 1 5</td>
<td>11</td>
<td>7.7%</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaizen</td>
<td>3 5 3</td>
<td>11</td>
<td>7.7%</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sistemas de Trabajos Flexibles</td>
<td>1 1 1</td>
<td>3</td>
<td>2.1%</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mapas de Cadena de Valor</td>
<td>5 5 5</td>
<td>15</td>
<td>10.6%</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5S</td>
<td>5 5 5</td>
<td>15</td>
<td>10.6%</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estandarización</td>
<td>3 5 5</td>
<td>13</td>
<td>9.2%</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMED</td>
<td>5 1 5</td>
<td>11</td>
<td>7.7%</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPM</td>
<td>5 1 1</td>
<td>7</td>
<td>4.9%</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kanban</td>
<td>3 1 5</td>
<td>9</td>
<td>6.3%</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heijunka (Producción Suavizada)</td>
<td>5 1 1</td>
<td>7</td>
<td>4.9%</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gestión Visual</td>
<td>1 5 5</td>
<td>11</td>
<td>7.7%</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jidoka</td>
<td>5 1 5</td>
<td>11</td>
<td>7.7%</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andon</td>
<td>5 1 5</td>
<td>11</td>
<td>7.7%</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poka Yoque</td>
<td>1 5 1</td>
<td>7</td>
<td>4.9%</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>142</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
d) Matriz de Priorización del Sub Proceso de Pre Acoplado.

En la Tabla 45 se muestra la priorización de acuerdo al impacto de cada herramienta en los desperdicios presentados en el sub proceso de Pre Acoplado, donde se observa que las primeras herramientas a ser implementadas son: 5 S, Estandarización, Mapa de Cadena de Valor y Gestión Visual.

Tabla 45. Matriz de Priorización del Sub Proceso de Pre Acoplado.

<table>
<thead>
<tr>
<th>Desperdicios</th>
<th>Manejo Herramienta</th>
<th>Manejo de Producto</th>
<th>Inspección</th>
<th>Cinchado</th>
<th>Total</th>
<th>Porcentaje</th>
<th>Posición</th>
</tr>
</thead>
<tbody>
<tr>
<td>JIT</td>
<td>1 5 1 5</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td>6.3%</td>
<td>10</td>
</tr>
<tr>
<td>Kaizen</td>
<td>5 3 3 3</td>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td>7.4%</td>
<td>7</td>
</tr>
<tr>
<td>Sistemas de Trabajos Flexibles</td>
<td>1 1 1 1</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>2.1%</td>
<td>14</td>
</tr>
<tr>
<td>Mapas de Cadena de Valor</td>
<td>5 3 5 5</td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>9.5%</td>
<td>3</td>
</tr>
<tr>
<td>5S</td>
<td>5 5 5 5</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>10.5%</td>
<td>1</td>
</tr>
<tr>
<td>Estandarización</td>
<td>5 5 5 5</td>
<td></td>
<td></td>
<td></td>
<td>20</td>
<td>10.5%</td>
<td>2</td>
</tr>
<tr>
<td>SMED</td>
<td>1 3 5 5</td>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td>7.4%</td>
<td>6</td>
</tr>
<tr>
<td>TPM</td>
<td>1 1 5 1</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>4.2%</td>
<td>12</td>
</tr>
<tr>
<td>Kanban</td>
<td>1 3 1 5</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td>5.3%</td>
<td>11</td>
</tr>
<tr>
<td>Heijunka (Producción Suavizada)</td>
<td>1 3 3 1</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>4.2%</td>
<td>13</td>
</tr>
<tr>
<td>Gestión Visual</td>
<td>5 3 5 5</td>
<td></td>
<td></td>
<td></td>
<td>18</td>
<td>9.5%</td>
<td>4</td>
</tr>
<tr>
<td>Jidoka</td>
<td>1 5 5 5</td>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td>8.4%</td>
<td>5</td>
</tr>
<tr>
<td>Andon</td>
<td>1 5 3 5</td>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td>7.4%</td>
<td>8</td>
</tr>
<tr>
<td>Poka Yoque</td>
<td>5 3 5 1</td>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td>7.4%</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>190</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>
e) Matriz de Priorización del Sub Proceso de Acoplado Automático.

En la Tabla 46 se muestra la priorización de acuerdo al impacto de cada herramienta en los desperdicios presentados en el sub proceso de Acoplado Automático, donde se observa que las primeras herramientas a ser implementadas son: 5 S, Mapa de Cadena de Valor, Estandarización y Kaizen.

Tabla 46. Matriz de Priorización del Sub Proceso de Acoplado Automático.

<table>
<thead>
<tr>
<th>Desperdicios</th>
<th>Espera</th>
<th>Manejo de Producto</th>
<th>Manejo Herramienta</th>
<th>Total</th>
<th>Porcentaje</th>
<th>Posición</th>
</tr>
</thead>
<tbody>
<tr>
<td>JIT</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>11</td>
<td>8,0%</td>
<td>7</td>
</tr>
<tr>
<td>Kaizen</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>11</td>
<td>8,0%</td>
<td>4</td>
</tr>
<tr>
<td>Sistemas de Trabajos Flexibles</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2.2%</td>
<td>14</td>
</tr>
<tr>
<td>Mapas de Cadena de Valor</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>13</td>
<td>9,4%</td>
<td>2</td>
</tr>
<tr>
<td>5S</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>15</td>
<td>10,9%</td>
<td>1</td>
</tr>
<tr>
<td>Estandarización</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>13</td>
<td>9,4%</td>
<td>3</td>
</tr>
<tr>
<td>SMED</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>6,5%</td>
<td>8</td>
</tr>
<tr>
<td>TPM</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>7</td>
<td>5,1%</td>
<td>12</td>
</tr>
<tr>
<td>Kanban</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>5,1%</td>
<td>13</td>
</tr>
<tr>
<td>Heijunka (Producción Suavizada)</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>9</td>
<td>6,5%</td>
<td>11</td>
</tr>
<tr>
<td>Gestión Visual</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>6,5%</td>
<td>9</td>
</tr>
<tr>
<td>Jidoka</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>11</td>
<td>8,0%</td>
<td>5</td>
</tr>
<tr>
<td>Andon</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>11</td>
<td>8,0%</td>
<td>6</td>
</tr>
<tr>
<td>Poka Yoque</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>6,5%</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>138</td>
<td></td>
<td></td>
<td></td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>
f) Matriz de Priorización del Proceso de BME.

En la Tabla 47 se muestra la priorización de acuerdo al impacto de cada herramienta en los desperdicios presentados en el proceso de BME, donde se observa que las primeras herramientas a ser implementadas son: 5 S, Mapa de Cadena de Valor, Estandarización y Jidoka.

Tabla 47. Matriz de Priorización del Proceso de BME.

<table>
<thead>
<tr>
<th>Desperdicios</th>
<th>Herramientas Lean Manufacturing</th>
<th>Manejo de Producto</th>
<th>Caminado</th>
<th>Manjo Herramienta</th>
<th>Espera</th>
<th>Total</th>
<th>Porcentaje</th>
<th>Posición</th>
</tr>
</thead>
<tbody>
<tr>
<td>JIT</td>
<td>5 5 1 5</td>
<td>16</td>
<td>8,4%</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kaizen</td>
<td>3 3 5 3</td>
<td>14</td>
<td>7,4%</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sistemas de Trabajos Flexibles</td>
<td>1 1 1 1</td>
<td>4</td>
<td>2,1%</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mapas de Cadena de Valor</td>
<td>3 5 5 5</td>
<td>18</td>
<td>9,5%</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5S</td>
<td>5 5 5 5</td>
<td>20</td>
<td>10,5%</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estandarización</td>
<td>5 5 5 3</td>
<td>18</td>
<td>9,5%</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SMED</td>
<td>3 5 1 5</td>
<td>14</td>
<td>7,4%</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPM</td>
<td>1 1 1 5</td>
<td>8</td>
<td>4,2%</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kanban</td>
<td>3 5 1 3</td>
<td>12</td>
<td>6,3%</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heijunka (Producción Suavizada)</td>
<td>3 1 1 5</td>
<td>10</td>
<td>5,3%</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gestión Visual</td>
<td>3 5 5 1</td>
<td>14</td>
<td>7,4%</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jidoka</td>
<td>5 5 1 5</td>
<td>16</td>
<td>8,4%</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Andon</td>
<td>5 5 1 5</td>
<td>16</td>
<td>8,4%</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Poka Yoque</td>
<td>3 1 5 1</td>
<td>10</td>
<td>5,3%</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Total | 190 | 100% | | |

En la Tabla 48 se presenta los resultados obtenidos de las 4 primeras herramientas según las matrices de priorización de cada uno de los procesos bajo el criterio de impacto versus las actividades priorizadas en el Diagrama de Pareto, a ser implantadas, donde se muestra que existe 6 herramientas.
Tabla 48. Matriz de Priorización del Proceso.

<table>
<thead>
<tr>
<th>Herramienta de Lean Manufacturing</th>
<th>Proceso</th>
<th>Roscado</th>
<th>Inspección de Rosca</th>
<th>NDT</th>
<th>Sub Pre Acoplado</th>
<th>Sub Acoplado Automático</th>
<th>BME</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mapas de Cadena de Valor</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>6</td>
</tr>
<tr>
<td>5S</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>6</td>
</tr>
<tr>
<td>Estandarización</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>✓</td>
<td>6</td>
</tr>
<tr>
<td>Gestión Visual</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>X</td>
<td>X</td>
<td>4</td>
</tr>
<tr>
<td>Kaizen</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>✓</td>
<td>X</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Jidoka</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>✓</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Nota: ✓ : Herramienta que aplica.
X : Herramienta que no aplica.

De acuerdo a los resultados obtenidos en la priorización inicial, las herramientas a ser aplicadas son: Mapas de Cadena de Valor, 5S, Estandarización, Gestión Visual, Kaizen y Jidoka. A continuación se procedió a una priorización final basada en costo y tiempo de implementación de cada herramienta considerando los criterios que se indican en la Tabla 49.

Tabla 49. Tabla de Criterios de Priorización

<table>
<thead>
<tr>
<th>Costo</th>
<th>5- Bajo</th>
<th>3- Medio</th>
<th>1 - Alto</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tiempo</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 - Corto</td>
<td>25</td>
<td>15</td>
<td>5</td>
</tr>
<tr>
<td>3 - Medio</td>
<td>15</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>1 - Largo</td>
<td>5</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Donde:

Para Tiempo:
Tiempo Corto < 3 meses.
Tiempo Medio ≥ 3 meses y ≤ 6 meses.
Tiempo Largo > 6 meses.

Para el Costo:
Costo Bajo < 1000 USD
Costo Medio ≥ 1000 USD y ≤ 5000 USD
Costo Alto > 5000 USD
Nivel de Priorización

Rojo = Herramienta no priorizada.
Amarillo = Herramienta a ser priorizada bajo análisis.
Verde = Herramienta priorizada directamente.

En la Tabla 50 se presentan los resultados de la priorización final realizada de las Herramientas Lean Manufacturing analizadas. De acuerdo a estos resultados, las herramientas escogidas a ser implementadas fueron: 5S, Gestión Visual y Estandarización.

Tabla 50 Matriz de Secuencia de Aplicación de Herramientas Lean Manufacturing.

<table>
<thead>
<tr>
<th>Herramientas Lean Manufacturing</th>
<th>Nivel de Importancia</th>
<th>Secuencia de Aplicación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mapas de Cadena de Valor</td>
<td>15</td>
<td>4</td>
</tr>
<tr>
<td>5S</td>
<td>25</td>
<td>1</td>
</tr>
<tr>
<td>Estandarización</td>
<td>25</td>
<td>2</td>
</tr>
<tr>
<td>Gestión Visual</td>
<td>25</td>
<td>3</td>
</tr>
<tr>
<td>Kaizen</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>Jidoka</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

3.2.2 Implementación de las herramientas de calidad basadas en Lean Manufacturing para la aplicación al proceso de “Fabricación” del Centro Productivo de Tenaris Ecuador.

Se identificaron las herramientas comunes para la implementación de los procesos (ver Tablas 48 y 51), se decidió realizar una implementación global a lo largo de los procesos de Fabricación.
Tabla 51 Matriz de Aplicación de Herramientas Comunes Lean Manufacturing.

<table>
<thead>
<tr>
<th>Herramienta de Lean Manufacturing</th>
<th>Proceso</th>
<th>Roscado</th>
<th>Inspección de Rosca</th>
<th>NDT</th>
<th>Sub Pre Acoplado</th>
<th>Sub Acoplado Automático</th>
<th>BME</th>
</tr>
</thead>
<tbody>
<tr>
<td>5S</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Gestión Visual</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Estandarización</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

Nota: ✓: Herramienta que aplica.

En el Anexo 3 se presenta el cronograma de implementación de las herramientas de mejora.

A continuación, se describe la implementación por cada tipo de herramienta de Lean Manufacturing seleccionada en los procesos de fabricación:

a) 5S.

b) Gestión Visual.

c) Estandarización.

3.2.2.1 Implementación de la 5S en los procesos de “Fabricación” del Centro Productivo de Tenaris Ecuador.

La implementación de la 5S en los procesos de fabricación del Centro Productivo de Tenaris Ecuador, se realizó considerando los siguientes pasos: (Javier Santos et al., 2015, p. 170).

Paso 1: Preparación del material didáctico para la capacitación.
Paso 2: Escoger el área inicial a ser implementada.
Paso 3: Formar el Equipo de Trabajo.
Paso 4: Realizar la capacitación con la metodología a ser realizada: por cada “S” se realizó una formación y después se puso en práctica.
Paso 5: Implementar la “S” en cada área con el levantamiento de un registro fotográfico del antes y después.
Paso 6: Establecer indicadores para verificar el estado de la implementación.
Se presenta el desarrollo de las acciones realizadas para la implementación de las fases en cada “S”:

Paso 1: Preparación del material didáctico para la capacitación.
En el Anexo 4 “Material Didáctico de 5S” se presenta el material didáctico desarrollado para la capacitación al personal operativo del Centro Productivo de Tenaris Ecuador.

Paso 2: Escoger el área inicial a ser implementada.
El área inicial seleccionada fue la estación de trabajo de Operación de Torno, posterior a esta se tomaron todas las estaciones de trabajo de los procesos de fabricación. En la Figura 78 se muestra el layout de operaciones de la planta donde se encuentran las estaciones de los procesos de fabricación.

![Figura 78. Layout de la Planta de Tenaris.](image)

Paso 3: Formar el Equipo de Trabajo.
Se realizó la formación de equipos de trabajo con el personal operativo de la siguiente manera:

a) Equipo 1: Operario del Torno con el Operario de Inspección de Rosca para la implementación de 5 S en sus estaciones de trabajo.
b) Equipo 2: Operario de NDT con el Operario de Acoplado; para la implementación de 5S en sus estaciones.

c) Equipo 3: Operario de BME con el capacitador, para la implementación de 5S en su estación de trabajo.

Se realizó un registro fotográfico de la formación de los equipos, el mismo que se encuentran en el Anexo 5. “Implementación de 5S”.

Paso 4: Realizar la capacitación con la metodología a ser realizada: por cada “S” se realizó una formación y después se puso en práctica.

Implementar la “S” en cada área con el levantamiento de un registro fotográfico del antes y después.

En el Anexo 5 “Implementación de 5S” se encuentra el registro fotográfico de la capacitación brindada al personal operativo del Centro Productivo de Tenaris Ecuador y se presenta las pantallas de la presentación realizada para la capacitación.

Paso 5: Implementar la “S” en cada área con el levantamiento de un registro fotográfico del antes y después.

Se realizó la implementación de cada una de las S en todas las áreas operativas de la planta, siguiendo su secuencia metodológica:

a) Seleccionar (Seiri).

b) Ordenar (Seiton).

c) Limpieza (Seiso).

d) Estandarizar (Seiketsu).

e) Disciplina (Shitsuke).

Seleccionar o Eliminar

Se realizó la selección de todo lo que existían en la estación de trabajo en conjunto con los operadores, se separaron las herramientas, los equipos de protección personal, materiales de oficina, registros, equipos de medición y todo elemento de la estación. Posteriormente, se definió sobre el uso de cada uno de los artículos separados, es decir, si su uso era muy frecuente, frecuente o poco frecuente. Para
los elementos que se identificaron como no necesarios, se los eliminó del sitio de trabajo ubicándolos en otros puntos o directamente para desecho.

En los siguientes Anexos se presenta el desarrollo de la “S - Seleccionar” para cada uno de los procesos de fabricación:

b) Proceso Inspección de Rosca: Anexo 7.
c) Proceso NDT: Anexo 8.
e) Proceso de BME: Anexo 11.

Ordenar.

Para la implementación de esta “S”, considerando los elementos que quedaron en el sitio de trabajo y la frecuencia del uso, se realizó su ordenamiento. Se colocaron los elementos de la estación cerca o lejos al punto de trabajo según su frecuencia de uso; para lo cual se adecuaron o fabricaron mesas y dispositivos de apoyo para el mejor almacenamiento y orden de los elementos. Adicionalmente, se colocaron rótulos en cada uno de los lugares asignados para la Gestión Visual de los mismos.

En los siguientes Anexos se presenta el desarrollo de la “S - Ordenar” para cada uno de los procesos de fabricación:

b) Proceso Inspección de Rosca: Anexo 7.
c) Proceso NDT: Anexo 8.
e) Proceso de BME: Anexo 11.

Limpieza.

Esta fase inició realizando la limpieza diaria en las estaciones y posteriormente identificando las fuentes que generan contaminación en la planta; con esta
información se tomaron acciones de mejora para evitar que estas fuentes sigan contaminando (fugas de líquido refrigerante, grasa y viruta de metal). Por ejemplo, en la estación de trabajo del torno de roscar existía una fuga de líquido refrigerante al momento de roscar, para su mejora se cambió el caucho de protección y se colocaron tinas con desagües para la recolección del líquido.

En los siguientes Anexos se presenta el desarrollo de la “S - Ordenar” para cada uno de los procesos de fabricación:

- b) Proceso Inspección de Rosca: Anexo 7.
- e) Proceso de BME: Anexo 11.

Estandarización.

Se realizó la incorporación de una inspección y limpieza diarias de los equipos dentro de las estaciones en sus instructivos de trabajo. Ver anexo 12.

Adicionalmente, se desarrolló un formato para mantener la estandarización de las estaciones de trabajo.

En los siguientes Anexos se presenta el desarrollo de la “S - Estandarización” para cada uno de los procesos de fabricación:

- b) Proceso Inspección de Rosca: Anexo 7 y el Anexo 14.
- c) Proceso NDT: Anexo 8 y el Anexo 15.
- d) Proceso Acoplado y Paso de Mandril: Anexos 9,10 y Anexos 16 y17.
- e) Proceso de BME: Anexo 11 y el Anexo 18.
Autodisciplina

Dentro de la implementación de esta “S” se realizó un programa de auditorías para que las 3 “S” se mantengan en el tiempo. Se generó la siguiente documentación:

a) “Auditores de 5S”: Donde se presenta el líder y los auditores que se designaron para el seguimiento de la implementación de las “S”. Ver Anexo 19.

b) “Cronograma de Auditorías de 5S”: Donde se muestra la programación de auditorías que se ejecutó con los auditores y el líder en las estaciones de trabajo. Ver Anexo 20.

c) “Formato de Auditorias 5S”: Donde se muestra el formato con el cual se realizaron las auditorías de acuerdo al cronograma. Las auditorías se ejecutaron al inicio, durante o al final de la jornada de trabajo para cada estación. Ver Anexos:

- Formato de Auditoría 5S: Anexo 21.
- Autodisciplina de Proceso Roscado 5S: Anexo 22.
- Autodisciplina Proceso de BME 5S: Anexo 27.

d) “Cumplimiento de Programa de 5S’s”: Donde se muestra el formato para el seguimiento y avance de la implementación de las 5S’s durante los meses del proyecto. Ver Anexo 28.

3.2.2.2 Implementación de la Gestión Visual en los procesos de “Fabricación” del Centro Productivo de Tenaris Ecuador.

Se procedió a realizar la implementación de la Gestión Visual en conjunto con la herramienta “5S” (Fases: Ordenar y Estandarizar) en cada estación de trabajo. Los elementos desarrollados se encuentran en los anexos:
b) Proceso Inspección de Rosca: Anexo 7 y el Anexo 14.
c) Proceso NDT: Anexo 8 y el Anexo 15.
d) Proceso Acoplado y Paso de Mandrill: Anexos 9, 10 y Anexos 16 y 17.
e) Proceso de BME: Anexos 11 y Anexos 18 y 19.

Adicionalmente, se realizaron:

a) La marcación del piso de color verde para paso peatonal en planta,
b) La identificación de las protecciones de los equipos.
c) La identificación y ordenamiento de los contenedores de desechos ser reciclados o tratados.
d) La colocación de cartelera informativa
e) La colocación de señalética para áreas, equipos y zonas de riesgo dentro de la planta.

En el Anexo 29 “Implementación de Gestión Visual” se presenta el registro fotográfico de la gestión visual aplicada en la planta.

3.2.2.3 Implementación de la Estandarización en los procesos de “Fabricación” del Centro Productivo de Tenaris Ecuador.

a) Mejora de actividades Valor Agregado para el Negocio (VAN) y Eliminación de Actividades de No valor Agregado (NVA) en los procesos de “Fabricación” del Centro Productivo de Tenaris Ecuador.

Se realizó la evaluación de los Procesos de “Fabricación” del Centro Productivo de Tenaris Ecuador con respecto a los diagramas de flujo iniciales en cada proceso. Se aplicó la metodología de Estudios de los Métodos de Trabajo (Criollo, 2005, p. 37) que consta de los siguientes pasos:

✔ Seleccionar el trabajo que debe mejorararse.
✔ Registrar los detalles de trabajo.
✔ Analizar los detalles del trabajo.
✔ Desarrollar un nuevo método de trabajo.
✓ Capacitar a los operarios en el nuevo método de trabajo.
✓ Aplicar el nuevo método de trabajo.

A continuación se muestra lo realizado en los pasos mencionados en la metodología.

✓ **Selección del trabajo que debe mejorarse.**

La selección del trabajo que debe mejorarse se realizó en el punto 1.4 (Descripción de los Procesos del Centro Productivo de Tenaris Ecuador) del presente trabajo de investigación. En este numeral se presentan los procesos productivos (Fabricación) que se seleccionaron y sobre los cuales se levantó la información.

✓ **Registrar los detalles de trabajo.**

El registro de los detalles del trabajo de cada proceso se realizó en el punto 3.1 (Análisis del Estado Inicial Proceso de “Fabricación” del Centro Productivo de Tenaris Ecuador) del presente trabajo de investigación. En este numeral se presenta la siguiente información: Diagrama de Flujo, Actividades de Valor Agregado (VA), Actividades de Valor del Negocio (VAN) y No Valor Agregado (NVA) para cada uno de los procesos de Fabricación.

✓ **Analizar los detalles del trabajo.**

En este punto se realizó el análisis de los detalles del trabajo para cada uno de los procesos de acuerdo a las preguntas de la metodología, las cuales son:

✓ ¿Por qué existe cada detalle? O ¿Qué es esta operación?
✓ ¿Para qué sirve cada uno de ellos? O ¿Qué ocurre si no se hace?
✓ ¿Quién debe hacer el detalle? O ¿Quién la hace?
✓ ¿Cuándo debe ejecutarse el detalle? O ¿Cuándo se hace?
Para cada proceso se desarrolló una matriz donde se colocaron las preguntas de la metodología versus las operaciones para responder a las mismas. Con las respuestas obtenidas se direccionaron las acciones de eliminación o mejora.

A continuación se presentan, las matrices desarrolladas por cada uno de los procesos de Fabricación:

✔ Proceso de Roscado: Tabla 52 “Análisis del VA y NVA del Proceso de Roscado”.
✔ Proceso de Inspección de Rosca: Tabla 53 Análisis del VA y NVA del Proceso de Inspección de Rosca.
✔ Proceso NDT: Tabla 54 “Análisis del VA y NVA del Proceso NDT.
✔ Proceso de Acoplado y Paso de Mandril: Tabla 55 “Análisis del VA y NVA del Sub Proceso de Pre Acoplado” y Tabla 56 “Análisis del VA y NVA del Sub Proceso de Acoplado Automático”.
✔ Proceso de BME: Tabla 57 “Análisis del VA y NVA del Proceso de BME”.

✔ ¿Dónde debe hacerse el detalle? O ¿Dónde se hace?
✔ ¿Cómo se ejecuta el detalle? O ¿Cómo se hace?
✔ ¿Por qué hay que hacerla?
✔ ¿Cuánto cuesta hacerla?
Tabla 52. Análisis de VA y NVA Proceso de Roscado

<table>
<thead>
<tr>
<th># Operación</th>
<th>Descripción de Proceso / Sub proceso</th>
<th>Preguntas de Evaluación</th>
<th>Desperdicio</th>
<th>Decisión</th>
<th>Mejora</th>
</tr>
</thead>
<tbody>
<tr>
<td>Op. 020</td>
<td>Recepción de Tubería para Roscar</td>
<td>¿Qué es esta operación?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>¿Qué ocurre si no se hace?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quién la hace?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cuando se hace?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dónde se hace?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>¿Cómo se hace?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Por qué hay que hacerla?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>¿Cuánto cuesta hacerla?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Op. 07</td>
<td>Colocar tapón al interior del tubo</td>
<td>Necesaria</td>
<td>Espera</td>
<td>No Aplica</td>
<td>No Aplica</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No se puede procesar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Operador. Máquina</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inicio</td>
<td>Manualmente</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Línea de operaciones</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Para procesar el producto</td>
<td>No Aplica</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inspección</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mejora en posición de tapón en estación de trabajo.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Op. 50</td>
<td>Tubería ingresa a tornear a ser procesado</td>
<td>Necesaria</td>
<td>Espera</td>
<td>No Aplica</td>
<td>No Aplica</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No se puede procesar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Operador. Máquina</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inicio</td>
<td>Manualmente</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Para procesar el producto</td>
<td>No Aplica</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inspección</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mejora</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modificación de programación en PLC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Op. 51</td>
<td>Torno inicia a realizar mediciones</td>
<td>Necesaria</td>
<td>Espera</td>
<td>No Aplica</td>
<td>No Aplica</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No se puede procesar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Máquina</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proceso</td>
<td>Manualmente</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Para procesar el producto</td>
<td>No Aplica</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inspección</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mejora</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modificación de programación en PLC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Op. 52</td>
<td>Torno inicia a roscar</td>
<td>Necesaria</td>
<td>Espera</td>
<td>No Aplica</td>
<td>No Aplica</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No se puede procesar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Máquina</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proceso</td>
<td>Manualmente</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Para procesar el producto</td>
<td>No Aplica</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inspección</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mejora</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modificación de programación en PLC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Op. 55</td>
<td>Retiro de Limilla y viruta de acero</td>
<td>Necessaria</td>
<td>No Aplica</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Se puede dañar el producto</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Operador</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proceso</td>
<td>Manualmente</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Evitar producto no conforme</td>
<td>No Aplica</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Manejo de Herramientas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cambio de herramientas de corte</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Op. 60</td>
<td>Salida de Tubería posterior al proceso de roscado</td>
<td>Necessaria</td>
<td>Espera</td>
<td>No Aplica</td>
<td>No Aplica</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No se puede procesar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Máquina</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proceso</td>
<td>Manualmente</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Para procesar el producto</td>
<td>No Aplica</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inspección</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mejora</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Modificación de programación en PLC</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabla 53. Análisis de VA y NVA Proceso de Inspección de Rosca.

<table>
<thead>
<tr>
<th>Op.</th>
<th>Descripción de Proceso/Subproceso</th>
<th>Operación</th>
<th>Necesaria</th>
<th>No se puede procesar</th>
<th>Operador/Máquina</th>
<th>Inicio</th>
<th>Estación de Trabajo</th>
<th>Manualmente</th>
<th>Automático</th>
<th>Es necesario procesar el producto</th>
<th>No Aplica</th>
<th>Decisión</th>
<th>Mejora</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>Recepción de Tubería con rosca fabricada</td>
<td>No se puede procesar</td>
<td>Operador/Máquina</td>
<td>Inicio</td>
<td>Máquina</td>
<td>Manualmente</td>
<td>Automático</td>
<td>No Aplica</td>
<td>Mejora</td>
<td>Modificación de programación en PLC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>Retiro de rebabas y de tapón del tubo</td>
<td>No se puede realizar la inspección dimensional</td>
<td>Operador</td>
<td>Inicio</td>
<td>Estación de Trabajo</td>
<td>Manualmente</td>
<td>Para limpiar la rosca</td>
<td>No Aplica</td>
<td>Mejora</td>
<td>Mejora de posición de herramientas y Cambio de herramientas de desbaste</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>Inspección Visual y Dimensional de la Rosca del Tubo</td>
<td>No se conoce si la rosca esta buena o mala</td>
<td>Operador</td>
<td>Proceso</td>
<td>Estación de Trabajo</td>
<td>Manualmente</td>
<td>Para verificar el estado de la rosca</td>
<td>No Aplica</td>
<td>Mejora</td>
<td>Mejora de posición de herramienta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>Registros datos de inspecciones</td>
<td>No se conocen los resultados y seguimiento del producto</td>
<td>Operador</td>
<td>Proceso</td>
<td>Estación de Trabajo</td>
<td>Manualmente</td>
<td>Para tener resultados del producto</td>
<td>Sistemas de Calidad</td>
<td>No Aplica</td>
<td>Mejora</td>
<td>Mejora de posición de formato de registro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>Liberación del Tubo</td>
<td>No ingresa nuevo tubo con rosca</td>
<td>Operador/Máquina</td>
<td>Final</td>
<td>Estación de Trabajo</td>
<td>Manualmente</td>
<td>Autónomamente</td>
<td>Para poder enviar el tubo al siguiente proceso</td>
<td>No Aplica</td>
<td>Mejora</td>
<td>Mejora</td>
<td>Modificación de programación en PLC</td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>Registrar, definir e identificar si el defecto es reparable</td>
<td>El producto no conforme se puede reciclar con producto conforme</td>
<td>Operador</td>
<td>Proceso</td>
<td>Estación de Trabajo</td>
<td>Manualmente</td>
<td>Para identificar el defecto y levantar KPI</td>
<td>No Aplica</td>
<td>Mejora</td>
<td>Mejora</td>
<td>Mejora de posición de formato de registro</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabla 53 Análisis de VA y NVA Proceso de Inspección de Rosca. (Continuación).

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Op. 95</td>
<td>Reparar el defecto y realizar la inspección visual y dimensional de la roscas nuevamente</td>
<td>Necesaria</td>
<td>Operador</td>
<td>Proceso</td>
<td>Estación de Trabajo</td>
<td>Manualmente</td>
<td>Para definir el estado del producto</td>
<td>No Aplica</td>
<td>Caminado de Manejo de Producto</td>
<td>No Aplica</td>
<td></td>
</tr>
<tr>
<td>Op. 100</td>
<td>Identificar de Acuerdo a Procedimiento No Conforme</td>
<td>Necesaria</td>
<td>Operador</td>
<td>Proceso</td>
<td>Estación de Trabajo</td>
<td>Manualmente</td>
<td>Para evitar la contaminación con el producto aprobado o bueno</td>
<td>No Aplica</td>
<td>Caminado de Manejo de Producto</td>
<td>Mejora</td>
<td>Mejorar posición de la herramienta</td>
</tr>
<tr>
<td>Op. 85</td>
<td>Liberar el tubo para el proceso de corte</td>
<td>Necesaria</td>
<td>Operador/Máquina</td>
<td>Final</td>
<td>Estación de Trabajo</td>
<td>Manualmente</td>
<td>Para poder enviar el tubo al proceso de corte</td>
<td>No Aplica</td>
<td>Manejo de Producto</td>
<td>Mejora</td>
<td>Mejora en programación en PLC</td>
</tr>
<tr>
<td>Op. 102</td>
<td>Notificar al Coordinador de Producción, Calidad y al operador del torn para las acciones correctivas</td>
<td>Necesaria</td>
<td>Operador</td>
<td>Final</td>
<td>Estación de Trabajo</td>
<td>Manualmente</td>
<td>Para tomar acciones correctivas del problema presentado</td>
<td>No Aplica</td>
<td>Caminado de Espera</td>
<td>Mejora</td>
<td>Mejora en comunicación</td>
</tr>
</tbody>
</table>
Tabla 54. Análisis del VA y NVA del Proceso de NDT.

<table>
<thead>
<tr>
<th>Óp. 115</th>
<th>Recepción de Tubos Inspeccionados y adquiridos.</th>
<th>Necesario</th>
<th>No se puede procesar</th>
<th>Operator Máquina</th>
<th>Inicio</th>
<th>Máquina</th>
<th>Manualmente</th>
<th>Automático</th>
<th>Para procesar el producto</th>
<th>No Aplica</th>
<th>Mejora</th>
<th>Mejora</th>
<th>Modificación de programación en PLC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Óp. 120</td>
<td>Colocación de Tapón</td>
<td>No Necesario</td>
<td>Posibilidad de ingresar el tubo en el interior del tubo</td>
<td>Operator</td>
<td>Inicio</td>
<td>Estación de Trabajo</td>
<td>Manualmente</td>
<td>Automático</td>
<td>Para impedir el ingreso de tubos no de acuerdo</td>
<td>No Aplica</td>
<td>Inversión</td>
<td>Camorado</td>
<td>Mejora en posición de tubo en corte de trabajo</td>
</tr>
<tr>
<td>Óp. 125</td>
<td>Iniciar el proceso con el equipo de inspección visual</td>
<td>Necesario</td>
<td>No se puede iniciar la inspección del producto</td>
<td>Operator</td>
<td>Proceso</td>
<td>Estación de Trabajo</td>
<td>Manualmente</td>
<td>Automático</td>
<td>Para poder iniciar la inspección del producto</td>
<td>No Aplica</td>
<td>Mejora</td>
<td>Mejora</td>
<td>Modificación de programación en PLC</td>
</tr>
<tr>
<td>Óp. 128</td>
<td>Inspeccionar visualmente la rosca y la punta del tubo</td>
<td>Necesario</td>
<td>No se conoce si la rosca está buena o mala</td>
<td>Operator</td>
<td>Proceso</td>
<td>Estación de Trabajo</td>
<td>Manualmente</td>
<td>Automático</td>
<td>Para verificar el estado de la rosca</td>
<td>No Aplica</td>
<td>Mejora</td>
<td>Mejora</td>
<td>Mejora de posición de registro</td>
</tr>
<tr>
<td>Óp. 130</td>
<td>Registro de datos de inspección</td>
<td>Necesario</td>
<td>No se conoce los resultados de inspección del producto</td>
<td>Operator</td>
<td>Proceso</td>
<td>Estación de Trabajo</td>
<td>Manualmente</td>
<td>Automático</td>
<td>Para tener resultados del producto</td>
<td>No Aplica</td>
<td>Camorado</td>
<td>Mejora</td>
<td>Mejora de posición de registro</td>
</tr>
<tr>
<td>Óp. 135</td>
<td>Liberación del Tubo para el siguiente proceso</td>
<td>Necesario</td>
<td>No ingresar nuevo tubo con rosca</td>
<td>Operator/ Máquina</td>
<td>Final</td>
<td>Estación de Trabajo</td>
<td>Manualmente / Automáticamente</td>
<td>Para identificar el defecto y levantar KPI</td>
<td>No Aplica</td>
<td>Camorado Inversión</td>
<td>Camorado</td>
<td>Mejora de posición de registro</td>
<td></td>
</tr>
<tr>
<td>Óp. 140</td>
<td>Registrar, definir e identificar si el defecto es reparable</td>
<td>Necesario</td>
<td>El producto no es acorde al defecto, pero es producto conforme</td>
<td>Operator</td>
<td>Proceso</td>
<td>Estación de Trabajo</td>
<td>Manualmente</td>
<td>Automático</td>
<td>Para definir el estado del producto</td>
<td>No Aplica</td>
<td>Camorado Inversión</td>
<td>Camorado</td>
<td>Mejora de posición de registro</td>
</tr>
<tr>
<td>Óp. 146</td>
<td>Reparar el defecto y realizar la inspección visual del cuerpo del tubo y la rosca nuevamente</td>
<td>Necesario</td>
<td>El producto reparado puede seguir cumpliendo la especificación</td>
<td>Operator</td>
<td>Proceso</td>
<td>Estación de Trabajo</td>
<td>Manualmente</td>
<td>Automático</td>
<td>Para definir el estado del producto</td>
<td>No Aplica</td>
<td>Camorado Inversión</td>
<td>Camorado</td>
<td>Mejora de posición de la herramienta</td>
</tr>
<tr>
<td>Óp. 150</td>
<td>Identificar de Antemano a Procedimiento No Conforme</td>
<td>Necesario</td>
<td>El producto no es acorde al defecto, pero es producto conforme</td>
<td>Operator</td>
<td>Proceso</td>
<td>Estación de Trabajo</td>
<td>Manualmente</td>
<td>Automático</td>
<td>Para evitar la contaminación del producto</td>
<td>No Aplica</td>
<td>Camorado Inversión</td>
<td>Camorado</td>
<td>Mejora de posición de la herramienta</td>
</tr>
<tr>
<td>Óp. 155</td>
<td>Liberar el tubo para el proceso de corte</td>
<td>Necesario</td>
<td>No ingresar nuevo tubo con rosca</td>
<td>Operator/ Máquina</td>
<td>Final</td>
<td>Estación de Trabajo</td>
<td>Manualmente / Automáticamente</td>
<td>Para tomar acciones correctivas del problema presentado</td>
<td>No Aplica</td>
<td>Camorado Inversión</td>
<td>Camorado</td>
<td>Mejora de comunicación</td>
<td></td>
</tr>
<tr>
<td># Operación</td>
<td>Descripción de Proceso / Sub proceso</td>
<td>Preguntas de Evaluación</td>
<td>Despoblamiento</td>
<td>Decisión</td>
<td>Mejora</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------------------------</td>
<td>-------------------------</td>
<td>----------------</td>
<td>----------</td>
<td>--------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Op. 135</td>
<td>Recepción de Tubería inspeccionada y aprobada</td>
<td>Necesaria</td>
<td>No se puede procesar</td>
<td>Operador / Maquina</td>
<td>Inicio / Maquina</td>
<td>Manoalmente / Automático</td>
<td>Para procesar el producto</td>
<td>No Aplica</td>
<td>Mejora de Producto Espera</td>
<td>Mejora</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Op. 140</td>
<td>Preparar acople para tubo aprobado</td>
<td>Necesaria</td>
<td>No se puede tener el acople listo para colocarlo en producto</td>
<td>Operador</td>
<td>Proceso</td>
<td>Estación de Trabajo</td>
<td>Manualmente</td>
<td>Para tenerlo listo en el momento de ser colocado en el tubo</td>
<td>No Aplica</td>
<td>Inspección</td>
<td>Mejora</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Op. 145</td>
<td>Realizar la inspección visual de la rosca del tubo y acople</td>
<td>Necesaria</td>
<td>No se conoce si la rosca del tubo y acople está buena o mala</td>
<td>Operador</td>
<td>Proceso</td>
<td>Estación de Trabajo</td>
<td>Manualmente</td>
<td>Para verificar el estado de la rosca</td>
<td>No Aplica</td>
<td>Manejo de Producto - Camindo Inspeccion</td>
<td>No Aplica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Op. 150</td>
<td>Colocar las marcas en tubería Casing o Tubing según procedimiento</td>
<td>Necesaria</td>
<td>No se cumple la especificación del producto</td>
<td>Operador</td>
<td>Proceso</td>
<td>Estación de Trabajo</td>
<td>Manualmente</td>
<td>Para cumplir con la especificación del producto</td>
<td>No Aplica</td>
<td>Camiado</td>
<td>Mejora</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Op. 155</td>
<td>Colocar la grasa en la rosca de acuerdo a la Orden de Producción o según el procedimiento aplicable</td>
<td>Necesaria</td>
<td>No se cumple la especificación del producto y el aparejo no es correcto</td>
<td>Operador</td>
<td>Proceso</td>
<td>Estación de Trabajo</td>
<td>Manualmente</td>
<td>Para tener resultados del producto Sistema de Calidad</td>
<td>No Aplica</td>
<td>Camiado</td>
<td>Mejora</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Op. 160</td>
<td>Colocar el acople y realizar el aparejo manual de acuerdo a la Orden de Producción y producido y/o según el procedimiento aplicable</td>
<td>Necesaria</td>
<td>El producto debe no cumplir con la especificación</td>
<td>Operador</td>
<td>Proceso</td>
<td>Estación de Trabajo</td>
<td>Manualmente</td>
<td>Para cumplir con la especificación del producto</td>
<td>No Aplica</td>
<td>Camiado</td>
<td>Mejora</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Op. 165</td>
<td>Liberar el tubo para el siguiente paso en el equipo de acoplado</td>
<td>Necesaria</td>
<td>No ingresa nuevo tubo con rosca</td>
<td>Operador / Maquina</td>
<td>Final</td>
<td>Estación de Trabajo</td>
<td>Manualmente / Automáticamente</td>
<td>Para poder enviar el tubo al siguiente proceso</td>
<td>No Aplica</td>
<td>Manejo de Producto Espera</td>
<td>Mejora</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Tabla 55. Análisis de VA y NVA del Sub Proceso de Pre Acoplado. |
Tabla 55 Análisis de VA y NVA del Sub Proceso de Pre Acoplado. (Continuación).

<table>
<thead>
<tr>
<th># Operación</th>
<th>Descripción de Proceso / Subproceso</th>
<th>Preguntas de Evaluación</th>
<th>Desperdicio</th>
<th>Decisión</th>
<th>Mejora</th>
</tr>
</thead>
<tbody>
<tr>
<td>Op. 190</td>
<td>Registrar, definir e identificar si el defecto es reparable</td>
<td>Necesario</td>
<td>El producto no conforme se puede mezclar con producto conforme</td>
<td>Operator</td>
<td>Estación de Trabajo</td>
</tr>
<tr>
<td>Op. 195</td>
<td>Solicitar la reparación del defecto y realizar la inspección visual y dimensional del tubo por el personal calificado según el rubro</td>
<td>Necesario</td>
<td>El producto reparado puede seguir no cumpliendo la especificación</td>
<td>Operator</td>
<td>Estación de Trabajo</td>
</tr>
<tr>
<td>Op. 190</td>
<td>Identificar de Acuerdo a Procedimiento No Conforme</td>
<td>Necesario</td>
<td>El producto no conforme se puede mezclar con producto conforme</td>
<td>Operator</td>
<td>Estación de Trabajo</td>
</tr>
<tr>
<td>Op. 135</td>
<td>Liberar el tubo para el proceso de corte</td>
<td>Necesario</td>
<td>No ingresa nuevo tubo con rosca</td>
<td>Operator/Máquina</td>
<td>Final</td>
</tr>
<tr>
<td>Op. 102</td>
<td>Notificar al Coordinador de Producción, Calidad y el operador según corresponda el defecto del Torno o Inspección de Rosca y/o Pruebas No Destructivas para las acciones correctivas</td>
<td>Necesario</td>
<td>No se puede realizar la tarea de acción para evitar nuevamente el Producto no conforme</td>
<td>Operator</td>
<td>Final</td>
</tr>
<tr>
<td># Operación</td>
<td>Descripción de Proceso / Sub proceso</td>
<td>Preguntas de Evaluación</td>
<td>Desperdicio</td>
<td>Decision</td>
<td>Mejora</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------------------------</td>
<td>-------------------------</td>
<td>-------------</td>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>Op. 205</td>
<td>Visualizar el correcto ajuste del acople en el tubo, esto ocupa para tubos Casing y Prentale de acuerdo al procedimiento aplicable y el paso del mandril libremente para todos los productos</td>
<td>¿Qué ocurre si no se hace? ¿Quién lo hace? ¿Cuando se hace? ¿Dónde se hace? ¿Cómo se hace? ¿Dónde se hace? ¿Cuánto cuesta hacerla?</td>
<td>Necesaria</td>
<td>No aplica</td>
<td>Modificación de programación en PLC</td>
</tr>
<tr>
<td># Operación</td>
<td>Descripción de Proceso / Subproceso</td>
<td>Preguntas de Evaluación</td>
<td>Desperdicio</td>
<td>Decisión</td>
<td>Mejora</td>
</tr>
<tr>
<td>-------------</td>
<td>------------------------------------</td>
<td>------------------------</td>
<td>------------</td>
<td>---------</td>
<td>--------</td>
</tr>
<tr>
<td>Op. 230</td>
<td>Recepción de Tubería con la Rosca Aprobada o Conjunto de Tubo y Acople</td>
<td>Necesaria No se puede procesar Operador Máquina Inicio Máquina Manuallmente Automático Para procesar el producto No Aplica</td>
<td>Manejo de Producto Espera Mejora</td>
<td>Modificación de programación en PLC</td>
<td></td>
</tr>
<tr>
<td>Op. 235</td>
<td>Realizar la Inspección Visual del interior del tubo</td>
<td>Necesaria Posibilidad de material extraño en el interior del tubo Operador Inicio Estación de Trabajo Manuallmente Automático Para impedir el envío del producto no conforme No Aplica</td>
<td>Inspección Continuado Manejo de herramienta Mejora</td>
<td>Mejora de posición de herramienta</td>
<td></td>
</tr>
<tr>
<td>Op. 240</td>
<td>Limpiar la rosca de lado Pin o Rosca de Cupla con aire comprimido</td>
<td>No Necesaria La rosca puede estar contaminada Operador Proceso Estación de Trabajo Manuallmente Automático Para poder iniciar la inspección del producto No Aplica</td>
<td>Manejo de Herramienta Manejo de Producto Continuado Inspección Mejora</td>
<td>Eliminar Eliminar esta actividad</td>
<td></td>
</tr>
<tr>
<td>Op. 245</td>
<td>Realizar la medición del apriete de la cupla. Aplica solamente para lado Box del tubo</td>
<td>Necesaria No se conoce si el apriete del conjunto tubo/acople esta bueno o malo Operador Proceso Estación de Trabajo Manuallmente Automático Para verificar el estado del apriete No Aplica</td>
<td>Manejo de Herramienta Manejo de Producto Continuado Inspección Mejora</td>
<td>Mejora de posición de herramienta</td>
<td></td>
</tr>
<tr>
<td>Op. 248</td>
<td>Registro de datos de inspecciones</td>
<td>Necesaria No se conoce los resultados y seguimiento del producto Operador Proceso Estación de Trabajo Manuallmente Automático Para tener resultados del producto Sistema de Calidad No Aplica</td>
<td>Camino Mejora</td>
<td>Mejorar posición de formato de registro</td>
<td></td>
</tr>
<tr>
<td>Op. 250</td>
<td>Colocar la grasa sobre la rosca de la cupla de acuerdo a la especificación del procedimiento u orden de producción</td>
<td>Necesaria No se cumple la especificación del producto y el producto se deteriora Operador Proceso Estación de Trabajo Manuallmente Automático Para garantizar que el producto no se deteriora No Aplica</td>
<td>Manejo de Herramienta Manejo de Producto Continuado Inspección Mejora</td>
<td>Mejora de posición de herramienta</td>
<td></td>
</tr>
<tr>
<td>Op. 255</td>
<td>Colocar la grasa sobre el roce del lado Pin de acuerdo a la especificación del procedimiento u orden de producción</td>
<td>Necesaria No se cumple la especificación del producto y el producto se deteriora Operador Proceso Estación de Trabajo Manuallmente Automático Para garantizar que el producto no se deteriora No Aplica</td>
<td>Manejo de Herramienta Manejo de Producto Continuado Inspección Mejora</td>
<td>Mejora de posición de herramienta</td>
<td></td>
</tr>
<tr>
<td>Ópera.</td>
<td>Descripción de proceso</td>
<td>¿Qué es esta operación?</td>
<td>¿Qué ocurre si no se hace?</td>
<td>¿Cómo se hace?</td>
<td>¿Cómo se hace?</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------</td>
<td>-------------------------</td>
<td>----------------------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Op. 260</td>
<td>Realizar la colocación del protector plástico de acuerdo a lado del tubo que se esté procesando (Pla o Pla Box)</td>
<td>Necesario</td>
<td>No se cumple la especificación del producto</td>
<td>Operador</td>
<td>Estación de Trabajo</td>
</tr>
<tr>
<td>Op. 265</td>
<td>Realizar el apriete del protector con la herramienta adecuada y luego el exceso de grasa</td>
<td>Necesario</td>
<td>No se conecta la rosca con buen o mal</td>
<td>Operador</td>
<td>Estación de Trabajo</td>
</tr>
<tr>
<td>Op. 270</td>
<td>Realizar la colocación del protector plástico en la copa en el sentido del marcado del tubo de la misma manera en el lado Box</td>
<td>Necesario</td>
<td>No se cumple con la norma de especificación del producto</td>
<td>Operador</td>
<td>Estación de Trabajo</td>
</tr>
<tr>
<td>Op. 275</td>
<td>Realizar la liberación del tubo para el siguiente proceso o para el almacenamiento temporal o definitivo</td>
<td>Necesario</td>
<td>No ingresa nuevo tubo con rosca</td>
<td>Operador/ Maquina</td>
<td>Final</td>
</tr>
<tr>
<td>Op. 280</td>
<td>Registrar, definir e identificar si el defecto es reparable</td>
<td>Necesario</td>
<td>El producto no se puede manipular con producto conforme</td>
<td>Operador</td>
<td>Estación de Trabajo</td>
</tr>
<tr>
<td>Op. 285</td>
<td>Asegurar la revisión del defecto y realizar la inspección visual y/o dimensional del tubo con la rosca nuevamente</td>
<td>Necesario</td>
<td>El producto no se puede manipular con producto conforme</td>
<td>Operador</td>
<td>Estación de Trabajo</td>
</tr>
<tr>
<td>Op. 100</td>
<td>Identificar de acuerdo al Procedimiento No Conforme</td>
<td>Necesario</td>
<td>El producto no se puede manipular con producto conforme</td>
<td>Operador</td>
<td>Estación de Trabajo</td>
</tr>
<tr>
<td>Op. 135</td>
<td>Liberar el tubo para el proceso de corte</td>
<td>Necesario</td>
<td>No ingresa nuevo tubo con rosca</td>
<td>Operador/ Maquina</td>
<td>Final</td>
</tr>
<tr>
<td>Op. 102</td>
<td>Notificar al Coordinador de Producción, Calidad al operador del turno y/o Acompañado para las acciones correctivas</td>
<td>Necesario</td>
<td>No se puede realizar la inspección visual para evitar nuevamente el Producto no conforme</td>
<td>Operador</td>
<td>Estación de Trabajo</td>
</tr>
</tbody>
</table>
✔ Desarrollar un nuevo método de trabajo.

Para el desarrollo del nuevo método de trabajo se procedió a la actualización de los Diagramas de Flujo de cada uno de los Procesos de Fabricación.

A continuación, se presenta los diagramas de flujo correspondientes:

b) Diagrama de Flujo del Proceso de Roscado.

En la siguiente Figura 79 se presenta el diagrama de flujo levantado del Proceso de Roscado.
c) Diagrama de Flujo del Proceso de Inspección de Rosca.
En la siguiente Figura 80 se presenta el diagrama de flujo levantado del Proceso de Inspección de Rosca.

Figura 80. Diagrama de Flujo final del Proceso de Inspección de Rosca.

d) Diagrama de Flujo del Proceso NDT.
En la siguiente Figura 81 se presenta el diagrama de flujo levantado del Proceso NDT.

Figura 81. Diagrama de Flujo final del Proceso NDT.

e) Diagrama de Flujo del Proceso Acoplado y Paso de Mandril.
En la siguiente Figura 82 se presenta el diagrama de flujo levantado del Proceso de Acoplado y Paso de Mandril.

Figura 82. Diagrama de Flujo final del Proceso Acoplado y Paso de Mandril.
185

Figura 82. Diagrama de Flujo final del Proceso Acoplado y Paso de Mandril. (Continuación)
f) Diagrama de Flujo del Proceso de BME.

En la siguiente Figura 83 se presenta el diagrama de flujo levantado del Proceso de BME.

Figura 83. Diagrama de Flujo final del Proceso BME.
Capacitar a los operarios en el nuevo método de trabajo.

La capacitación a los operarios se lo presenta en el registro fotográfico en el Anexo 30. “Capacitación de nuevo método de trabajo”.

Aplicar el nuevo método de trabajo.

La aplicación del nuevo método de trabajo se realizó acorde a los diagramas de flujo en el punto 3.2.2.3 (Implementación de la Estandarización en los procesos de “Fabricación” del Centro Productivo de Tenaris Ecuador) del presente trabajo de investigación.

3.3 Verificación de los Niveles de Mejora Alcanzados de las Herramientas de Calidad Basadas en Lean Manufacturing al Proceso de “Fabricación” del Centro Productivo de Tenaris Ecuador

El procedimiento que se siguió para realizar la verificación para cada uno de los procesos de fabricación se describe en los siguientes pasos:

a) Levantamiento de información para la identificación de mudas aún existentes; a continuación se enlistan los pasos realizados:

- Reconocimiento de las actividades que no agregan valor y desperdicios.
- Levantamiento de la información de los desperdicios en el formato presentado en el Anexo 2. “Formato de Valor Agregado – No Valor Agregado”. Este formato contiene casillas para registrar las actividades que agregan valor y no agregan valor, y se lo diseñó para que el investigador marque con una raya cada vez que observaba en sitio si las actividades agregaban valor (al cliente o al negocio) o no agregaba valor.
- Levantamiento de 5 muestras u observaciones iniciales para la posterior definición de las muestras totales.
Dentro de este levantamiento se realizó la medición del trabajo, donde se aplicó el método de Estudio de Tiempos con Cronómetro que considera que: El tiempo que se toma para la medición de cada actividad determinada es cuando se vuelve a ejecutar la misma operación.

Los pasos que se realizaron para el Estudio de Tiempo fueron:

✓ Selección de la operación.
✓ Selección de los trabajadores que desempeñan la operación o proceso.
✓ Cronometraje y/o grabación de videos de la operación.
✓ Obtención y registro de la información del tiempo normal en el formato que se presenta en el Anexo 2. “Formato de Valor Agregado – No valor Agregado”.

b) Con las muestras iniciales tomadas se realizó el cálculo del número de muestra o observaciones requeridas utilizando el método “Fórmulas Estadísticas”. Este cálculo fue realizado con el software Minitab y las fórmulas aplicadas fueron:

✓ Fórmula para el número de observaciones necesarias.

\[N = \left(\frac{K\sigma}{e\bar{x}} \right)^2 + 1 \]

En donde:

\(N \) = Número de observaciones necesarias.
\(e \) = Porcentaje de error.
\(\bar{x} \) = La media aritmética de los tiempos de reloj.
\(\sigma \) = Desviación estándar.
\(K \) = El coeficiente de riesgo cuyos valores son:
K=1 para riesgo de error de 32%.
K= 2 para riesgo de error 5%.

Para el cálculo de la desviación típica de la curva de la distribución de frecuencias de los tiempos de reloj obtenidos σ es igual a:

$$\sigma = \sqrt{\frac{\sum f(X_i - \bar{x})^2}{n}}$$

En donde:

X_i = Los valores obtenidos de los tiempos de reloj.
\bar{x} = La media aritmética de los tiempos de reloj.
n= Número de mediciones efectuadas.

c) Se realizó el levantamiento de las muestras de acuerdo al número encontrado en el paso anterior; este levantamiento se realizó de la misma forma que se detalló en el punto 2, utilizando el formato presentado en el Anexo 2. “Formato Valor Agregado – No Valor agregado”.

d) Posterior a este levantamiento se realizó una validación de normalidad de los datos a través del método de Anderson – Darling con el software Minitab.

A continuación, se realizó la tabulación de las actividades que no agregan valor versus las actividades que no agregan valor (desperdicios), para conocer el porcentaje de cada una de ellas.

e) Con la tabulación realizada, se procedió a realizar un diagrama de Pareto para priorizar los desperdicios a cuáles se deben atacar.

A continuación, se presenta la aplicación de los pasos descritos para cada uno de los procesos de fabricación:
3.3.1 Verificación de los Niveles de Mejora Alcanzados en el Proceso de Roscado Implementado.

3.3.1.1 Levantamiento de Información Final Proceso de Roscado Implementado.

En la Tabla 58 se muestran los datos de la clasificación de actividades y tiempos obtenidos de las primeras 5 observaciones realizadas; las actividades se encuentran clasificadas en: de valor agregado, de valor agregado al negocio y de no valor agregado.

Tabla 58. Datos Iniciales de Verificación del Proceso de Roscado.

<table>
<thead>
<tr>
<th>ACTIVIDADES DE VALOR AGREGADO</th>
<th>ACTIVIDADES DE VALOR AGREGADO AL NEGOCIO</th>
<th>ACTIVIDADES DE NO VALOR AGREGADO (DESPERDICIOS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torno A. Yanguicela</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>Torno C. Arevalo</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>Torno C. Arevalo</td>
<td>14</td>
<td>1</td>
</tr>
<tr>
<td>Torno C. Arevalo</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Torno A. Yanguicela</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nomenclatura:
- NVA: Actividades No Agregan Valor
- VAP: Actividades Agregan Valor al Negocio
- VA: Actividades Agregan Valor

Nota: Operación de Transformación = Manejo de Torno.

En la Tabla 59 se presentan los tiempos cronometrados de las 5 observaciones realizadas transformadas de minutos a segundos:
En la Figura 84 se indica el cálculo del tamaño de la muestra aplicando el software Minitab, considerando: los valores de media aritmética y desviación estándar, tipo de distribución normal, nivel de confianza del 95% e intervalo de confianza bilateral.

Tabla 59. Número de Observaciones Finales Proceso Roscado.

<table>
<thead>
<tr>
<th># Observaciones</th>
<th>Tiempo minutos</th>
<th>Tiempo segundos</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>05:35</td>
<td>335</td>
</tr>
<tr>
<td>2</td>
<td>05:28</td>
<td>328</td>
</tr>
<tr>
<td>3</td>
<td>05:00</td>
<td>300</td>
</tr>
<tr>
<td>4</td>
<td>04:56</td>
<td>296</td>
</tr>
<tr>
<td>5</td>
<td>05:15</td>
<td>315</td>
</tr>
</tbody>
</table>

Estadísticos descriptivos: Proceso Roscado

<table>
<thead>
<tr>
<th>Variable</th>
<th>total</th>
<th>Media</th>
<th>Desv.Est.</th>
<th>Mínimo</th>
<th>Máximo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proceso Roscado</td>
<td>5</td>
<td>314,80</td>
<td>16,99</td>
<td>296,00</td>
<td>335,00</td>
</tr>
</tbody>
</table>

Tamaño de la muestra para estimación

<table>
<thead>
<tr>
<th>Método</th>
<th>Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parámetro</td>
<td>Normal</td>
</tr>
<tr>
<td>Distribución</td>
<td>Normal</td>
</tr>
<tr>
<td>Desviación estándar</td>
<td>16,99 (estimación)</td>
</tr>
<tr>
<td>Nivel de confianza</td>
<td>95%</td>
</tr>
<tr>
<td>Intervalo de confianza</td>
<td>Bilateral</td>
</tr>
</tbody>
</table>

Resultados

<table>
<thead>
<tr>
<th>Margen de error</th>
<th>Tamaño de la muestra</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>

Figura 84. Cálculo del tamaño de la muestra. Final Proceso Roscado (Pantalla Minitab).
3.3.1.2 Tabulación y Estadística de los Datos Obtenidos del Proceso de Roscado Implementado.

En la Tabla 60 se presentan los datos de la clasificación de actividades y tiempos obtenidos de las observaciones realizadas de acuerdo al número de muestra calculado; las actividades se encuentran clasificadas en: de valor agregado, de valor agregado al negocio y de no valor agregado.

Tabla 60 Datos Finales de Verificación del Proceso Roscado.

<table>
<thead>
<tr>
<th>formato de valor agregado</th>
<th>formato de valor agregado al negocio</th>
<th>valor agregado</th>
<th>no valor agregado</th>
<th>tiempo de trabajo (minutos)</th>
<th>cantidad total de actividades</th>
</tr>
</thead>
<tbody>
<tr>
<td>192</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Tabla 60. Datos Finales Implementado del Proceso Roscado. (Continuación).

FORMATO DE VALOR AGREGADO - NO VALOR AGREGADO

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Torno A. Yanguicela 14</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:05:29</td>
<td>18</td>
</tr>
<tr>
<td>Torno A. Yanguicela 14</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:05:27</td>
<td>19</td>
</tr>
<tr>
<td>Torno C. Arevalo 13</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:05:20</td>
<td>20</td>
</tr>
<tr>
<td>Torno C. Arevalo 13</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:05:09</td>
<td>18</td>
</tr>
<tr>
<td>Torno C. Arevalo 13</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:05:01</td>
<td>18</td>
</tr>
<tr>
<td>Torno A. Yanguicela 12</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:04:59</td>
<td>15</td>
</tr>
<tr>
<td>Torno A. Yanguicela 14</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:05:00</td>
<td>19</td>
</tr>
<tr>
<td>Torno A. Yanguicela 13</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:05:09</td>
<td>18</td>
</tr>
<tr>
<td>Torno C. Arevalo 14</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:05:11</td>
<td>19</td>
</tr>
<tr>
<td>Torno C. Arevalo 14</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:05:29</td>
<td>18</td>
</tr>
<tr>
<td>Torno C. Arevalo 14</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:05:33</td>
<td>19</td>
</tr>
<tr>
<td>Torno A. Yanguicela 14</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:05:27</td>
<td>21</td>
</tr>
<tr>
<td>Torno A. Yanguicela 14</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:05:19</td>
<td>17</td>
</tr>
<tr>
<td>Torno A. Yanguicela 12</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:05:17</td>
<td>17</td>
</tr>
<tr>
<td>Torno C. Arevalo 13</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:05:15</td>
<td>18</td>
</tr>
<tr>
<td>Torno C. Arevalo 14</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:05:24</td>
<td>19</td>
</tr>
<tr>
<td>Torno C. Arevalo 13</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:05:20</td>
<td>18</td>
</tr>
<tr>
<td>Torno C. Arevalo 13</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:05:11</td>
<td>18</td>
</tr>
</tbody>
</table>

Nomenclatura:

NVA	Actividades No Agregan Valor
VAI	Actividades Agregan Valor al Negocio
VA	Actividades Agregan Valor

Nota: Operación de Transformación = Manejo de Torno.

En la Tabla 61 se presentan los tiempos cronometrados de las observaciones realizadas transformadas de minutos a segundos:
<table>
<thead>
<tr>
<th># Observaciones</th>
<th>Tiempo minutos</th>
<th>Tiempo segundos</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>05:15</td>
<td>315</td>
</tr>
<tr>
<td>2</td>
<td>05:28</td>
<td>328</td>
</tr>
<tr>
<td>3</td>
<td>05:17</td>
<td>317</td>
</tr>
<tr>
<td>4</td>
<td>05:01</td>
<td>301</td>
</tr>
<tr>
<td>5</td>
<td>05:17</td>
<td>317</td>
</tr>
<tr>
<td>6</td>
<td>05:30</td>
<td>330</td>
</tr>
<tr>
<td>7</td>
<td>05:25</td>
<td>325</td>
</tr>
<tr>
<td>8</td>
<td>05:15</td>
<td>315</td>
</tr>
<tr>
<td>9</td>
<td>05:27</td>
<td>327</td>
</tr>
<tr>
<td>10</td>
<td>05:08</td>
<td>308</td>
</tr>
<tr>
<td>11</td>
<td>05:18</td>
<td>318</td>
</tr>
<tr>
<td>12</td>
<td>05:21</td>
<td>321</td>
</tr>
<tr>
<td>13</td>
<td>05:14</td>
<td>314</td>
</tr>
<tr>
<td>14</td>
<td>05:09</td>
<td>309</td>
</tr>
<tr>
<td>15</td>
<td>05:16</td>
<td>316</td>
</tr>
<tr>
<td>16</td>
<td>04:57</td>
<td>297</td>
</tr>
<tr>
<td>17</td>
<td>05:09</td>
<td>309</td>
</tr>
<tr>
<td>18</td>
<td>05:17</td>
<td>317</td>
</tr>
<tr>
<td>19</td>
<td>05:29</td>
<td>329</td>
</tr>
<tr>
<td>20</td>
<td>05:18</td>
<td>318</td>
</tr>
<tr>
<td>21</td>
<td>05:11</td>
<td>311</td>
</tr>
<tr>
<td>22</td>
<td>05:03</td>
<td>303</td>
</tr>
<tr>
<td>23</td>
<td>05:09</td>
<td>309</td>
</tr>
<tr>
<td>24</td>
<td>05:16</td>
<td>316</td>
</tr>
<tr>
<td>25</td>
<td>05:21</td>
<td>321</td>
</tr>
<tr>
<td>26</td>
<td>05:11</td>
<td>311</td>
</tr>
<tr>
<td>27</td>
<td>05:13</td>
<td>313</td>
</tr>
<tr>
<td>28</td>
<td>05:19</td>
<td>319</td>
</tr>
<tr>
<td>29</td>
<td>05:05</td>
<td>305</td>
</tr>
<tr>
<td>30</td>
<td>05:29</td>
<td>329</td>
</tr>
<tr>
<td>31</td>
<td>05:27</td>
<td>327</td>
</tr>
<tr>
<td>32</td>
<td>05:20</td>
<td>320</td>
</tr>
<tr>
<td>33</td>
<td>05:09</td>
<td>309</td>
</tr>
<tr>
<td>34</td>
<td>05:01</td>
<td>301</td>
</tr>
<tr>
<td>35</td>
<td>04:59</td>
<td>299</td>
</tr>
<tr>
<td>36</td>
<td>05:00</td>
<td>300</td>
</tr>
<tr>
<td>37</td>
<td>05:09</td>
<td>309</td>
</tr>
<tr>
<td>38</td>
<td>05:11</td>
<td>311</td>
</tr>
<tr>
<td>39</td>
<td>05:29</td>
<td>329</td>
</tr>
</tbody>
</table>
Tabla 61. Valores de tiempo de trabajo del Proceso de Roscado (Continuación).

<table>
<thead>
<tr>
<th># Observaciones</th>
<th>Tiempo minutos</th>
<th>Tiempo segundos</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>05:33</td>
<td>333</td>
</tr>
<tr>
<td>41</td>
<td>05:27</td>
<td>327</td>
</tr>
<tr>
<td>42</td>
<td>05:19</td>
<td>319</td>
</tr>
<tr>
<td>43</td>
<td>05:17</td>
<td>317</td>
</tr>
<tr>
<td>44</td>
<td>05:15</td>
<td>315</td>
</tr>
<tr>
<td>45</td>
<td>05:24</td>
<td>324</td>
</tr>
<tr>
<td>46</td>
<td>05:20</td>
<td>320</td>
</tr>
<tr>
<td>47</td>
<td>05:11</td>
<td>311</td>
</tr>
</tbody>
</table>

En la Figura 85 se presentan los datos estadísticos descriptivos de los tiempos cronometrados correspondientes a las muestras tomadas. Se observa que la media aritmética es de 315,72 segundos, con una desviación estándar de 9,12, un valor mínimo de 297,00 segundos y un máximo de 333,00 segundos.

<table>
<thead>
<tr>
<th>Variable</th>
<th>total</th>
<th>Media</th>
<th>Desv.Est.</th>
<th>Mínimo</th>
<th>Máximo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proceso Roscado Final</td>
<td>47</td>
<td>315,72</td>
<td>9,12</td>
<td>297,00</td>
<td>333,00</td>
</tr>
</tbody>
</table>

Figura 85. Cálculos estadísticos descriptivos del tiempo (segundos) - Proceso Roscado Final (Pantalla Minitab).

En la Figura 86, se encuentra el gráfico de la Prueba de Normalidad con los datos de tiempo realizados usando el método de Anderson – Darling con el software Minitab. Se observa que el valor de “p” es mayor que 0,05; por lo cual se valida que los datos siguen una distribución normal.
Una vez validada la normalidad de datos, se realizó la tabulación de los tipos de actividad (de valor agregado, de valor agregado al negocio y de no valor agregado); estos datos se presentan en la Tabla 62.

Figura 86. Prueba de Normalidad del Proceso de Roscado Implementado (Pantalla Minitab).
Tabla 62. Tabulación de Datos VA y NVA del Proceso de Roscado Implementado.

Tabulación de datos

<table>
<thead>
<tr>
<th>Número de Muestra</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIVIDAD</td>
<td></td>
</tr>
<tr>
<td>Manejo Torno o</td>
<td>11</td>
<td>12</td>
<td>11</td>
<td>11</td>
<td>13</td>
<td>13</td>
<td>14</td>
<td>13</td>
<td>12</td>
<td>14</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>transformación</td>
<td></td>
</tr>
<tr>
<td>Manejo Herramienta</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Manejo de Producto</td>
<td>1</td>
</tr>
<tr>
<td>Inspección</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Caminado</td>
<td>1</td>
</tr>
<tr>
<td>Espera</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Reproceso</td>
<td>0</td>
</tr>
<tr>
<td>Inventario</td>
<td>0</td>
</tr>
<tr>
<td>Sobreproducción</td>
<td>0</td>
</tr>
<tr>
<td>Otros</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>16</td>
<td>17</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>20</td>
<td>19</td>
<td>18</td>
<td>17</td>
<td>21</td>
<td>19</td>
<td>17</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Número de Muestra</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIVIDAD</td>
<td></td>
</tr>
<tr>
<td>Manejo Torno o</td>
<td>13</td>
<td>14</td>
<td>13</td>
<td>14</td>
<td>13</td>
<td>13</td>
<td>14</td>
<td>13</td>
<td>14</td>
<td>13</td>
<td>14</td>
<td>13</td>
</tr>
<tr>
<td>transformación</td>
<td></td>
</tr>
<tr>
<td>Manejo Herramienta</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Manejo de Producto</td>
<td>1</td>
</tr>
<tr>
<td>Inspección</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Caminado</td>
<td>1</td>
</tr>
<tr>
<td>Espera</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Reproceso</td>
<td>0</td>
</tr>
<tr>
<td>Inventario</td>
<td>0</td>
</tr>
<tr>
<td>Sobreproducción</td>
<td>0</td>
</tr>
<tr>
<td>Otros</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>18</td>
<td>21</td>
<td>18</td>
<td>19</td>
<td>19</td>
<td>18</td>
<td>18</td>
<td>19</td>
<td>21</td>
<td>18</td>
<td>18</td>
<td>21</td>
</tr>
</tbody>
</table>
Tabla 62. Tabulación de Datos VA y NVA del Proceso de Roscado Implementado (Continuación).

<table>
<thead>
<tr>
<th>Número de Muestra</th>
<th>ACTIVIDAD</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
<th>31</th>
<th>32</th>
<th>33</th>
<th>34</th>
<th>35</th>
<th>36</th>
</tr>
</thead>
<tbody>
<tr>
<td># Repeticiones de Actividad durante proceso</td>
<td></td>
</tr>
<tr>
<td>Manejo Torno o transformación</td>
<td>15</td>
<td>13</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>12</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Manejo Herramienta</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Manejo de Producto</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Inspección</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Caminado</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Espera</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Reproceso</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Inventario</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sobreproducción</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Otros</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>20</td>
<td>20</td>
<td>16</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>18</td>
<td>18</td>
<td>15</td>
<td>19</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Número de Muestra</th>
<th>ACTIVIDAD</th>
<th>37</th>
<th>38</th>
<th>39</th>
<th>40</th>
<th>41</th>
<th>42</th>
<th>43</th>
<th>44</th>
<th>45</th>
<th>46</th>
<th>47</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td># Repeticiones de Actividad durante proceso</td>
<td></td>
</tr>
<tr>
<td>Manejo Torno o transformación</td>
<td>13</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>622</td>
</tr>
<tr>
<td>Manejo Herramienta</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>51</td>
</tr>
<tr>
<td>Manejo de Producto</td>
<td>1</td>
<td>47</td>
</tr>
<tr>
<td>Inspección</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>51</td>
</tr>
<tr>
<td>Caminado</td>
<td>1</td>
<td>47</td>
</tr>
<tr>
<td>Espera</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>47</td>
</tr>
<tr>
<td>Reproceso</td>
<td>0</td>
</tr>
<tr>
<td>Inventario</td>
<td>0</td>
</tr>
<tr>
<td>Sobreproducción</td>
<td>0</td>
</tr>
<tr>
<td>Otros</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>18</td>
<td>19</td>
<td>18</td>
<td>19</td>
<td>21</td>
<td>17</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>18</td>
<td>18</td>
<td>18</td>
<td>865</td>
</tr>
</tbody>
</table>
En la Tabla 63 se presenta el Porcentaje de Actividades de VA y NVA, del Proceso de Roscado; se observa que el 72% son Actividades de VA, el 17% de VAN y el 11% son de Actividades de NVA, considerando el número de repeticiones de la actividad se muestra que existe actividades de VAN y NVA que tienen mayor porcentaje de participación, las cuales son: Manejo de Herramienta con el 6%, Inspección con el 6%, Caminado con el 5% y Espera con el 5%.

Tabla 63. Porcentaje de Actividades de VA y NVA. Proceso de Roscado Implementado.
Para la priorización de las mejoras en las actividades de valor agregado para el negocio (VAN) y/o eliminación de desperdicios (NVA) se tabularon los datos a través de un Diagrama de Pareto. Este diagrama se presenta en la Figura 87 y en el que se muestra que el 81 % del número de actividades de NVA y VAN se concentran en el 44% de la clasificación: Manejo de Herramienta, Inspección, Manejo de Producto y Caminado; estas actividades deben ser las primeras en ser gestionadas nuevamente en el proceso.

![Grafica de Pareto - Proceso de Roscado](image)

Figura 87. Diagrama de Pareto de Proceso de Roscado. Implementado.

3.3.2 Verificación de los Niveles de Mejora Alcanzados en el Proceso de Inspección de Rosca Implementado.

3.3.2.1 Levantamiento de Información Final Proceso de Inspección de Rosca Implementado.

En la Tabla 64 se muestran los datos de la clasificación de actividades y tiempos obtenidos de las primeras 5 observaciones realizadas; las actividades se encuentran clasificadas en: de valor agregado, de valor agregado al negocio y de no valor agregado.
Tabla 64. Datos Iniciales del Proceso de Inspección de Rosca. Implementado.

FORMATO DE VALOR AGREGADO - NO VALOR AGREGADO

|-------------------------------------|------------------------|-----------------|------------------------|---------|

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Inspección, Rosca</td>
<td>R. Tayan</td>
<td>5</td>
<td>25</td>
<td>7</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:09:02</td>
</tr>
<tr>
<td>Inspección, Rosca</td>
<td>A. Yanguicela</td>
<td>5</td>
<td>27</td>
<td>8</td>
<td>8</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Inspección, Rosca</td>
<td>R. Tayan</td>
<td>6</td>
<td>28</td>
<td>7</td>
<td>9</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Inspección, Rosca</td>
<td>A. Yanguicela</td>
<td>6</td>
<td>27</td>
<td>8</td>
<td>7</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Inspección, Rosca</td>
<td>R. Tayan</td>
<td>5</td>
<td>25</td>
<td>7</td>
<td>8</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Total 0:45:07 261

Nomenclatura.

IVA Actividades No Agregan Valor
VAN Actividades Agregan Valor al Negocio
VA Actividades Agregan Valor

Nota: Operación de Transformación = Inspección de Producto.
Inspección = Verificación de Equpos de Medición.

En la Tabla 65 se presentan los tiempos cronometrados de las 5 observaciones realizadas transformadas de minutos a segundos:

Tabla 65. Número de Observaciones Finales Proceso de Inspección de Rosca. Implementado.

<table>
<thead>
<tr>
<th>Proceso Inspección de Rosca</th>
<th># Observaciones</th>
<th>Tiempo minutos</th>
<th>Tiempo segundos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>09:02</td>
<td>542</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>09:18</td>
<td>558</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>08:50</td>
<td>530</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>08:45</td>
<td>525</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>09:12</td>
<td>552</td>
</tr>
</tbody>
</table>

En la Figura 88 se indica el cálculo del tamaño de la muestra aplicando el software Minitab, considerando: los valores de media aritmética y desviación estándar, tipo de distribución normal, nivel de confianza del 95% e intervalo de confianza bilateral.
Estadísticos descriptivos: Proceso Ins. Rosca

<table>
<thead>
<tr>
<th>Variable</th>
<th>total</th>
<th>Media</th>
<th>Desv.Est.</th>
<th>Mínimo</th>
<th>Máximo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proceso Ins. Rosca</td>
<td>5</td>
<td>541,40</td>
<td>14,03</td>
<td>525,00</td>
<td>558,00</td>
</tr>
</tbody>
</table>

Tamaño de la muestra para estimación

Método

<table>
<thead>
<tr>
<th>Parámetro</th>
<th>Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distribución</td>
<td>Normal</td>
</tr>
<tr>
<td>Desviación estándar</td>
<td>14,03 (estimación)</td>
</tr>
<tr>
<td>Nivel de confianza</td>
<td>95%</td>
</tr>
<tr>
<td>Intervalo de confianza</td>
<td>Bilateral</td>
</tr>
</tbody>
</table>

Resultados

<table>
<thead>
<tr>
<th>Tamaño de la muestra</th>
<th>Tamaño</th>
<th>Margen de error</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>33</td>
<td></td>
</tr>
</tbody>
</table>

3.3.2.2 Tabulación y Estadística de los Datos Obtenidos del Proceso de Inspección de Rosca Implementado.

En la Tabla 66 se presentan los datos de la clasificación de actividades y tiempos obtenidos de las observaciones realizadas de acuerdo al número de muestra calculado; las actividades se encuentran clasificadas en: de valor agregado, de valor agregado al negocio y de no valor agregado.
En la Tabla 67 se presentan los tiempos cronometrados de las observaciones realizadas transformadas de minutos a segundos:
<table>
<thead>
<tr>
<th>#</th>
<th>Observaciones</th>
<th>Tiempo minutos</th>
<th>Tiempo segundos</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>08:51</td>
<td>531</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>09:15</td>
<td>555</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>09:01</td>
<td>541</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>08:48</td>
<td>528</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>09:17</td>
<td>557</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>09:25</td>
<td>565</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>09:01</td>
<td>541</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>08:48</td>
<td>528</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>09:09</td>
<td>549</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>09:19</td>
<td>559</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>08:59</td>
<td>539</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>09:11</td>
<td>551</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>08:59</td>
<td>539</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>09:28</td>
<td>568</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>09:05</td>
<td>545</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>09:19</td>
<td>559</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>09:01</td>
<td>541</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>08:51</td>
<td>531</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>09:15</td>
<td>555</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>09:29</td>
<td>569</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>09:04</td>
<td>544</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>09:25</td>
<td>565</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>09:15</td>
<td>555</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>08:50</td>
<td>530</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>09:03</td>
<td>543</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>08:55</td>
<td>535</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>09:05</td>
<td>545</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>08:55</td>
<td>535</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>09:00</td>
<td>540</td>
<td></td>
</tr>
</tbody>
</table>

En la Figura 89 se presentan los datos estadísticos descriptivos de los tiempos cronometrados correspondientes a las muestras tomadas. Se observa que la media aritmética es de 547,36 segundos, con una desviación estándar de 12,41, un valor mínimo de 528,00 segundos y un máximo de 569,00 segundos.
Estadísticos descriptivos: Proceso Inspección Rosca Final

<table>
<thead>
<tr>
<th>Variable</th>
<th>Conteo</th>
<th>total</th>
<th>Media</th>
<th>Desv.Est.</th>
<th>Mínimo</th>
<th>Máximo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proceso Inspección Rosca</td>
<td>33</td>
<td>547,36</td>
<td>12,41</td>
<td>528,00</td>
<td>569,00</td>
<td></td>
</tr>
</tbody>
</table>

Figura 89. Cálculos estadísticos descriptivos del tiempo (segundos) - Proceso de Inspección de Rosca. Implementado (Pantalla Minitab).

En la Figura 90, se encuentra el gráfico de la Prueba de Normalidad con los datos de tiempo realizados usando el método de Anderson – Darling con el software Minitab. Se observa que el valor de “p” es mayor que 0,05; por lo cual se valida que los datos siguen una distribución normal.

Figura 90. Prueba de Normalidad del Proceso de Roscado Implementado

Una vez validada la normalidad de datos, se realizó la tabulación de los tipos de actividad (de valor agregado, de valor agregado al negocio y de no valor agregado); estos datos se presentan en la Tabla 68.
Tabla 68. Tabulación de Datos VA y NVA del Proceso de Inspección de Rosca Implementado.

Tabulación de datos

<table>
<thead>
<tr>
<th>Número de Muestra</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIVIDAD</td>
<td></td>
</tr>
<tr>
<td>Operación de</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>transformación</td>
<td></td>
</tr>
<tr>
<td>Manejo de Producto</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>Inspección</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>Caminado</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Espera</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Reproceso</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Inventario</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sobreproducción</td>
<td>0</td>
</tr>
<tr>
<td>Otros</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>49</td>
<td>52</td>
<td>56</td>
<td>54</td>
<td>50</td>
<td>51</td>
<td>52</td>
<td>52</td>
<td>52</td>
<td>50</td>
<td>52</td>
<td>49</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Número de Muestra</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIVIDAD</td>
<td></td>
</tr>
<tr>
<td>Operación de</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>transformación</td>
<td></td>
</tr>
<tr>
<td>Manejo Herramienta</td>
<td>26</td>
<td>24</td>
<td>24</td>
<td>25</td>
<td>25</td>
<td>24</td>
<td>26</td>
<td>26</td>
<td>26</td>
<td>25</td>
<td>25</td>
<td>26</td>
</tr>
<tr>
<td>Manejo de Producto</td>
<td>7</td>
<td>9</td>
<td>9</td>
<td>7</td>
<td>9</td>
<td>7</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>Inspección</td>
<td>7</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>7</td>
<td>9</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Caminado</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Espera</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Reproceso</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Inventario</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sobreproducción</td>
<td>0</td>
</tr>
<tr>
<td>Otros</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>51</td>
<td>50</td>
<td>52</td>
<td>49</td>
<td>52</td>
<td>50</td>
<td>52</td>
<td>52</td>
<td>51</td>
<td>49</td>
<td>48</td>
<td>50</td>
</tr>
</tbody>
</table>
En la Tabla 69 se presenta el Porcentaje de Actividades de VA y NVA, del Proceso de Inspección de Rosca; se observa que el 10% son Actividades de VA, el 80% de VAN y el 10% son de Actividades de NVA, considerando el número de repeticiones de la actividad se muestra que existe actividades de VAN y NVA que tienen mayor porcentaje de participación, las cuales son: Manejo de Herramienta con el 50%, Manejo de Producto con el 15% e Inspección con el 15%.
Para la priorización de las mejoras en las actividades de valor agregado para el negocio (VAN) y/o eliminación de desperdicios (NVA) se tabularon los datos a través de un Diagrama de Pareto. Este diagrama se presenta en la Figura 91 y en el que se muestra que el 88 % del número de actividades de NVA y VAN se concentran en el 33% de la clasificación: Manejo de Herramienta, Inspección y Manejo de Producto; estas actividades deben ser las primeras nuevamente en ser gestionadas en el proceso.
Figura 91. Diagrama de Pareto de Proceso de Inspección de Rosca. Implementado.

3.3.3 Verificación de los Niveles de Mejora Alcanzados en el Proceso de Pruebas No Destructivas (NDT) Implementado.

3.3.3.1 Levantamiento de Información Final Proceso de NDT Implementado.

En la Tabla 70 se muestran los datos de la clasificación de actividades y tiempos obtenidos de las primeras 5 observaciones realizadas; las actividades se encuentran clasificadas en: de valor agregado, de valor agregado al negocio y de no valor agregado.
Tabla 70. Datos Iniciales del Proceso de Inspección de NDT. Implementado.

FORMATO DE VALOR AGREGADO - NO VALOR AGREGADO

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NDT</td>
<td>M.Tayupanta</td>
<td>6</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>01:45</td>
<td>11</td>
</tr>
<tr>
<td>NDT</td>
<td>M.Tayupanta</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>01:30</td>
<td>11</td>
</tr>
<tr>
<td>NDT</td>
<td>M.Tayupanta</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>01:48</td>
<td>11</td>
</tr>
<tr>
<td>NDT</td>
<td>M.Tayupanta</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>01:59</td>
<td>11</td>
</tr>
<tr>
<td>NDT</td>
<td>M.Tayupanta</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>01:37</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>08:39</td>
</tr>
</tbody>
</table>

Nomenclatura.

NVA Actividades No Agregan Valor
VAN Actividades Agregan Valor al Negocio
VA Actividades Agregan Valor

Nota: Operación de Transformación = Inspección de Producto.
Inspección = Verificación de Equipos de Medición.

En la Tabla 71 se presentan los tiempos cronometrados de las 5 observaciones realizadas transformadas de minutos a segundos:

Tabla 71. Valores de tiempo de trabajo del Proceso de Inspección de Rosca. Implementado.

<table>
<thead>
<tr>
<th>Proceso NDT</th>
<th># Observaciones</th>
<th>Tiempo minutos</th>
<th>Tiempo segundos</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>01:45</td>
<td>105</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>01:30</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>01:48</td>
<td>108</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>01:59</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>01:37</td>
<td>97</td>
</tr>
</tbody>
</table>

En la Figura 92 se indica el cálculo del tamaño de la muestra aplicando el software Minitab, considerando: los valores de media aritmética y desviación estándar, tipo de distribución normal, nivel de confianza del 95% e intervalo de confianza bilateral.
3.3.3.2 Tabulación y Estadística de los Datos Obtenidos del Proceso de NDT Implementado.

En la Tabla 72 se presentan los datos de la clasificación de actividades y tiempos obtenidos de las observaciones realizadas de acuerdo al número de muestra calculado; las actividades se encuentran clasificadas en: de valor agregado, de valor agregado al negocio y de no valor agregado.
Tabla 72 Datos Finales Implementado del Proceso de NDT. Implementado.

FORMATO DE VALOR AGREGADO - NO VALOR AGREGADO

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NDT</td>
<td>M. Tayupanta</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:147</td>
<td>10</td>
</tr>
<tr>
<td>NDT</td>
<td>M. Tayupanta</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:131</td>
<td>10</td>
</tr>
<tr>
<td>NDT</td>
<td>M. Tayupanta</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:149</td>
<td>11</td>
</tr>
<tr>
<td>NDT</td>
<td>M. Tayupanta</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:159</td>
<td>11</td>
</tr>
<tr>
<td>NDT</td>
<td>M. Tayupanta</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:137</td>
<td>11</td>
</tr>
<tr>
<td>NDT</td>
<td>M. Tayupanta</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:149</td>
<td>11</td>
</tr>
<tr>
<td>NDT</td>
<td>M. Tayupanta</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:146</td>
<td>12</td>
</tr>
<tr>
<td>NDT</td>
<td>M. Tayupanta</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:159</td>
<td>11</td>
</tr>
<tr>
<td>NDT</td>
<td>M. Tayupanta</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:137</td>
<td>10</td>
</tr>
<tr>
<td>NDT</td>
<td>M. Tayupanta</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:131</td>
<td>11</td>
</tr>
<tr>
<td>NDT</td>
<td>M. Tayupanta</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:149</td>
<td>11</td>
</tr>
<tr>
<td>NDT</td>
<td>M. Tayupanta</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:153</td>
<td>12</td>
</tr>
<tr>
<td>NDT</td>
<td>M. Tayupanta</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:141</td>
<td>11</td>
</tr>
<tr>
<td>NDT</td>
<td>M. Tayupanta</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:143</td>
<td>10</td>
</tr>
<tr>
<td>NDT</td>
<td>M. Tayupanta</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:132</td>
<td>12</td>
</tr>
<tr>
<td>NDT</td>
<td>M. Tayupanta</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:139</td>
<td>11</td>
</tr>
<tr>
<td>NDT</td>
<td>M. Tayupanta</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:158</td>
<td>12</td>
</tr>
<tr>
<td>NDT</td>
<td>M. Tayupanta</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:149</td>
<td>10</td>
</tr>
<tr>
<td>NDT</td>
<td>M. Tayupanta</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:137</td>
<td>11</td>
</tr>
<tr>
<td>NDT</td>
<td>M. Tayupanta</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:146</td>
<td>12</td>
</tr>
</tbody>
</table>

Total 39:43 241

Nomenclatura:

<table>
<thead>
<tr>
<th>VR</th>
<th>Actividades No Agregan Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAN</td>
<td>Actividades Agregan Valor al Negocio</td>
</tr>
<tr>
<td>VA</td>
<td>Actividades Agregan Valor</td>
</tr>
</tbody>
</table>

Nota: Operación de Transformación = Inspección de Producto.
Inspección = Verificación de Equipos de Medición.

En la Tabla 73 se presentan los tiempos cronometrados de las observaciones realizadas transformadas de minutos a segundos:
Tabla 73. Valores de tiempo de trabajo finales del Proceso de NDT. Implementado

<table>
<thead>
<tr>
<th># Observaciones</th>
<th>Tiempo minutos</th>
<th>Tiempo segundos</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>01:47</td>
<td>107</td>
</tr>
<tr>
<td>2</td>
<td>01:31</td>
<td>91</td>
</tr>
<tr>
<td>3</td>
<td>01:49</td>
<td>109</td>
</tr>
<tr>
<td>4</td>
<td>01:59</td>
<td>119</td>
</tr>
<tr>
<td>5</td>
<td>01:37</td>
<td>97</td>
</tr>
<tr>
<td>6</td>
<td>01:58</td>
<td>118</td>
</tr>
<tr>
<td>7</td>
<td>02:01</td>
<td>121</td>
</tr>
<tr>
<td>8</td>
<td>01:49</td>
<td>109</td>
</tr>
<tr>
<td>9</td>
<td>01:46</td>
<td>106</td>
</tr>
<tr>
<td>10</td>
<td>01:59</td>
<td>119</td>
</tr>
<tr>
<td>11</td>
<td>01:37</td>
<td>97</td>
</tr>
<tr>
<td>12</td>
<td>01:31</td>
<td>91</td>
</tr>
<tr>
<td>13</td>
<td>02:00</td>
<td>120</td>
</tr>
<tr>
<td>14</td>
<td>01:53</td>
<td>113</td>
</tr>
<tr>
<td>15</td>
<td>01:57</td>
<td>117</td>
</tr>
<tr>
<td>16</td>
<td>01:41</td>
<td>101</td>
</tr>
<tr>
<td>17</td>
<td>01:43</td>
<td>103</td>
</tr>
<tr>
<td>18</td>
<td>01:32</td>
<td>92</td>
</tr>
<tr>
<td>19</td>
<td>01:39</td>
<td>99</td>
</tr>
<tr>
<td>20</td>
<td>01:58</td>
<td>118</td>
</tr>
<tr>
<td>21</td>
<td>01:49</td>
<td>109</td>
</tr>
<tr>
<td>22</td>
<td>02:07</td>
<td>127</td>
</tr>
</tbody>
</table>

En la Figura 93 se presentan los datos estadísticos descriptivos de los tiempos cronometrados correspondientes a las muestras tomadas. Se observa que la media aritmética es de 108,32 segundos, con una desviación estándar de 10,82, un valor mínimo de 91,00 segundos y un máximo de 127,00 segundos.

Figura 93. Cálculos estadísticos descriptivos del tiempo (segundos) - Proceso de NDT. Implementado. (Pantalla Minitab).
En la Figura 94, se encuentra el gráfico de la Prueba de Normalidad con los datos de tiempo realizados usando el método de Anderson – Darling con el software Minitab. Se observa que el valor de “p” es mayor que 0,05; por lo cual se valida que los datos siguen una distribución normal.

La Figura 94. Prueba de Normalidad del Proceso de NDT. Implementado

Una vez validada la normalidad de datos, se realizó la tabulación de los tipos de actividad (de valor agregado, de valor agregado al negocio y de no valor agregado); estos datos se presentan en la Tabla 74.
Tabla 74. Tabulación de Datos de Clasificación de actividades VA y NVA del Proceso de NDT. Implementado.

Tabulación de datos

<table>
<thead>
<tr>
<th>Número de Muestra</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTIVIDAD</td>
<td></td>
</tr>
<tr>
<td>Operación de</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>transformación</td>
<td></td>
</tr>
<tr>
<td>Manejo Herramienta</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Manejo de Producto</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Inspección</td>
<td>0</td>
</tr>
<tr>
<td>Caminado</td>
<td>2</td>
</tr>
<tr>
<td>Espera</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Reproceso</td>
<td>0</td>
</tr>
<tr>
<td>Inventario</td>
<td>0</td>
</tr>
<tr>
<td>Sobreproducción</td>
<td>0</td>
</tr>
<tr>
<td>Otros</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>10</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>12</td>
<td>11</td>
<td>10</td>
<td>11</td>
</tr>
</tbody>
</table>

Número de Muestra

<table>
<thead>
<tr>
<th>ACTIVIDAD</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operación de</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td>5</td>
<td>124</td>
<td></td>
</tr>
<tr>
<td>transformación</td>
<td></td>
</tr>
<tr>
<td>Manejo Herramienta</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>26</td>
</tr>
<tr>
<td>Manejo de Producto</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>23</td>
</tr>
<tr>
<td>Inspección</td>
<td>0</td>
</tr>
<tr>
<td>Caminado</td>
<td>2</td>
<td>44</td>
</tr>
<tr>
<td>Espera</td>
<td>1</td>
<td>24</td>
</tr>
<tr>
<td>Reproceso</td>
<td>0</td>
</tr>
<tr>
<td>Inventario</td>
<td>0</td>
</tr>
<tr>
<td>Sobreproducción</td>
<td>0</td>
</tr>
<tr>
<td>Otros</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>11</td>
<td>12</td>
<td>11</td>
<td>11</td>
<td>10</td>
<td>12</td>
<td>11</td>
<td>12</td>
<td>10</td>
<td>11</td>
<td>241</td>
</tr>
</tbody>
</table>

Nomenclatura

<table>
<thead>
<tr>
<th>NVA</th>
<th>Actividades No Agregan Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAN</td>
<td>Actividades Agregan Valor al Negocio</td>
</tr>
<tr>
<td>VA</td>
<td>Actividades Agregan Valor</td>
</tr>
</tbody>
</table>
En la Tabla 75 se presenta el Porcentaje de Actividades de VA y NVA, del Proceso de NDT; se observa que el 51% son Actividades de VA, el 21% de VAN y el 18% son de Actividades de NVA, considerando el número de repeticiones de la actividad se muestra que existe actividades de VAN y NVA que tienen mayor porcentaje de participación, las cuales son: Caminado 18%, Espera con el 10%, Manejo de Herramienta con el 11% y Manejo de Producto con el 10%.

Tabla 75. Porcentaje de Actividades de VA y NVA. Proceso de NDT. Implementado.

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Promedio del número de repeticiones por Actividad</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operación de transformación</td>
<td>5,64</td>
<td>51%</td>
</tr>
<tr>
<td>Manejo Herramienta</td>
<td>1,18</td>
<td>11%</td>
</tr>
<tr>
<td>Manejo de Producto</td>
<td>1,05</td>
<td>10%</td>
</tr>
<tr>
<td>Inspección</td>
<td>0,00</td>
<td>0%</td>
</tr>
<tr>
<td>Caminado</td>
<td>2,00</td>
<td>18%</td>
</tr>
<tr>
<td>Espera</td>
<td>1,09</td>
<td>10%</td>
</tr>
<tr>
<td>Reproceso</td>
<td>0,00</td>
<td>0%</td>
</tr>
<tr>
<td>Inventario</td>
<td>0,00</td>
<td>0%</td>
</tr>
<tr>
<td>Sobreproducción</td>
<td>0,00</td>
<td>0%</td>
</tr>
<tr>
<td>Otros</td>
<td>0,00</td>
<td>0%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>10,95</td>
<td>100%</td>
</tr>
</tbody>
</table>

Nomenclatura:

- **NVA**: Actividades No Agregan Valor
- **VAN**: Actividades Agregan Valor al Negocio
- **VA**: Actividades Agregan Valor

Para la priorización de las mejoras en las actividades de valor agregado para el negocio (VAN) y/o eliminación de desperdicios (NVA) se tabularon los datos a través de un Diagrama de Pareto. Este diagrama se presenta en la Figura 95 y en el que se muestra que el 80% del número de actividades de NVA y VAN se concentran en el 33% de la clasificación: Caminado, Manejo de Herramienta y Espera; estas actividades deben ser las primeras nuevamente en ser gestionadas en el proceso.
3.3.4 Verificación De Los Niveles De Mejora Alcanzados En El Proceso De Acoplado Y Paso Del Mandril Implementado.

3.3.4.1 Levantamiento de Información Final Sub Proceso de Pre Acoplado Implementado.

En la Tabla 76 se muestran los datos de la clasificación de actividades y tiempos obtenidos de las primeras 5 observaciones realizadas; las actividades se encuentran clasificadas en: de valor agregado, de valor agregado al negocio y de no valor agregado.
Tabla 76. Datos Iniciales del Sub Proceso de Pre Acoplado. Implementado.

FORMATO DE VALOR AGREGADO - NO VALOR AGREGADO

<table>
<thead>
<tr>
<th>Proceso N° Opc.</th>
<th>Nombre Operario</th>
<th>Operación de transformación</th>
<th>Manejo Herramienta (Movimiento Inecesario)</th>
<th>Manejo de tubo (Movimiento Inecesario)</th>
<th>Inspección</th>
<th>Cantidad</th>
<th>Transporto</th>
<th>Espera</th>
<th>Repeso</th>
<th>Inventario</th>
<th>Sobrepresión</th>
<th>Otros</th>
<th>Tiempo de Trabajo (minutos)</th>
<th>Cantidad Total de Actividades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub Proceso de Pre Acoplado</td>
<td>R. Tayan</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02:28</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Sub Proceso de Pre Acoplado</td>
<td>R. Tayan</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02:05</td>
<td>12</td>
</tr>
<tr>
<td>Sub Proceso de Pre Acoplado</td>
<td>R. Tayan</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02:05</td>
<td>12</td>
</tr>
<tr>
<td>Sub Proceso de Pre Acoplado</td>
<td>R. Tayan</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02:19</td>
<td>12</td>
</tr>
<tr>
<td>Sub Proceso de Pre Acoplado</td>
<td>R. Tayan</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02:32</td>
<td>15</td>
</tr>
</tbody>
</table>

Nomenclatura.

<table>
<thead>
<tr>
<th>NVA</th>
<th>Actividades No Agregan Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAN</td>
<td>Actividades Agregan Valor al Negocio</td>
</tr>
<tr>
<td>VA</td>
<td>Actividades Agregan Valor</td>
</tr>
</tbody>
</table>

Notas: Operación de Transformación = Colocación de Acople (Cupla).
Inspección = Verificación de Equipos de Medición.

En la Tabla 77 se presentan los tiempos cronometrados de las 5 observaciones realizadas transformadas de minutos a segundos:

Tabla 77. Valores de tiempo de trabajo del Sub Proceso de Pre Acoplado. Implementado.

<table>
<thead>
<tr>
<th>Sub Proceso Pre Acoplado</th>
<th># Observaciones</th>
<th>Tiempo (minutos)</th>
<th>Tiempo (segundos)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>02:28</td>
<td>148</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>02:05</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>02:01</td>
<td>121</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>02:19</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>02:22</td>
<td>142</td>
</tr>
</tbody>
</table>

En la Figura 96 se indica el cálculo del tamaño de la muestra aplicando el software Minitab, considerando: los valores de media aritmética y desviación estándar, tipo de distribución normal, nivel de confianza del 95% e intervalo de confianza bilateral.

218
Estadísticos descriptivos: Sub Proceso Pre Acoplado

<table>
<thead>
<tr>
<th>Variable</th>
<th>Conteo total</th>
<th>Media</th>
<th>Desv.Est.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub Proceso Pre Acoplado</td>
<td>5</td>
<td>135,00</td>
<td>11,51</td>
</tr>
<tr>
<td>121,00</td>
<td>148,00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tamaño de la muestra para estimación

<table>
<thead>
<tr>
<th>Método</th>
<th>Parámetro</th>
<th>Media</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parámetro Media</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distribución Normal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desviación estándar 11,51</td>
<td>(estimación)</td>
<td></td>
</tr>
<tr>
<td>Nivel de confianza 95%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intervalo de confianza</td>
<td></td>
<td>Bilateral</td>
</tr>
</tbody>
</table>

Resultados

<table>
<thead>
<tr>
<th>Tamaño de la muestra</th>
<th>Margen de error</th>
<th>Tamaño de la muestra</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>23</td>
<td></td>
</tr>
</tbody>
</table>

Figura 96. Cálculo del tamaño de la muestra. Final Sub Proceso de Pre Acoplado. Implementado.

3.3.4.2 Tabulación y Estadística de los Datos Obtenidos del Sub Proceso de Pre Acoplado Implementado.

En la Tabla 78 se presentan los datos de la clasificación de actividades y tiempos obtenidos de las observaciones realizadas de acuerdo al número de muestra calculado; las actividades se encuentran clasificadas en: de valor agregado, de valor agregado al negocio y de no valor agregado.
Tabla 78 Datos Finales del Sub Proceso de Pre Acoplado. Implementado.

FORMATO DE VALOR AGREGADO - NO VALOR AGREGADO

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub Proceso de Pre Acoplado</td>
<td>A. Yanguicela</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02:00</td>
<td>10</td>
</tr>
<tr>
<td>Sub Proceso de Pre Acoplado</td>
<td>A. Yanguicela</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02:10</td>
<td>11</td>
</tr>
<tr>
<td>Sub Proceso de Pre Acoplado</td>
<td>A. Yanguicela</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02:15</td>
<td>11</td>
</tr>
<tr>
<td>Sub Proceso de Pre Acoplado</td>
<td>R. Tayan</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02:23</td>
<td>16</td>
</tr>
<tr>
<td>Sub Proceso de Pre Acoplado</td>
<td>R. Tayan</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02:19</td>
<td>15</td>
</tr>
<tr>
<td>Sub Proceso de Pre Acoplado</td>
<td>R. Tayan</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02:25</td>
<td>14</td>
</tr>
<tr>
<td>Sub Proceso de Pre Acoplado</td>
<td>A. Yanguicela</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02:09</td>
<td>14</td>
</tr>
<tr>
<td>Sub Proceso de Pre Acoplado</td>
<td>A. Yanguicela</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>02:07</td>
<td>16</td>
</tr>
<tr>
<td>Sub Proceso de Pre Acoplado</td>
<td>A. Yanguicela</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02:13</td>
<td>17</td>
</tr>
<tr>
<td>Sub Proceso de Pre Acoplado</td>
<td>R. Tayan</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02:11</td>
<td>10</td>
</tr>
<tr>
<td>Sub Proceso de Pre Acoplado</td>
<td>R. Tayan</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02:19</td>
<td>12</td>
</tr>
<tr>
<td>Sub Proceso de Pre Acoplado</td>
<td>A. Yanguicela</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02:17</td>
<td>13</td>
</tr>
<tr>
<td>Sub Proceso de Pre Acoplado</td>
<td>R. Tayan</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02:00</td>
<td>12</td>
</tr>
<tr>
<td>Sub Proceso de Pre Acoplado</td>
<td>R. Tayan</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02:27</td>
<td>14</td>
</tr>
<tr>
<td>Sub Proceso de Pre Acoplado</td>
<td>A. Yanguicela</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02:17</td>
<td>14</td>
</tr>
<tr>
<td>Sub Proceso de Pre Acoplado</td>
<td>R. Tayan</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02:16</td>
<td>13</td>
</tr>
<tr>
<td>Sub Proceso de Pre Acoplado</td>
<td>R. Tayan</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02:17</td>
<td>13</td>
</tr>
<tr>
<td>Sub Proceso de Pre Acoplado</td>
<td>R. Tayan</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02:14</td>
<td>14</td>
</tr>
<tr>
<td>Sub Proceso de Pre Acoplado</td>
<td>A. Yanguicela</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>02:24</td>
<td>14</td>
</tr>
<tr>
<td>Sub Proceso de Pre Acoplado</td>
<td>A. Yanguicela</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02:22</td>
<td>13</td>
</tr>
<tr>
<td>Sub Proceso de Pre Acoplado</td>
<td>R. Tayan</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02:20</td>
<td>14</td>
</tr>
<tr>
<td>Sub Proceso de Pre Acoplado</td>
<td>R. Tayan</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>02:08</td>
<td>16</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>51:39</td>
<td>306</td>
</tr>
</tbody>
</table>

Nomenclatura.

NVA | Actividades No Agregan Valor
VAN | Actividades Agregan Valor al Negocio
VA | Actividades Agregan Valor

Nota: Operación de Transformación = Colocación de Acople (Cupla).
Inspección = Verificación de Equipos de Medicion.

En la Tabla 79 se presentan los tiempos cronometrados de las observaciones realizadas transformadas de minutos a segundos:
<table>
<thead>
<tr>
<th>#</th>
<th>Observaciones</th>
<th>Tiempo minutos</th>
<th>Tiempo segundos</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>02:00</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>02:10</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>02:15</td>
<td>135</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>02:23</td>
<td>143</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>02:19</td>
<td>139</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>02:25</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>02:09</td>
<td>129</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>02:07</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>02:13</td>
<td>133</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>02:11</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>02:19</td>
<td>139</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>02:29</td>
<td>149</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>02:17</td>
<td>137</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>02:00</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>02:07</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>02:17</td>
<td>137</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>02:16</td>
<td>136</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>02:27</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>02:20</td>
<td>140</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>02:24</td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>02:22</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>02:06</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>02:03</td>
<td>123</td>
<td></td>
</tr>
</tbody>
</table>

En la Figura 97 se presentan los datos estadísticos descriptivos de los tiempos cronometrados correspondientes a las muestras tomadas. Se observa que la media aritmética es de 134,74 segundos, con una desviación estándar de 8,48, un valor mínimo de 120,00 segundos y un máximo de 149,00 segundos.
<table>
<thead>
<tr>
<th>Variable</th>
<th>total</th>
<th>Media</th>
<th>Desv.Est.</th>
<th>Mínimo</th>
<th>Máximo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub Proceso Pre Acoplado</td>
<td>23</td>
<td>134,74</td>
<td>8,48</td>
<td>120,00</td>
<td>149,00</td>
</tr>
</tbody>
</table>

En la Figura 98, se encuentra el gráfico de la Prueba de Normalidad con los datos de tiempo realizados usando el método de Anderson – Darling con el software Minitab. Se observa que el valor de “p” es mayor que 0,05; por lo cual se valida que los datos siguen una distribución normal.

Figura 98. Prueba de Normalidad del Sub Proceso de Pre Acoplado Implementado (Pantalla Minitab).

Una vez validada la normalidad de datos, se realizó la tabulación de los tipos de actividad (de valor agregado, de valor agregado al negocio y de no valor agregado); estos datos se presentan en la Tabla 80.
Tabla 80. Tabulación de Datos de Clasificación de actividades VA y NVA del Sub Proceso de Pre Acoplado. Implementado.

Tabulación de datos

<table>
<thead>
<tr>
<th>Número de Muestra</th>
<th>Operación de transformación</th>
<th>Manejo Herramienta</th>
<th>Manejo de Producto</th>
<th>Inspección</th>
<th>Caminado</th>
<th>Espera</th>
<th>Reproceso</th>
<th>Inventario</th>
<th>Sobreproducción</th>
<th>Otros</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td># Repeticiones de Actividad durante proceso</td>
<td></td>
</tr>
<tr>
<td>Operación de transformación</td>
<td>3</td>
</tr>
<tr>
<td>Manejo Herramienta</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Manejo de Producto</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Inspección</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Caminado</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Espera</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Reproceso</td>
<td>0</td>
</tr>
<tr>
<td>Inventario</td>
<td>0</td>
</tr>
<tr>
<td>Sobreproducción</td>
<td>0</td>
</tr>
<tr>
<td>Otros</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>10</td>
<td>11</td>
<td>11</td>
<td>16</td>
<td>15</td>
<td>14</td>
<td>14</td>
<td>16</td>
<td>17</td>
<td>10</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ACTIVIDAD</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td># Repeticiones de Actividad durante proceso</td>
<td></td>
</tr>
<tr>
<td>Operación de transformación</td>
<td>3</td>
<td>69</td>
</tr>
<tr>
<td>Manejo Herramienta</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Manejo de Producto</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>61</td>
<td></td>
</tr>
<tr>
<td>Inspección</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Caminado</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>56</td>
<td></td>
</tr>
<tr>
<td>Espera</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>Reproceso</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Inventario</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sobreproducción</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Otros</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>13</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>13</td>
<td>14</td>
<td>14</td>
<td>13</td>
<td>14</td>
<td>14</td>
<td>16</td>
<td>306</td>
</tr>
</tbody>
</table>

Nomenclatura

- **NVA**: Actividades No Agregan Valor
- **VAN**: Actividades Agregan Valor al Negocio
- **VA**: Actividades Agregadas Valor

223
En la Tabla 81 se presenta el Porcentaje de Actividades de VA y NVA, del Sub Proceso de Pre Acoplado; se observa que el 23% son Actividades de VA, el 51% de VAN y el 26% son de Actividades de NVA, considerando el número de repeticiones de la actividad se muestra que existe actividades de VAN y NVA que tienen mayor porcentaje de participación, las cuales son: Manejo de Producto con el 20%, Caminado con el 18%, Manejo de Herramienta con el 18% e Inspección con el 14%.

Tabla 81. Porcentaje de Actividades de VA y NVA. Sub Proceso de Pre Acoplado. Implementado.

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Promedio del número de repeticiones por Actividad</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operación de transformación</td>
<td>3,80</td>
<td>23%</td>
</tr>
<tr>
<td>Manejo Herramienta</td>
<td>2,35</td>
<td>18%</td>
</tr>
<tr>
<td>Manejo de Producto</td>
<td>2,65</td>
<td>20%</td>
</tr>
<tr>
<td>Inspección</td>
<td>1,83</td>
<td>14%</td>
</tr>
<tr>
<td>Caminado</td>
<td>2,43</td>
<td>18%</td>
</tr>
<tr>
<td>Espera</td>
<td>0,91</td>
<td>7%</td>
</tr>
<tr>
<td>Reproceso</td>
<td>0,13</td>
<td>1%</td>
</tr>
<tr>
<td>Inventario</td>
<td>0,00</td>
<td>0%</td>
</tr>
<tr>
<td>Sobreproducción</td>
<td>0,00</td>
<td>0%</td>
</tr>
<tr>
<td>Otros</td>
<td>0,00</td>
<td>0%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>13,30</td>
<td>100%</td>
</tr>
</tbody>
</table>

Para la priorización de las mejoras en las actividades de valor agregado para el negocio (VAN) y/o eliminación de desperdicios (NVA) se tabularon los datos a través de un Diagrama de Pareto. Este diagrama se presenta en la Figura 99 y en el que se muestra que el 72 % del número de actividades de NVA y VAN se concentran en el 33% de la clasificación: Manejo de Producto, Caminado y Manejo de Herramienta; estas actividades deben ser las primeras nuevamente en ser gestionadas en el proceso.
Figura 99. Diagrama de Pareto de Sub Proceso de Pre Acoplado. Implementado.

3.3.4.3 Levantamiento de Información Final Sub Proceso de Acoplado Automático Implementado.

En la Tabla 82 se muestran los datos de la clasificación de actividades y tiempos obtenidos de las primeras 5 observaciones realizadas; las actividades se encuentran clasificadas en: de valor agregado, de valor agregado al negocio y de no valor agregado.
Tabla 82. Datos Iniciales del Sub Proceso de Acoplado Automático. Implementado.

FORMATO DE VALOR AGREGADO - NO VALOR AGREGADO

<table>
<thead>
<tr>
<th>Área/Proceso:</th>
<th>Fabricación de Tubería</th>
<th>Producto: Tubing 3 1/2</th>
<th>Fecha: 7/5/2015</th>
<th>Elaboró: Mauricio Guncay</th>
<th>FOR-001</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acoplado - Automático</td>
<td>A. Yanguicela</td>
<td>2 1 4 1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.02:03</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acoplado - Automático</td>
<td>A. Yanguicela</td>
<td>2 0 4 1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.01:57</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acoplado - Automático</td>
<td>A. Yanguicela</td>
<td>2 0 4 1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.01:58</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acoplado - Automático</td>
<td>R. Tayan</td>
<td>2 0 4 1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.01:39</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acoplado - Automático</td>
<td>R. Tayan</td>
<td>2 0 4 1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.01:48</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0:09:25</td>
<td>48</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nomenclatura.

IVA: Actividad No Agrega Valor
VAN: Actividad Agena de Valor al Negocio
VA: Actividad Agrega Valor

Nota: Operación de Transformación = Manejo de Equipo Acopladora.
Inspección = Verificación de Equipos de Medición.

En la Tabla 83 se presentan los tiempos cronometrados de las 5 observaciones realizadas transformadas de minutos a segundos:

Tabla 83. Valores de tiempo de trabajo del Sub Proceso de Pre Acoplado. Implementado.

<table>
<thead>
<tr>
<th>Sub Proceso Acoplado Automático</th>
<th># Observaciones</th>
<th>Tiempo minutos</th>
<th>Tiempo segundos</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acoplado - Automático</td>
<td>1</td>
<td>02:03</td>
<td>123</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>01:57</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>01:58</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>01:39</td>
<td>99</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>01:48</td>
<td>108</td>
</tr>
</tbody>
</table>

En la Figura 100 se indica el cálculo del tamaño de la muestra aplicando el software Minitab, considerando: los valores de media aritmética y desviación estándar, tipo de distribución normal, nivel de confianza del 95% e intervalo de confianza bilateral.
Estadísticos descriptivos: Sub Proceso Acoplado Automático

<table>
<thead>
<tr>
<th>Variable</th>
<th>Conteo total</th>
<th>Media</th>
<th>Desv.Est.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sub Proceso Acoplado Aut</td>
<td>5</td>
<td>113,00</td>
<td>9,51</td>
</tr>
<tr>
<td>99,00</td>
<td>123,00</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tamaño de la muestra para estimación

<table>
<thead>
<tr>
<th>Método</th>
<th>Parámetro</th>
<th>Media</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Distribución</td>
<td>Normal</td>
</tr>
<tr>
<td></td>
<td>Desviación estándar</td>
<td>9,51 (estimación)</td>
</tr>
<tr>
<td></td>
<td>Nivel de confianza</td>
<td>95%</td>
</tr>
<tr>
<td></td>
<td>Intervalo de confianza</td>
<td>Bilateral</td>
</tr>
</tbody>
</table>

Resultados

<table>
<thead>
<tr>
<th>Margen de error</th>
<th>Tamaño de la muestra</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>17</td>
</tr>
</tbody>
</table>

Figura 100. Cálculo del tamaño de la muestra. Final Sub Proceso de Acoplado Automático. Implementado. (Pantalla Minitab).

3.3.4.4 Tabulación y Estadística de los Datos Obtenidos del Sub Proceso de Acoplado Automático Implementado.

En la Tabla 84 se presentan los datos de la clasificación de actividades y tiempos obtenidos de las observaciones realizadas de acuerdo al número de muestra calculado; las actividades se encuentran clasificadas en: de valor agregado, de valor agregado al negocio y de no valor agregado.
Tabla 84 Datos Finales del Sub Proceso de Acoplado Automático. Implementado.

FORMATO DE VALOR AGREGADO - NO VALOR AGREGADO

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Acoplado - Automático</td>
<td>A. Yanguicela</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:01:49</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acoplado - Automático</td>
<td>A. Yanguicela</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:01:38</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acoplado - Automático</td>
<td>A. Yanguicela</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:01:59</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acoplado - Automático</td>
<td>R. Tayan</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:01:34</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acoplado - Automático</td>
<td>R. Tayan</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:01:57</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acoplado - Automático</td>
<td>R. Tayan</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:01:50</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acoplado - Automático</td>
<td>A. Yanguicela</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:02:05</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acoplado - Automático</td>
<td>A. Yanguicela</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:01:39</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acoplado - Automático</td>
<td>A. Yanguicela</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:01:47</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acoplado - Automático</td>
<td>R. Tayan</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:01:40</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acoplado - Automático</td>
<td>R. Tayan</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:01:35</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acoplado - Automático</td>
<td>R. Tayan</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:02:01</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acoplado - Automático</td>
<td>A. Yanguicela</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:01:55</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acoplado - Automático</td>
<td>A. Yanguicela</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:01:51</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acoplado - Automático</td>
<td>A. Yanguicela</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:01:46</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acoplado - Automático</td>
<td>R. Tayan</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:01:43</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acoplado - Automático</td>
<td>R. Tayan</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0:01:44</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Total | 0:30:33 | 178 |

Nomenclatura.

<table>
<thead>
<tr>
<th>NVA</th>
<th>Actividades No Agregan Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAN</td>
<td>Actividades Agregan Valor al Negocio</td>
</tr>
<tr>
<td>VA</td>
<td>Actividades Agregan Valor</td>
</tr>
</tbody>
</table>

Nota: Operación de Transformación = Manejo de Equipo Acopladora.
Inspección = Verificación de Equipos de Medición.

En la Tabla 85 se presentan los tiempos cronometrados de las observaciones realizadas transformadas de minutos a segundos:
Tabla 85. Valores de tiempo de trabajo finales del Sub Proceso de Acoplado Automático. Implementado.

<table>
<thead>
<tr>
<th># Observaciones</th>
<th>Tiempo minutos</th>
<th>Tiempo segundos</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>01:49</td>
<td>109</td>
</tr>
<tr>
<td>2</td>
<td>01:38</td>
<td>98</td>
</tr>
<tr>
<td>3</td>
<td>01:59</td>
<td>119</td>
</tr>
<tr>
<td>4</td>
<td>01:34</td>
<td>94</td>
</tr>
<tr>
<td>5</td>
<td>01:57</td>
<td>117</td>
</tr>
<tr>
<td>6</td>
<td>01:50</td>
<td>110</td>
</tr>
<tr>
<td>7</td>
<td>02:05</td>
<td>125</td>
</tr>
<tr>
<td>8</td>
<td>01:39</td>
<td>99</td>
</tr>
<tr>
<td>9</td>
<td>01:47</td>
<td>107</td>
</tr>
<tr>
<td>10</td>
<td>01:40</td>
<td>100</td>
</tr>
<tr>
<td>11</td>
<td>01:35</td>
<td>95</td>
</tr>
<tr>
<td>12</td>
<td>02:01</td>
<td>121</td>
</tr>
<tr>
<td>13</td>
<td>01:55</td>
<td>115</td>
</tr>
<tr>
<td>14</td>
<td>01:51</td>
<td>111</td>
</tr>
<tr>
<td>15</td>
<td>01:46</td>
<td>106</td>
</tr>
<tr>
<td>16</td>
<td>01:43</td>
<td>103</td>
</tr>
<tr>
<td>17</td>
<td>01:44</td>
<td>104</td>
</tr>
</tbody>
</table>

En la Figura 101 se presentan los datos estadísticos descriptivos de los tiempos cronometrados correspondientes a las muestras tomadas. Se observa que la media aritmética es de 107,82 segundos, con una desviación estándar de 9,28, un valor mínimo de 94,00 segundos y un máximo de 125,00 segundos.

<table>
<thead>
<tr>
<th>Estadísticos descriptivos: Sub Proceso Acoplado Auto Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variable</td>
</tr>
<tr>
<td>Sub Proceso Acoplado Aut</td>
</tr>
<tr>
<td>Máximo</td>
</tr>
</tbody>
</table>

En la Figura 102, se encuentra el gráfico de la Prueba de Normalidad con los datos de tiempo realizados usando el método de Anderson – Darling con el software
Minitab. Se observa que el valor de “p” es mayor que 0,05; por lo cual se valida que los datos siguen una distribución normal.

Una vez validada la normalidad de datos, se realizó la tabulación de los tipos de actividad (de valor agregado, de valor agregado al negocio y de no valor agregado); estos datos se presentan en la Tabla 86.

Figura 102. Prueba de Normalidad del Sub Proceso de Acoplado Automático Implementado
Tabla 86. Tabulación de Datos de Clasificación de actividades VA y NVA del Sub Proceso de Acoplado Automático. Implementado.

En la Tabla 87 se presenta el Porcentaje de Actividades de VA y NVA, del Sub Proceso de Acoplado Automático; se observa que el 19% son Actividades de VA, el 50% de VAN y el 31% son de Actividades de NVA, considerando el número de repeticiones de la actividad se muestra que existe actividades de VAN y NVA que tienen mayor porcentaje de participación, las cuales son: Manejo de Producto con el 38%, Espera con el 19% y Caminado con el 11%.
Para la priorización de las mejoras en las actividades de valor agregado para el negocio (VAN) y/o eliminación de desperdicios (NVA) se tabularon los datos a través de un Diagrama de Pareto. Este diagrama se presenta en la Figura 103 y en el que se muestra que el 84 % del número de actividades de NVA y VAN se concentran en el 33% de la clasificación: Manejo de Producto, Espera y Caminado; estas actividades deben ser las primeras nuevamente en ser gestionadas en el proceso.

Tabla 87. Porcentaje de Actividades de VA y NVA. Sub Proceso de Pre Acoplado. Implementado.

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Promedio del número de repeticiones por Actividad</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operación de transformación</td>
<td>2.00</td>
<td>19%</td>
</tr>
<tr>
<td>Manejo Herramienta</td>
<td>0.24</td>
<td>2%</td>
</tr>
<tr>
<td>Manejo de Producto</td>
<td>4.00</td>
<td>38%</td>
</tr>
<tr>
<td>Inspección</td>
<td>1.00</td>
<td>10%</td>
</tr>
<tr>
<td>Caminado</td>
<td>1.18</td>
<td>11%</td>
</tr>
<tr>
<td>Espera</td>
<td>1.94</td>
<td>19%</td>
</tr>
<tr>
<td>Reproceso</td>
<td>0.12</td>
<td>1%</td>
</tr>
<tr>
<td>Inventario</td>
<td>0.00</td>
<td>0%</td>
</tr>
<tr>
<td>Sobre producción</td>
<td>0.00</td>
<td>0%</td>
</tr>
<tr>
<td>Otros</td>
<td>0.00</td>
<td>0%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>10.47</td>
<td>100%</td>
</tr>
</tbody>
</table>

Nomenclatura.

<table>
<thead>
<tr>
<th>NVA</th>
<th>Actividades No Agregan Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAN</td>
<td>Actividades Agregan Valor al Negocio</td>
</tr>
<tr>
<td>VA</td>
<td>Actividades Agregan Valor</td>
</tr>
</tbody>
</table>
3.3.5 Verificación de los Niveles de Mejora Alcanzados en el Proceso de BME Implementado.

3.3.5.1 Levantamiento de Información Final Proceso de BME Implementado.

En la Tabla 88 se muestran los datos de la clasificación de actividades y tiempos obtenidos de las primeras 5 observaciones realizadas; las actividades se encuentran clasificadas en: de valor agregado, de valor agregado al negocio y de no valor agregado.
Tabla 88. Datos finales del Proceso de BME. Implementado.

FORMATO DE VALOR AGREGADO - NO VALOR AGREGADO

<table>
<thead>
<tr>
<th>Proceso N° Op.</th>
<th>Nombre Operario</th>
<th>Operación de transformación</th>
<th>Manejo de herramientas</th>
<th>Manejo de tubo</th>
<th>Tiempo de trabajo (minutos)</th>
<th>Otros</th>
<th>Cantidad Total de Actividades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medición y Marcación</td>
<td>J. Quinaluisa</td>
<td>2 3 4 2 1 2 0 0 0 0 0 0 0</td>
<td>01:30 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medición y Marcación</td>
<td>J. Quinaluisa</td>
<td>3 3 5 2 1 2 0 0 0 0 0 0 0</td>
<td>02:05 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medición y Marcación</td>
<td>J. Quinaluisa</td>
<td>3 3 6 2 1 2 0 0 0 0 0 0 0</td>
<td>01:55 17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medición y Marcación</td>
<td>J. Quinaluisa</td>
<td>3 3 5 2 1 2 0 0 0 0 0 0 0</td>
<td>01:47 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medición y Marcación</td>
<td>J. Quinaluisa</td>
<td>3 3 5 2 1 1 0 0 0 0 0 0 0</td>
<td>01:39 15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>08:56 78</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nomenclatura.

<table>
<thead>
<tr>
<th>NVA</th>
<th>Actividades No Agregan Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAN</td>
<td>Actividades Agregan Valor al Negocio</td>
</tr>
<tr>
<td>VA</td>
<td>Actividades Agregan Valor</td>
</tr>
</tbody>
</table>

Nota: Operación de Transformación = Colocación de Protecciones, Inspección de Producto y Marcado.

Inspección = Verificación de Equipos de Medición.

En la Tabla 89 se presentan los tiempos cronometrados de las 5 observaciones realizadas transformadas de minutos a segundos:

Tabla 89. Valores de tiempo de trabajo del Proceso de BME. Implementado.

<table>
<thead>
<tr>
<th>Proceso BME</th>
<th>Observaciones</th>
<th>Tiempo minutos</th>
<th>Tiempo segundos</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>01:30</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>02:05</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>01:55</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>01:47</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>01:39</td>
<td>99</td>
<td></td>
</tr>
</tbody>
</table>

En la Figura 104 se indica el cálculo del tamaño de la muestra aplicando el software Minitab, considerando: los valores de media aritmética y desviación estándar, tipo de distribución normal, nivel de confianza del 95% e intervalo de confianza bilateral.
Tabulación y Estadística de los Datos Obtenidos del Proceso de BME Implementado.

En la Tabla 90 se presentan los datos de la clasificación de actividades y tiempos obtenidos de las observaciones realizadas de acuerdo al número de muestra calculado; las actividades se encuentran clasificadas en: de valor agregado, de valor agregado al negocio y de no valor agregado.
Tabla 90 Datos Finales del Proceso de BME. Implementado.

FORMATO DE VALOR AGREGADO - NO VALOR AGREGADO

<table>
<thead>
<tr>
<th>Nombre Operario</th>
<th>N° Op.</th>
<th>Tiempo de Trabajo (minutos)</th>
<th>Cantidad Total de Actividades</th>
</tr>
</thead>
<tbody>
<tr>
<td>J. Quinaluisa</td>
<td>2</td>
<td>0:01:50</td>
<td>0:01:54</td>
</tr>
<tr>
<td>M. Tayupanta</td>
<td>3</td>
<td>0:01:40</td>
<td>0:01:54</td>
</tr>
<tr>
<td>J. Quinaluisa</td>
<td>2</td>
<td>0:01:50</td>
<td>0:01:54</td>
</tr>
<tr>
<td>M. Tayupanta</td>
<td>3</td>
<td>0:01:40</td>
<td>0:01:54</td>
</tr>
<tr>
<td>M. Tayupanta</td>
<td>3</td>
<td>0:01:55</td>
<td>0:01:54</td>
</tr>
<tr>
<td>J. Quinaluisa</td>
<td>2</td>
<td>0:01:50</td>
<td>0:01:54</td>
</tr>
<tr>
<td>M. Tayupanta</td>
<td>3</td>
<td>0:01:40</td>
<td>0:01:54</td>
</tr>
<tr>
<td>M. Tayupanta</td>
<td>3</td>
<td>0:01:55</td>
<td>0:01:54</td>
</tr>
<tr>
<td>J. Quinaluisa</td>
<td>2</td>
<td>0:01:50</td>
<td>0:01:54</td>
</tr>
<tr>
<td>M. Tayupanta</td>
<td>3</td>
<td>0:01:40</td>
<td>0:01:54</td>
</tr>
<tr>
<td>M. Tayupanta</td>
<td>3</td>
<td>0:01:55</td>
<td>0:01:54</td>
</tr>
<tr>
<td>J. Quinaluisa</td>
<td>2</td>
<td>0:01:50</td>
<td>0:01:54</td>
</tr>
<tr>
<td>M. Tayupanta</td>
<td>3</td>
<td>0:01:40</td>
<td>0:01:54</td>
</tr>
<tr>
<td>M. Tayupanta</td>
<td>3</td>
<td>0:01:55</td>
<td>0:01:54</td>
</tr>
<tr>
<td>J. Quinaluisa</td>
<td>2</td>
<td>0:01:50</td>
<td>0:01:54</td>
</tr>
<tr>
<td>M. Tayupanta</td>
<td>3</td>
<td>0:01:40</td>
<td>0:01:54</td>
</tr>
<tr>
<td>M. Tayupanta</td>
<td>3</td>
<td>0:01:55</td>
<td>0:01:54</td>
</tr>
<tr>
<td>J. Quinaluisa</td>
<td>2</td>
<td>0:01:50</td>
<td>0:01:54</td>
</tr>
<tr>
<td>M. Tayupanta</td>
<td>3</td>
<td>0:01:40</td>
<td>0:01:54</td>
</tr>
<tr>
<td>M. Tayupanta</td>
<td>3</td>
<td>0:01:55</td>
<td>0:01:54</td>
</tr>
<tr>
<td>J. Quinaluisa</td>
<td>2</td>
<td>0:01:50</td>
<td>0:01:54</td>
</tr>
<tr>
<td>M. Tayupanta</td>
<td>3</td>
<td>0:01:40</td>
<td>0:01:54</td>
</tr>
<tr>
<td>M. Tayupanta</td>
<td>3</td>
<td>0:01:55</td>
<td>0:01:54</td>
</tr>
<tr>
<td>J. Quinaluisa</td>
<td>2</td>
<td>0:01:50</td>
<td>0:01:54</td>
</tr>
<tr>
<td>M. Tayupanta</td>
<td>3</td>
<td>0:01:40</td>
<td>0:01:54</td>
</tr>
<tr>
<td>M. Tayupanta</td>
<td>3</td>
<td>0:01:55</td>
<td>0:01:54</td>
</tr>
<tr>
<td>J. Quinaluisa</td>
<td>2</td>
<td>0:01:50</td>
<td>0:01:54</td>
</tr>
<tr>
<td>M. Tayupanta</td>
<td>3</td>
<td>0:01:40</td>
<td>0:01:54</td>
</tr>
<tr>
<td>M. Tayupanta</td>
<td>3</td>
<td>0:01:55</td>
<td>0:01:54</td>
</tr>
<tr>
<td>J. Quinaluisa</td>
<td>2</td>
<td>0:01:50</td>
<td>0:01:54</td>
</tr>
<tr>
<td>M. Tayupanta</td>
<td>3</td>
<td>0:01:40</td>
<td>0:01:54</td>
</tr>
<tr>
<td>M. Tayupanta</td>
<td>3</td>
<td>0:01:55</td>
<td>0:01:54</td>
</tr>
<tr>
<td>J. Quinaluisa</td>
<td>2</td>
<td>0:01:50</td>
<td>0:01:54</td>
</tr>
<tr>
<td>M. Tayupanta</td>
<td>3</td>
<td>0:01:40</td>
<td>0:01:54</td>
</tr>
<tr>
<td>M. Tayupanta</td>
<td>3</td>
<td>0:01:55</td>
<td>0:01:54</td>
</tr>
</tbody>
</table>

Nomenclatura.

- **VA**: Actividades No Agregan Valor
- **VA**: Actividades Agregan Valor al Negocio
- **VA**: Actividades Agregan Valor

Notas:

- **Operación de Transformación**: Colocación de Protecciones, Inspección de Producto y Marcado.
- **Inspección**: Verificación de Equipos de Medición.

En la Tabla 91 se presentan los tiempos cronometrados de las observaciones realizadas transformadas de minutos a segundos.
<table>
<thead>
<tr>
<th># Observaciones</th>
<th>Tiempo minutos</th>
<th>Tiempo segundos</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>01:35</td>
<td>95</td>
</tr>
<tr>
<td>2</td>
<td>01:49</td>
<td>109</td>
</tr>
<tr>
<td>3</td>
<td>01:37</td>
<td>97</td>
</tr>
<tr>
<td>4</td>
<td>01:55</td>
<td>115</td>
</tr>
<tr>
<td>5</td>
<td>01:59</td>
<td>119</td>
</tr>
<tr>
<td>6</td>
<td>01:31</td>
<td>91</td>
</tr>
<tr>
<td>7</td>
<td>02:03</td>
<td>123</td>
</tr>
<tr>
<td>8</td>
<td>01:49</td>
<td>109</td>
</tr>
<tr>
<td>9</td>
<td>01:39</td>
<td>99</td>
</tr>
<tr>
<td>10</td>
<td>01:42</td>
<td>102</td>
</tr>
<tr>
<td>11</td>
<td>01:48</td>
<td>108</td>
</tr>
<tr>
<td>12</td>
<td>01:59</td>
<td>119</td>
</tr>
<tr>
<td>13</td>
<td>01:49</td>
<td>109</td>
</tr>
<tr>
<td>14</td>
<td>01:53</td>
<td>113</td>
</tr>
<tr>
<td>15</td>
<td>01:33</td>
<td>93</td>
</tr>
<tr>
<td>16</td>
<td>01:46</td>
<td>106</td>
</tr>
<tr>
<td>17</td>
<td>02:00</td>
<td>120</td>
</tr>
<tr>
<td>18</td>
<td>01:59</td>
<td>119</td>
</tr>
<tr>
<td>19</td>
<td>01:41</td>
<td>101</td>
</tr>
<tr>
<td>20</td>
<td>01:47</td>
<td>107</td>
</tr>
<tr>
<td>21</td>
<td>01:32</td>
<td>92</td>
</tr>
<tr>
<td>22</td>
<td>02:01</td>
<td>121</td>
</tr>
<tr>
<td>23</td>
<td>01:55</td>
<td>115</td>
</tr>
<tr>
<td>24</td>
<td>01:41</td>
<td>101</td>
</tr>
<tr>
<td>25</td>
<td>01:30</td>
<td>90</td>
</tr>
<tr>
<td>26</td>
<td>01:39</td>
<td>99</td>
</tr>
<tr>
<td>27</td>
<td>01:55</td>
<td>115</td>
</tr>
<tr>
<td>28</td>
<td>01:50</td>
<td>110</td>
</tr>
<tr>
<td>29</td>
<td>01:41</td>
<td>101</td>
</tr>
<tr>
<td>30</td>
<td>01:37</td>
<td>97</td>
</tr>
<tr>
<td>31</td>
<td>01:39</td>
<td>99</td>
</tr>
</tbody>
</table>

En la Figura 105 se presentan los datos estadísticos descriptivos de los tiempos cronometrados correspondientes a las muestras tomadas. Se observa que la media aritmética es de 106,26 segundos, con una desviación estándar de 9,87, un valor mínimo de 90,00 segundos y un máximo de 123,00 segundos.
<table>
<thead>
<tr>
<th>Variable</th>
<th>total</th>
<th>Media</th>
<th>Desv.Est.</th>
<th>Mínimo</th>
<th>Máximo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proceso BME Final</td>
<td>31</td>
<td>106,26</td>
<td>9,87</td>
<td>90,00</td>
<td>123,00</td>
</tr>
</tbody>
</table>

Figura 105. Cálculos estadísticos descriptivos del tiempo (segundos) - Proceso de BME. Implementado. (Pantalla Minitab).

En la Figura 106, se encuentra el gráfico de la Prueba de Normalidad con los datos de tiempo realizados usando el método de Anderson – Darling con el software Minitab. Se observa que el valor de “p” es mayor que 0,05; por lo cual se valida que los datos siguen una distribución normal.

![Prueba de Normalidad Final Proceso de BME](image)

Figura 106. Prueba de Normalidad del Proceso de Roscado Implementado.

Una vez validada la normalidad de datos, se realizó la tabulación de los tipos de actividad (de valor agregado, de valor agregado al negocio y de no valor agregado); estos datos se presentan en la Tabla 92.
Tabla 92. Tabulación de Datos de Clasificación de actividades VA y NVA del Proceso de BME. Implementado.

Tabulación de datos

<table>
<thead>
<tr>
<th>ACTIVIDAD</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
<th>21</th>
<th>22</th>
<th>23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de Muestra</td>
<td>15</td>
<td>16</td>
<td>15</td>
<td>15</td>
<td>16</td>
<td>16</td>
<td>14</td>
<td>14</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>14</td>
<td>16</td>
<td>14</td>
<td>15</td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th># Repeticiones de Actividad durante proceso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operación de transformación</td>
</tr>
<tr>
<td>Manejo Herramienta</td>
</tr>
<tr>
<td>Manejo de Producto</td>
</tr>
<tr>
<td>Inspección</td>
</tr>
<tr>
<td>Caminado</td>
</tr>
<tr>
<td>Espera</td>
</tr>
<tr>
<td>Reroceso</td>
</tr>
<tr>
<td>Inventario</td>
</tr>
<tr>
<td>Sobreproducción</td>
</tr>
<tr>
<td>Otros</td>
</tr>
<tr>
<td>TOTAL</td>
</tr>
</tbody>
</table>
En la Tabla 93 se presenta el Porcentaje de Actividades de VA y NVA, del Proceso de BME; se observa que el 17% son Actividades de VA, el 66% de VAN y el 17% son de Actividades de NVA, considerando el número de repeticiones de la actividad se muestra que existe actividades de VAN y NVA que tienen mayor porcentaje de participación, las cuales son: Manejo de Producto con el 33%, Manejo de Herramienta con el 20%, Inspección con el 13%, Espera con el 9% y Caminado con el 7%.
Para la priorización de las mejoras en las actividades de valor agregado para el negocio (VAN) y/o eliminación de desperdicios (NVA) se tabularon los datos a través de un Diagrama de Pareto. Este diagrama se presenta en la Figura 107 y en el que se muestra que el 79% del número de actividades de NVA y VAN se concentran en el 33% de la clasificación: Manejo de Herramienta, Manejo de Producto e Inspección; estas actividades deben ser las primeras nuevamente en ser gestionadas en el proceso.

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Promedio del número de repeticiones por Actividad</th>
<th>Porcentaje</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operación de transformación</td>
<td>2,58</td>
<td>17%</td>
</tr>
<tr>
<td>Manejo Herramienta</td>
<td>3,00</td>
<td>20%</td>
</tr>
<tr>
<td>Manejo de Producto</td>
<td>5,10</td>
<td>33%</td>
</tr>
<tr>
<td>Inspección</td>
<td>2,00</td>
<td>13%</td>
</tr>
<tr>
<td>Caminado</td>
<td>1,13</td>
<td>7%</td>
</tr>
<tr>
<td>Espera</td>
<td>1,39</td>
<td>9%</td>
</tr>
<tr>
<td>Reroceso</td>
<td>0,16</td>
<td>1%</td>
</tr>
<tr>
<td>Inventario</td>
<td>0,00</td>
<td>0%</td>
</tr>
<tr>
<td>Sobreproducción</td>
<td>0,00</td>
<td>0%</td>
</tr>
<tr>
<td>Otros</td>
<td>0,00</td>
<td>0%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>15,35</td>
<td>100%</td>
</tr>
</tbody>
</table>

Nomenclatura.
- NVA Actividades No Agregan Valor
- VAN Actividades Agregan Valor al Negocio
- VA Actividades Agregan Valor
A continuación se presenta el resumen esquemático del capítulo ver Figura 108 con los hallazgos obtenidos a través de la aplicación de las herramientas seleccionadas.
Continuación

Figura 108. Resumen Esquemático.
Figura 108. Resumen Esquemático (Continuación).
4 ANÁLISIS Y RESULTADOS

4.1 Análisis de Variables de Estudio.

4.1.1 Variables de Impacto.

Las variables de estudio planteadas al inicio de la investigación fueron: el Porcentaje de Producto No Conforme y el Número de Reclamos de Clientes.

Una vez realizadas las implementaciones de las herramientas seleccionadas de Lean Manufacturing (5S’s, Gestión Visual y Estandarización) en los procesos de Fabricación se presentan los resultados obtenidos en las variables de la investigación.

En la Figura 109 se muestra la producción realizada en el Centro Productivo de Tenaris Ecuador en el periodo de julio 2014 a mayo 2015.

![Figura 109. Producción del Centro Productivo Tenaris Ecuador (julio 2014 -mayo 2015)](image)

En la Figura 110 se muestra la comparación de producción durante los periodos de investigación; en donde se observa un crecimiento de 111% en piezas producidas del siguiente periodo.

Figura 110. Comparación de Producción del Centro Productivo Tenaris Ecuador.
Fuente: Tenaris Ecuador (2015).

En la Figura 111 se muestra el porcentaje de producto no conforme generado en el Centro Productivo de Tenaris Ecuador en el periodo de julio 2014 a mayo 2015.
En la Figura 112 se muestra la comparación de Producto No Conforme durante los períodos de investigación; en donde se indica un decrecimiento del 83% del producto no conforme pese a que el total de la producción se elevó.
En la Figura 113 se muestra el Número de reclamos en el Centro Productivo de Tenaris Ecuador en el periodo de julio 2014 a mayo 2015, donde se muestra que no existió ningún reclamo dentro de este periodo.

![Gráfico de Reclamos Período Julio 2014 a Mayo 2015](image)

Figura 113. Reclamos de Cliente del Centro Productivo Tenaris Ecuador (julio 2014-mayo 2015)

Fuente: Tenaris Ecuador (2015).

En la Figura 114 se muestra la comparación de Reclamos de Clientes durante los periodos de investigación; en el cual se indica un decrecimiento 3 a 0 reclamos (300% de decrecimiento).

![Gráfico de Reclamos de Cliente Comparación de Períodos Investigados](image)

Figura 114. Comparación de Reclamos de Cliente del Centro Productivo Tenaris Ecuador.

Fuente: Tenaris Ecuador (2015).
4.1.2 Variables de Proceso

4.1.2.1 Variables de Proceso – Eliminación de Mudas

A continuación, se muestran los resultados obtenidos posteriores a la implementación de la eliminación de las mudas de cada proceso de fabricación.

a) **Proceso de Roscado:** En la Tabla 94 y Figura 115 se presenta el análisis comparativo del valor agregado del proceso, se observa un incremento del 41,3% en las Actividades de Valor Agregado (VA), una reducción del 36% en las Actividades de Valor Agregado del Negocio (VAN) y un decremento del 51% en las Actividades de No Valor Agregado (NVA).

<table>
<thead>
<tr>
<th>Tabla 94. Análisis de Resultado del Proceso de Roscado.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actividad</td>
</tr>
<tr>
<td>--------------</td>
</tr>
<tr>
<td>Inicial</td>
</tr>
<tr>
<td>Manejo Torno</td>
</tr>
<tr>
<td>transformación</td>
</tr>
<tr>
<td>Manejo Herramienta</td>
</tr>
<tr>
<td>Manejo de Producto</td>
</tr>
<tr>
<td>Inspección</td>
</tr>
<tr>
<td>Espera</td>
</tr>
<tr>
<td>Reproceso</td>
</tr>
<tr>
<td>Inventario</td>
</tr>
<tr>
<td>Sobredproducción</td>
</tr>
<tr>
<td>Otros</td>
</tr>
</tbody>
</table>

Nota: Verde = Actividades de Valor Agregado.
Amarrillo = Actividades de Valor Agregado del Negocio.
Rojo = Actividades de No Valor Agregado.
b) **Proceso de Inspección de Rosca:** En la Tabla 95 y Figura 116 se presenta el análisis comparativo del valor agregado del proceso, se observa un incremento del 42,4% en las Actividades de Valor Agregado (VA), un aumento del 40% en las Actividades de Valor Agregado del Negocio (VAN) y un decremento del 71% en las Actividades de No Valor Agregado (NVA).
<table>
<thead>
<tr>
<th>Actividad</th>
<th>Inicial</th>
<th>Porcentaje por Categoría de Actividad</th>
<th>Final</th>
<th>Porcentaje por Categoría de Actividad</th>
<th>Porcentaje de Variabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operación de transformación</td>
<td>7%</td>
<td>7%</td>
<td>10%</td>
<td>10%</td>
<td>42,4%</td>
</tr>
<tr>
<td>Manejo Herramienta</td>
<td>33%</td>
<td>50%</td>
<td>50%</td>
<td>52,4%</td>
<td></td>
</tr>
<tr>
<td>Manejo de Producto</td>
<td>10%</td>
<td>57%</td>
<td>15%</td>
<td>80%</td>
<td>48,1%</td>
</tr>
<tr>
<td>Inspección</td>
<td>14%</td>
<td>15%</td>
<td></td>
<td>7,0%</td>
<td></td>
</tr>
<tr>
<td>Caminado</td>
<td>32%</td>
<td>8%</td>
<td></td>
<td>-76,0%</td>
<td></td>
</tr>
<tr>
<td>Espera</td>
<td>2%</td>
<td>2%</td>
<td></td>
<td>3,2%</td>
<td></td>
</tr>
<tr>
<td>Reproceso</td>
<td>2%</td>
<td>36%</td>
<td>0%</td>
<td>11%</td>
<td>-89,9%</td>
</tr>
<tr>
<td>Inventario</td>
<td>1%</td>
<td>0%</td>
<td>0%</td>
<td>43,9%</td>
<td></td>
</tr>
<tr>
<td>Sobreproducción</td>
<td>0%</td>
<td>0%</td>
<td></td>
<td>0,0%</td>
<td></td>
</tr>
<tr>
<td>Otros</td>
<td>0%</td>
<td>0%</td>
<td></td>
<td>0,0%</td>
<td></td>
</tr>
</tbody>
</table>

Nota: Verde = Actividades de Valor Agregado.

Amarrillo = Actividades de Valor Agregado del Negocio.

Rojo = Actividades de No Valor Agregado.
c) **Proceso de NDT:** En la Tabla 96 y Figura 117 se presenta el análisis comparativo del valor agregado del proceso, se observa un incremento del 37,7% en las Actividades de Valor Agregado (VA), una reducción del 26% en las Actividades de Valor Agregado del Negocio (VAN) y un decremento del 19% en las Actividades de No Valor Agregado (NVA).
<table>
<thead>
<tr>
<th>Actividad</th>
<th>Inicial Porcentaje</th>
<th>Inicial Porcentaje por Categoría de Actividad</th>
<th>Final Porcentaje</th>
<th>Final Porcentaje por Categoría de Actividad</th>
<th>Porcentaje de Variabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operación de transformación</td>
<td>38%</td>
<td>38%</td>
<td>51%</td>
<td>51%</td>
<td>35,7%</td>
</tr>
<tr>
<td>Manejo Herramienta</td>
<td>17%</td>
<td>11%</td>
<td></td>
<td></td>
<td>-36,5%</td>
</tr>
<tr>
<td>Manejo de Producto Inspección</td>
<td>10%</td>
<td>27%</td>
<td>10%</td>
<td>20%</td>
<td>-8,7%</td>
</tr>
<tr>
<td>Caminado</td>
<td>13%</td>
<td>18%</td>
<td></td>
<td></td>
<td>39,7%</td>
</tr>
<tr>
<td>Espera</td>
<td>19%</td>
<td>10%</td>
<td></td>
<td></td>
<td>-47,5%</td>
</tr>
<tr>
<td>Reproceso</td>
<td>0%</td>
<td>35%</td>
<td>0%</td>
<td></td>
<td>0,0%</td>
</tr>
<tr>
<td>Sobreproducción</td>
<td>0%</td>
<td>0%</td>
<td>28%</td>
<td></td>
<td>-19%</td>
</tr>
<tr>
<td>Otros</td>
<td>0%</td>
<td>0%</td>
<td></td>
<td>0%</td>
<td>0,0%</td>
</tr>
</tbody>
</table>

Nota: Verde = Actividades de Valor Agregado.

Amarrillo = Actividades de Valor Agregado del Negocio.

Rojo = Actividades de No Valor Agregado.
d) **Sub Proceso de Pre Acoplado**: En la Tabla 97 y Figura 118 se presenta el análisis comparativo del valor agregado del proceso, se observa un incremento del 122,8% en las Actividades de Valor Agregado (VA), una reducción del 16% en las Actividades de Valor Agregado del Negocio (VAN) y un decremento del 9% en las Actividades de No Valor Agregado (NVA).
<table>
<thead>
<tr>
<th>Actividad</th>
<th>Inicial</th>
<th>Inicial</th>
<th>Final</th>
<th>Final</th>
<th>Porcentaje de Variabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operación de transformación</td>
<td>10%</td>
<td>10%</td>
<td>23%</td>
<td>23%</td>
<td>122,8% 12%</td>
</tr>
<tr>
<td>Manejo Herramienta</td>
<td>26%</td>
<td>61%</td>
<td>20%</td>
<td>51%</td>
<td>6,3% -16%</td>
</tr>
<tr>
<td>Inspección</td>
<td>16%</td>
<td>14%</td>
<td></td>
<td></td>
<td>-13,0%</td>
</tr>
<tr>
<td>Caminado</td>
<td>15%</td>
<td>18%</td>
<td></td>
<td></td>
<td>18,3%</td>
</tr>
<tr>
<td>Espera</td>
<td>13%</td>
<td>7%</td>
<td></td>
<td></td>
<td>-47,6%</td>
</tr>
<tr>
<td>Reproceso</td>
<td>0%</td>
<td>29%</td>
<td>1%</td>
<td>26%</td>
<td>229,4% -9%</td>
</tr>
<tr>
<td>Inventario</td>
<td>0%</td>
<td>0%</td>
<td></td>
<td></td>
<td>0,0% 0,0%</td>
</tr>
<tr>
<td>Sobreproducción</td>
<td>0%</td>
<td>0%</td>
<td></td>
<td></td>
<td>0,0% 0,0%</td>
</tr>
</tbody>
</table>

Nota: Verde = Actividades de Valor Agregado.
Amarrillo = Actividades de Valor Agregado del Negocio.
Rojo = Actividades de No Valor Agregado.
Figura 118. Análisis de Resultados de Actividades de Valor Agregado.

e) **Sub Proceso de Acoplado Automático**: En la Tabla 98 y Figura 119 se presenta el análisis comparativo del valor agregado del proceso, se observa un incremento del 51,9% en las Actividades de Valor Agregado (VA), un aumento del 7% en las Actividades de Valor Agregado del Negocio (VAN) y un decremento del 24% en las Actividades de No Valor Agregado (NVA).
Tabla 98. Análisis del Sub Proceso de Acoplado Automático.

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Inicial Porcentaje</th>
<th>Inicial Porcentaje por Categoría de Actividad</th>
<th>Final Porcentaje</th>
<th>Final Porcentaje por Categoría de Actividad</th>
<th>Porcentaje de Variabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operación de transformación</td>
<td>13%</td>
<td>13%</td>
<td>19%</td>
<td>19%</td>
<td>51,9%</td>
</tr>
<tr>
<td>Manejo Herramienta</td>
<td>15%</td>
<td>47%</td>
<td>2%</td>
<td>-85,1%</td>
<td></td>
</tr>
<tr>
<td>Manejo de Producto</td>
<td>25%</td>
<td>38%</td>
<td>50%</td>
<td>51,9%</td>
<td>7%</td>
</tr>
<tr>
<td>Inspección</td>
<td>6%</td>
<td>10%</td>
<td>51,9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caminado</td>
<td>8%</td>
<td>11%</td>
<td>37,4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Espera</td>
<td>31%</td>
<td>19%</td>
<td>-41,0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reproceso Inventario</td>
<td>1%</td>
<td>41%</td>
<td>31%</td>
<td>-10,7%</td>
<td></td>
</tr>
<tr>
<td>Sobre producción</td>
<td>0%</td>
<td>0%</td>
<td>0,0%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Otros</td>
<td>0%</td>
<td>0%</td>
<td>0,0%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Nota: Verde = Actividades de Valor Agregado.
Amarrillo = Actividades de Valor Agregado del Negocio.
Rojo = Actividades de No Valor Agregado.

e) Proceso de BME: En la Tabla 99 Análisis y Figura 120 se presenta el análisis comparativo del valor agregado del proceso, se observa un incremento del 48,2% en las Actividades de Valor Agregado (VA), una reducción del 3% en las Actividades de Valor Agregado del Negocio (VAN) y un decremento del 13% en las Actividades de No Valor Agregado (NVA).
Tabla 99. Análisis del Proceso de BME.

<table>
<thead>
<tr>
<th>Actividad</th>
<th>Inicial</th>
<th>Inicial</th>
<th>Final</th>
<th>Final</th>
<th>Porcentaje de Variabilidad</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Porcentaje</td>
<td>Porcentaje</td>
<td>Porcentaje</td>
<td>Porcentaje</td>
<td></td>
</tr>
<tr>
<td>Operación de transformación</td>
<td>13%</td>
<td>13%</td>
<td>19%</td>
<td>19%</td>
<td>48,2%</td>
</tr>
<tr>
<td>Manejo Herramienta</td>
<td>17%</td>
<td>52%</td>
<td>38%</td>
<td>50%</td>
<td>82,2%</td>
</tr>
<tr>
<td>Manejo de Producto</td>
<td>21%</td>
<td>38%</td>
<td>50%</td>
<td>50%</td>
<td>82,2%</td>
</tr>
<tr>
<td>Inspección</td>
<td>13%</td>
<td>10%</td>
<td>19%</td>
<td>19%</td>
<td>82,2%</td>
</tr>
<tr>
<td>Espera</td>
<td>19%</td>
<td>11%</td>
<td>19%</td>
<td>19%</td>
<td>82,2%</td>
</tr>
<tr>
<td>Reproceso</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>1%</td>
<td>-2,6%</td>
</tr>
<tr>
<td>Inventario</td>
<td>0%</td>
<td>35%</td>
<td>0%</td>
<td>31%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Sobreproducción</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0,0%</td>
</tr>
<tr>
<td>Otros</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0,0%</td>
</tr>
</tbody>
</table>

Nota: Verde = Actividades de Valor Agregado.

Amarrillo = Actividades de Valor Agregado del Negocio.

Rojo = Actividades de No Valor Agregado.
4.1.2.2 Variable de Proceso – Valor de Tiempo de Trabajo.

A continuación se presentan los resultados obtenidos de la variable de tiempo de trabajo de cada proceso de Fabricación y su compasión con el periodo inicial de investigación.
a) **Proceso de Roscado:** En la Tabla 100 se presenta el análisis de Tiempo de Trabajo donde se observa un decrecimiento en el tiempo de trabajo promedio de 214,88 segundos, lo que representa un 40,5% de reducción.

<table>
<thead>
<tr>
<th>Proceso Roscado</th>
<th>Media Inicial (segundos)</th>
<th>Desviación Estándar Inicial</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>530,6</td>
<td>7,41</td>
</tr>
<tr>
<td></td>
<td>315,72</td>
<td>9,12</td>
</tr>
</tbody>
</table>

b) **Proceso de Inspección de Rosca:** En la Tabla 101 se presenta el análisis del Tiempo de Trabajo Proceso donde se obtuvo un decrecimiento en el tiempo de trabajo promedio de 127,79 segundos, lo que representa un 18,9% de reducción.

<table>
<thead>
<tr>
<th>Proceso Inspección de Rosca</th>
<th>Media Inicial (segundos)</th>
<th>Desviación Estándar Inicial</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>675,15</td>
<td>9,33</td>
</tr>
<tr>
<td></td>
<td>547,36</td>
<td>12,41</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diferencia</th>
<th>-127,79</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porcentaje</td>
<td>-18,9%</td>
</tr>
</tbody>
</table>

c) **Proceso NDT:** En la Tabla 102 se presenta el análisis del Tiempo de Trabajo donde se obtuvo un decrecimiento en el tiempo de trabajo de 31,48 segundos, lo que representa un 22,5% de reducción.

<table>
<thead>
<tr>
<th>Proceso NDT</th>
<th>Media Inicial</th>
<th>Desviación Estándar Inicial</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>139,8</td>
<td>6,32</td>
</tr>
<tr>
<td></td>
<td>108,32</td>
<td>10,82</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Diferencia</th>
<th>-31,48</th>
</tr>
</thead>
<tbody>
<tr>
<td>Porcentaje</td>
<td>-22,5%</td>
</tr>
</tbody>
</table>
d) **Proceso de Acoplado y Paso de Mandril – Sub Proceso de Pre Acoplado:**

En la Tabla 103 se presenta el análisis del Tiempo de Trabajo donde se obtuvo un decrecimiento en el tiempo de trabajo de 36,76 segundos, lo que representa un 21,4% de reducción.

Tabla 103. Análisis del Sub Proceso de Pre Acoplado.

<table>
<thead>
<tr>
<th>Proceso Pre Acoplado</th>
<th>Media Inicial (segundos)</th>
<th>Desviación Estándar Inicial</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>171,5</td>
<td>9,62</td>
</tr>
<tr>
<td>Media Final (segundos)</td>
<td>134,74</td>
<td>Desviación Estándar Final</td>
</tr>
<tr>
<td>Diferencia</td>
<td>-36,76</td>
<td>8,48</td>
</tr>
<tr>
<td>Porcentaje</td>
<td>-21,4%</td>
<td></td>
</tr>
</tbody>
</table>

e) **Proceso de Acoplado y Paso de Mandril – Sub Proceso de Acoplado Automático:** En la Tabla 104 se presenta el análisis del Tiempo de Trabajo donde se obtuvo un decrecimiento en el tiempo de trabajo de 36,26 segundos, lo que representa un 25,2% de reducción.

Tabla 104. Análisis del Sub Proceso de Acoplado Automático.

<table>
<thead>
<tr>
<th>Proceso Acoplado Automático</th>
<th>Media Inicial (segundos)</th>
<th>Desviación Estándar Inicial</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>144,08</td>
<td>3,48</td>
</tr>
<tr>
<td>Media Final (segundos)</td>
<td>107,82</td>
<td>Desviación Estándar Final</td>
</tr>
<tr>
<td>Diferencia</td>
<td>-36,26</td>
<td>9,28</td>
</tr>
<tr>
<td>Porcentaje</td>
<td>-25,2%</td>
<td></td>
</tr>
</tbody>
</table>

f) **Proceso de BME:** En la Tabla 105 se presenta el análisis del Tiempo de Trabajo donde se obtuvo un decrecimiento en el tiempo de trabajo de 54,9 segundos, lo que representa un 34,1% de reducción.
Tabla 105. Análisis del Proceso de BME.

<table>
<thead>
<tr>
<th>Proceso BME</th>
<th>Media Inicial (segundos)</th>
<th>Desviación Estándar Inicial</th>
<th>Media Final (segundos)</th>
<th>Desviación Estándar Final</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>161,16</td>
<td>9,18</td>
<td>106,26</td>
<td>9,87</td>
</tr>
<tr>
<td>Diferencia</td>
<td>-54,9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Porcentaje</td>
<td>-34,1%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

4.2 Ventajas y Desventajas de lo Investigado

4.2.1 Ventajas de lo Investigado

Las ventajas encontradas de lo aplicado en la presente investigación son:

a) La capacidad de toma de decisión para mejorar o eliminar actividades del proceso a través de la diagramación del proceso y análisis de valor agregado.

b) La definición de un control estandarizado para los procesos.

c) Las herramientas aplicadas de Lean Manufacturing permiten ser utilizadas en distintos procesos de fabricación.

d) La verificación cuantificada a través de variables de procesos evaluar de manera objetiva los niveles de mejora obtenidos.

4.2.2 Desventajas de lo Investigado.

Las desventajas encontradas de lo aplicado en la presente investigación son:

a) Las metodologías no permiten la eliminación completa de las actividades de no valor agregado en una sola fase de implementación ya que se apalanza en el principio de mejora continua.

b) El tiempo de obtener datos significativos para su análisis y evaluación.
5 CONCLUSIONES Y RECOMENDACIONES.

5.1 Conclusiones.

✓ Las herramientas de Lean Manufacturing (5S, Gestión Visual y Estandarización) implementadas en los procesos de Fabricación del Centro Productivo de Tenaris Ecuador contribuyeron a la disminución del producto no conforme en un 83% (de 1,57% a 0,27% en valores promedio comparando los periodos octubre 2013 - junio 2014 / julio 2014 - mayo 2015) y a la reducción del 300% de reclamos del cliente (3 a 0 reclamos comparando los periodos octubre 2013 - junio 2014 / julio 2014 - mayo 2015).

✓ El análisis de los tipos de Herramientas de Lean Manufacturing permitió identificar las siguientes opciones para la mejora de los procesos de “Fabricación” del Centro Productivo de Tenaris Ecuador:

- Mapas de Cadena de Valor.
- 5S.
- Estandarización.
- Gestión Visual.
- Kaizen.
- Jidoka.
- SMED.
- Poka Yoque.
- Andón.
- TPM.
- JIT.
- Kanban.
- Heijunka (Producción Suavizada).
- Sistemas de Trabajos Flexibles.

✓ La priorización realizada de estas herramientas logró identificar como opciones de aplicación a 5S, Gestión Visual y Estandarización.
El análisis del estado inicial de los procesos de “Fabricación” del Centro Productivo de Tenaris Ecuador permitió establecer los porcentajes de Actividades de Valor Agregado (VA), de Actividades de Valor Agregado para el Negocio (VAN) y de Actividades de No Valor Agregado (NVA) para cada proceso y con ello, el direccionamiento para la mejora.

- Para el Proceso de Roscado: VA 51%, VAN 27% y NVA 22%.
- Para el Proceso de Inspección de Rosca: VA 7%, VAN 57% y NVA 36%.
- Para el Proceso NDT: VA 38%, VAN 27% y NVA 35%.
- Para el Proceso de Acoplado y Paso de Mandril:
 - Sub Proceso de Pre Acoplado: VA 10%, VAN 61% y NVA 29%.
 - Sub Proceso de Pre Acoplado: VA 13%, VAN 47% y NVA 41%.
- Para el Proceso NDT: VA 13%, VAN 52% y NVA 35%.

El análisis para selección de las herramientas de calidad basadas en Lean Manufacturing para su implementación en los procesos de “Fabricación” del Centro Productivo de Tenaris Ecuador a través del Diagrama de Pareto y la factibilidad de tiempo y costo permiten definir su nivel de aplicabilidad acorde a los procesos investigados. Para el caso de estudio, las herramientas seleccionadas a través de estos criterios fueron: 5S, Gestión Visual y Estandarización.

La aplicación de las herramientas Lean Manufacturing en los procesos de “Fabricación” del Centro Productivo de Tenaris Ecuador permitió mejorarlos a través de la eliminación de Actividades de No Valor Agregado (NVA). Alcanzando los siguientes niveles en porcentaje comparando los periodos octubre 2013 - junio 2014 / julio 2014 - mayo 2015:

- Para el Proceso de Roscado: VA 72%, VAN 17% y NVA 11% (51% al 72% en VA, 27% al 17% VAN y 22% al 11% en NVA).
- Para el Proceso de Inspección de Rosca: VA 10%, VAN 80% y NVA 11%. (7% al 10% en VA, 57% al 80% VAN y 36% al 11% en NVA).
Para el Proceso de NDT: VA 51%, VAN 20% y NVA 28%. (38% al 51% en VA, 27% al 20% VAN y 35% al 28% en NVA).

Para el Proceso de Acoplado y Paso de Mandril.

- **Sub Proceso de Pre Acoplado**: VA 23%, VAN 51% y NVA 26%. (10% al 23% en VA, 61% al 51% VAN y 29% al 26% en NVA).
- **Sub Proceso de Acoplado Automático**: VA 19%, VAN 50% y NVA 31% (13% al 19% en VA, 47% al 50% VAN y 41% al 31% en NVA).

Para el Proceso de BME: VA 19%, VAN 50% y NVA 31%. (13% al 19% en VA, 52% al 50% VAN y 35% al 31% en NVA).

Aplicando un estudio de tiempos en los procesos de “Fabricación” del Centro Productivo de Tenaris Ecuador se obtuvo una reducción en el Tiempo de Trabajo promedio para cada uno de ellos, comparando los periodos octubre 2013 - junio 2014 / julio 2014 - mayo 2015:

- Para el Proceso de Roscado: Una reducción del 40,5% (530,6 segundos a 315,72 segundos).
- Para el Proceso de Inspección de Rosca: Una reducción del 18,9% (675,15 segundos a 547,36 segundos).
- Para el Proceso de NDT: Una reducción del 22,5% (139,8 segundos a 108,32 segundos).
- Para el Proceso de Acoplado y Paso de Mandril:
 - **Sub Proceso de Pre Acoplado**: Una reducción del 21,4% (171,5 segundos a 134,74 segundos).
 - **Sub Proceso de Acoplado Automático**: Una reducción del 25,2% (144,08 segundos a 107,82 segundos).
- Para el Proceso BME: Una reducción del 34,1% (161,16 segundos a 106,26 segundos).

La metodología aplicada para la mejora en los procesos de “Fabricación” del Centro Productivo de Tenaris Ecuador es factible utilizarla para otras plantas de Tenaris tanto de la línea de tuberías como de la vinculada a la fabricación de partes automotrices.

5.2 Recomendaciones

✓ Ejecutar nuevamente el estudio de tiempo de trabajo en los procesos de “Fabricación” del Centro Productivo de Tenaris Ecuador, para verificar su nivel de estándarización y de avance en la curva de aprendizaje del personal respecto a los nuevos métodos de trabajo.

✓ Continuar con la implementación de las herramientas de Lean Manufacturing no priorizadas en este estudio en los procesos de “Fabricación” del Centro Productivo de Tenaris Ecuador.

✓ Proseguir con la eliminación de las mudas (desperdicios) existente en los procesos de “Fabricación” del Centro Productivo de Tenaris Ecuador.

✓ Realizar un seguimiento periódico y actualización de los cronogramas de verificación para la herramienta de 5S, para mantener la herramienta y fortalecer la cultura de disciplina de mantenimiento de estándares en los procesos de “Fabricación” del Centro Productivo de Tenaris Ecuador.

✓ Ampliar el estudio de tiempo de trabajo para los procesos de Logística y Mantenimiento del Centro Productivo de Tenaris Ecuador.

✓ Ampliar la implementación de las herramientas de Lean Manufacturing en los procesos de apoyo del Centro Productivo de Tenaris Ecuador, para fortalecer la cultura de disciplina de la empresa.
Aplicar la metodología de mejora implementada dentro del Centro Productivo de Tenaris Ecuador en las otras plantas de producción de características similares de la empresa.
BIBLIOGRAFÍA

José Mendez García. (n.d.). Proceso de fabricación de las tuberías de acero - Página web de jmendezgar. Retrieved October 3, 2017, from https://jmendezgar.jimdo.com/perforacion-de-pozos-petroleros/5-sartas-de-perforacion/5-4-proceso-de-fabricación-de-las-tuberías-de-acero/

TRATAMIENTOS TÉRMICOS PROTOCOLO. (2008). Escuela Colombiana de
Ingeniería Julio Garavito, 2. Retrieved from
ANEXOS

ANEXO 1. Hoja de Tiempo de Observación

<table>
<thead>
<tr>
<th>CELUL</th>
<th>FASE</th>
<th>REFERENCIA</th>
<th>NOMBRE DEL PROCESO:</th>
<th>VA</th>
<th>NVA</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HOJA DE TIEMPOS DE OBSERVACION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Descripción de Actividad</th>
<th>Observaciones</th>
<th>Espera</th>
<th>Demanda</th>
<th>Movimiento de Operario</th>
<th>Movimiento de Material</th>
<th>Correctas</th>
<th>Total</th>
</tr>
</thead>
</table>

Formato estándar de captura de VA/NVA.
Fuente: (Cuatrecasas et al., 2013, p. 78)
Formato de Valor Agregado - No Valor Agregado

<table>
<thead>
<tr>
<th>Área / Proceso</th>
<th>Producto</th>
<th>Fecha</th>
<th>Elaborado</th>
<th>FOR-001</th>
</tr>
</thead>
</table>

Actividades de Valor Agregado

|----------------|----------------|-----------------------------|----------------------------|---|--|-----------|----------------------|-------|-----------|------------|----------------------|-------|---------------------------|-------------------------------|

Nomenclatura

<table>
<thead>
<tr>
<th>N/A</th>
<th>Actividades No Agregan Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAN</td>
<td>Actividades Agregan Valor al Negocio</td>
</tr>
<tr>
<td>VA</td>
<td>Actividades Agregan Valor</td>
</tr>
</tbody>
</table>
ANEXO 3. Cronograma de Implementación.
ANEXO 4. Material Didáctico de 5S.

Tenaris 5 S’s

Seiri SELECCIONAR:
“Desechar lo que no se necesita”

¡SEPARAR LO QUE ES NECESARIO DE LO QUE NO LO ES Y TIRAR LO QUE ES INUTIL!

¿COMO?:
- Haciendo inventarios de las cosas útiles en el área de trabajo.
- Hacer un listado de los materiales, herramientas o equipos que no sirven en el área de trabajo.
- Desechando las cosas inútiles

DIAGRAMA FLUJO PARA LA CLASIFICACIÓN

Objetos necesarios ➔ Organizadores

Objetos dañados ➔ ¿Son útiles? Sí ➔ Reparar

Objetos obsoletos ➔ Separar ➔ Descartar

Objetos de más ➔ ¿Son útiles para alguien más? Sí ➔ Donar

¡COLOCAR LO NECESARIO EN UN LUGAR FÁCILMENTE ACCESIBLE!

Seiton ORGANIZAR:
“Un lugar para cada cosa y cada cosa en su lugar”

¿COLOCAR LO NECESARIO EN UN LUGAR FÁCILMENTE ACCESIBLE!

¡Cada cosa en su lugar!
Pasos propuestos para organizar:

- Definir un nombre, código o color para cada clase de artículo.
- Decidir dónde guardar las cosas tomando en cuenta la frecuencia de su uso.
- Acomodar las cosas de tal forma que se facilite el colocar etiquetas visibles y utilizar códigos de colores para facilitar la localización de los objetos de manera rápida y sencilla.

Una vez seleccionados los objetos necesarios se puede ubicar por frecuencia de uso

- Colocar en área de archivo mismo
- Colocar en bodega o archivo
- Colocar en áreas comunes
- Colocar cercano al área de trabajo
- Colocar cerca de la persona

BENEFICIOS:
- Nos ayudará a encontrar fácilmente materiales, herramientas, documentos u objetos de trabajo, economizando tiempos y movimientos.
- Facilita regresar a su lugar los objetos o documentos que hemos utilizado.
- Ayuda a identificar cuando falta algo.
- Da una mejor apariencia.

Seiso LIMPIEZA: No limpiar, sino evitar que se ensucie

No limpiar más, sino evitar que se ensucie

¿COMO?:

- Recogiendo, y retirando lo que estorba.
- Limpiando con un trapo o brocha.
- Barriendo.
- Desengrasando con un producto adaptado y homologado.
- Pasando la aspiradora.
- Cepillando y lijando en los lugares que sea preciso.
- Rastrillando.
- Eliminando los focos de suciedad.

BENEFICIOS:

- Aumentará la vida útil del equipo e instalaciones.
- Menos probabilidad de contraer enfermedades.
- Menos accidentes.
- Mejor apetito.
- Ayuda a evitar mayores daños y a la ecología.
Seiketsu ESTANDARIZAR:
“Preservar los altos niveles 3S”

¡MANTENER CONSTANTEMENTE EL ESTADO DE ORDEN, LIMPIEZA E HIGIENE DE NUESTRO SITIO DE TRABAJO!

¿COMO?:
- Limpiando con la regularidad establecida.
- Manteniendo todo en su sitio y en orden.
- Establecer procedimientos y planes para mantener orden y Limpieza.

BENEFICIOS:
- Se guarda el conocimiento producido durante años.
- Se mejora el bienestar del personal al crear un hábito de conservar impecable el sitio de trabajo en forma permanente.
- Los operarios aprenden a conocer con profundidad el equipo y elementos de trabajo.
- Se evitan errores de limpieza que puedan conducir a accidentes o riesgos laborales innecesarios.

Shitsuke DISCIPLINA:
“Todos de la misma manera”

¡ACOSTUMBRARSE A APLICAR LAS 5S EN NUESTRO SITIO DE TRABAJO Y A RESPE TAR LAS NORMAS DEL SITIO DE TRABAJO CON RIGOR!

¿COMO?:
- Respetando a los demás.
- Respetando y haciendo respetar las normas del sitio de Trabajo.
- Llevando puesto los equipos de protección.
- Teniendo el hábito de limpieza.
- Convirtiendo estos detalles en hábitos reflejos.

Pasos propuesto para crear disciplina:
- Uso de ayudas visuales.
- Recorridos a las áreas, por parte de los directivos.
- Publicación de fotos del “antes” y “después”.
- Boletines informativos, carteles, usos de insignias.
- Establecer rutinas diarias de aplicación como “5 minutos de 5s”, actividades mensuales y semestrales.
- Realizar evaluaciones periódicas, utilizando criterios pre-establecidos, con grupos de verificación independientes.

BENEFICIOS:
- Mejora nuestra eficacia.
- Mejor ambiente de trabajo
- Mejora nuestra imagen.
ANEXO 5. Implementación de 5S.

Registro de Fotográfico de Formación de Equipos de 5S.

Registro Fotográfico de Capacitación de 5S
<table>
<thead>
<tr>
<th>"S"</th>
<th>Antes</th>
<th>Despues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seleccionar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ordenar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limpieza</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estandarización</td>
<td></td>
<td>Ver Anexo 11. " Estandarización de Proceso Roscado 5S"</td>
</tr>
</tbody>
</table>
ANEXO 7. Implementación de 5S – Proceso de Inspección de Rosca.

<table>
<thead>
<tr>
<th>"S"</th>
<th>Antes</th>
<th>Después</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seleccionar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ordenar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limpieza</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estandarización</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autodisciplina</td>
<td>No existía al inicio.</td>
<td>Ver Anexo 13. "Estandarización de Proceso de Inspección de Rosca 5S"</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ver Anexo 14. "Autodisciplina de Proceso de Inspección de Rosca 5S".</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Auditoria realizada al proceso para ver el cumplimiento de las "5S".</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ver Anexo 23. "Resumen Autodisciplina - Implementación "5S"."</td>
</tr>
</tbody>
</table>
ANEXO 8. Implementación de 5S – Proceso de NDT.

<table>
<thead>
<tr>
<th>"5S"</th>
<th>Proceso de NDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seleccionar</td>
<td> </td>
</tr>
<tr>
<td>Ordenar</td>
<td> </td>
</tr>
<tr>
<td>Limpieza</td>
<td> </td>
</tr>
<tr>
<td>Estandarización</td>
<td> </td>
</tr>
</tbody>
</table>
– Sub Proceso Pre Acoplado.

<table>
<thead>
<tr>
<th>"S"</th>
<th>Antes</th>
<th>Después</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seleccionar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ordenar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limpieza</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estandarización</td>
<td></td>
<td>Ver Anexo 17. "Estandarización de Sub Proceso de Pre Acoplado 5S"</td>
</tr>
<tr>
<td>Autodisciplina</td>
<td>No existía al inicio.</td>
<td>Ver Anexo 18. "Autodisciplina de Sub Proceso de Pre Acoplado 5S".</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Auditoría realizada al proceso para ver el cumplimiento de las "S".</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ver Anexo 23. "Resumen Autodisciplina - Implementación "5S"."</td>
</tr>
<tr>
<td>S</td>
<td>Antes</td>
<td>Después</td>
</tr>
<tr>
<td>-------</td>
<td>-------</td>
<td>---------</td>
</tr>
<tr>
<td>Seleccionar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ordenar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limpieza</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estandarización</td>
<td></td>
<td>Ver Anexo 19. "Estandarización de Sub Proceso de Acoplado Automático 5S"</td>
</tr>
</tbody>
</table>
ANEXO 11. Implementación de 5S – Proceso de BME.

<table>
<thead>
<tr>
<th>"S"</th>
<th>Proceso de BME</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Seleccionar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ordenar</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limpieza</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estandarización</td>
<td></td>
<td>Ver Anexo 21. " Estandarización de Proceso de BME 5S"</td>
</tr>
</tbody>
</table>

Fuente: Tenaris Ecuador.
ANEXO 13. Estandarización de Proceso Roscado “5S”.

Compromisos
1. Ordenar materiales que no necesito.
2. Limpia una vez al día.
3. Dejar ordenado mi puesto de trabajo.

TENARIS 5S's

SEIRI
Seleccionar

SEITON
Limpiah Personal

SEISO
Bienestar Personal

SHITSUKE
Disciplina

5S's

ANTES
Fabricación de Rosca

Después
Estación de Roscado

Responsible
Cristian Arriaga

Fecha Inicio: Noviembre-2014
Fecha Compromiso: Enero-2015

Área de Trabajo
Lubricación
ANEXO 14. Estandarización de Proceso de Inspección de Rosca “5S”.
ANEXO 15. Estandarización de Proceso NDT “5S”.
ANEXO 16. Estandarización de Sub Proceso Pre Acoplado “5S”.

Compromisos
1. Ordenar materiales que no necesito.
2. Limpiar una vez al día.
3. Dejar ordenado mi puesto de trabajo.

5S's
SEIRI
SEITON
SEISO
SHITSEIKE
Disciplina
Bimetic Personal
Ordenar
Limpieza
Selección
Selección
Responsible:
Fecha Inicio:
Fecha Compromiso:
2014-2015
Noviembre-Enero
Angel Yanguuchi

ANTES

DESPUES

Tenaris 5S's

Área de Trabajo: Estación de Pre Acoplado Fabricación de Rosca
Ubicación:

289
ANEXO 17. Estandarización de Sub Proceso Acoplado Automático “5S”.
ANEXO 18. Estandarización de Proceso BME “5S”.

Compromisos:
1. Ordenar materiales que no necesito.
2. Limpiar una vez al día.
3. Dejar ordenado mi Puesto de trabajo.
ANEXO 19. Auditores de 5S.

LÍDER y AUDITORES

<table>
<thead>
<tr>
<th>Líder 5 S's</th>
<th>Responsabilidad y Autoridad:</th>
</tr>
</thead>
<tbody>
<tr>
<td>TENARIS ECUADOR</td>
<td>Mauricio Guncay</td>
</tr>
</tbody>
</table>

1. Cumplir y hacer cumplir los compromisos 5 S's en toda la organización.
2. Gestionar recursos necesarios solicitados por las diferentes áreas.
3. Verificar el cumplimiento del programa de auditorías 5 S’s.
4. Tomar acciones para el cumplimiento de la campaña 5 S’s.

AUDITORES

<table>
<thead>
<tr>
<th>Responsabilidad y Autoridad:</th>
<th>Angel Yanguicela RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rommel Tayan MT</td>
<td>Cristian Arevalo JQ</td>
</tr>
<tr>
<td>Marco Tayupanta AG</td>
<td>Juan Quinaluisa MG</td>
</tr>
<tr>
<td>Luis Chuqui LC</td>
<td>Mauricio Guncay MG</td>
</tr>
</tbody>
</table>

“Organizar, ordenar y limpiar no es pagar a un subcontratista o pedir al personal que limpie, sino una cultura”
ANEXO 20. Cronograma de Auditorías de 5S.

<table>
<thead>
<tr>
<th>AÑO 2014 - 2015</th>
<th>MARZO</th>
<th>FEBRERO</th>
<th>ENERO</th>
<th>DICIEMBRE</th>
<th>NOVIEMBRE</th>
<th>OCTUBRE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Área</td>
<td>General</td>
<td>General</td>
<td>General</td>
<td>General</td>
<td>General</td>
<td>General</td>
</tr>
<tr>
<td>51</td>
<td>52</td>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
</tr>
<tr>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>66</td>
<td>67</td>
</tr>
<tr>
<td>71</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
</tr>
<tr>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>87</td>
</tr>
<tr>
<td>91</td>
<td>92</td>
<td>93</td>
<td>94</td>
<td>95</td>
<td>96</td>
<td>97</td>
</tr>
<tr>
<td>101</td>
<td>102</td>
<td>103</td>
<td>104</td>
<td>105</td>
<td>106</td>
<td>107</td>
</tr>
</tbody>
</table>

Las auditorías se efectuarán sin previo aviso “sorpresa” y se realizarán en el día y hora que el auditor cree conveniente.

CRONOGRAMA DE AUDITORIAS 5S's

Tenaris
ANEXO 21. Formato de Auditoría 5S

<table>
<thead>
<tr>
<th>Áreas Operativas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Área:</td>
</tr>
<tr>
<td>Cabeza</td>
</tr>
</tbody>
</table>

1. SELECCIONAR

- **Documentación para el trabajo:**
 - Descripción, limpieza, en rúbricas y legible
 - Clasificada, identificada y ordenada
- **Limpieza:**
 - Publicación anexos:
 - Identificado en lugar específico para todo
 - En lugares, ordenadamente ubicados
 - Clasificado e identificado
 - Almacenado en forma e inmensa
- **Seguridad en el área:**
 - Equipo de emergencia accesible
 - Sustancias, materiales, y salas de laboratorio
 - Precauciones en equipos, manejo e instalaciones

2. ORDENAR

- **Dirección:**
 - Posturas, papeles, pantallas, etc. en orden
 - Dispositivos de emergencia:
 - Limpia y ordenado
 - En su casa, equipo de trabajo
 - Limpia y ordenado
 - En su casa, equipo de trabajo
- **Seguridad en el área:**
 - Equipo de emergencia accesible
 - Sustancias, materiales, y salas de laboratorio
 - Precauciones en equipos, manejo e instalaciones

3. LIMPIAR

- **Equipo de herramientas:**
 - Herramientas de emergencia:
 - Limpia y ordenado
 - En su casa, equipo de trabajo
 - Limpia y ordenado
 - En su casa, equipo de trabajo
- **Estándares de limpieza:**
 - Amplio de áreas de uso común
 - Desplazamiento de seguridad
 - Adiestramiento, suministro de seguridad
 - Entorno de trabajo en instalaciones

4. Estandarizar

- **Conformación de la herramienta:**
 - Personal encargado de la herramienta 5S
 - Clases sus responsabilidades en la aplicación
- **Ordinario:**
 - Se utiliza equipo de seguridad
 - Limpia y ordenado
 - Clasificado e identificado
 - En su casa, equipo de trabajo
 - Limpia y ordenado
 - En su casa, equipo de trabajo
- **Disciplinario:**
 - Personal encargado del 5S
 - Personal encargado del 5S
 - Personal encargado del 5S

5. DISCIPLINAR

- **PUNTAJE TOTAL**
- **SELECCIONAR**
- **ORDENAR**
- **LIMPIAR**
- **Estandarizar**
- **Disciplinar**
- **Progress**
ANEXO 22. Autodisciplina de Proceso Roscado “5S”.
ANEXO 23. Autodisciplina de Proceso de Inspección de Rosca “5S”.

CHEKLIST PARA AUDITORIA 5 S's

Áreas Operativas

SELECCIONAR

1. Sólo lo enviamos en el lugar de trabajo
 - Grupo de trabajo, instructor, evaluador
 - Objetivo para el juego de herramientas
 - Objetivo para el equipo de trabajo
 - Objetivo de equipo de trabajo
 - Objetivo de equipo de trabajo

2. DEFECTOS
 - Defectos en un equipo o sistema
 - Defectos en un equipo o sistema
 - Defectos en un equipo o sistema

3. Sólo lo enviamos en el lugar de trabajo
 - Sólo lo enviamos en el lugar de trabajo
 - Sólo lo enviamos en el lugar de trabajo
 - Sólo lo enviamos en el lugar de trabajo

SUBTOTAL Seleccionar 3

ORDENAR

1. Documentación para el trabajo
 - Desgaste, rasguño, falta de control
 - Clasificación, clasificación, ordenación

2. Tareas a realizar
 - Tareas a realizar
 - Tareas a realizar
 - Tareas a realizar

SUBTOTAL Ordenar 4

LIMPIAR

1. Limpiar equipo
 - Limpiar equipo
 - Limpiar equipo
 - Limpiar equipo

2. Limpiar herramientas
 - Limpiar herramientas
 - Limpiar herramientas
 - Limpiar herramientas

SUBTOTAL Limpiaer 4

STANDARDIZAR

1. Seguridad industrial
 - Seguridad industrial
 - Seguridad industrial
 - Seguridad industrial

2. Señalización de áreas
 - Señalización de áreas
 - Señalización de áreas
 - Señalización de áreas

3. Identificación de herramientas
 - Identificación de herramientas
 - Identificación de herramientas
 - Identificación de herramientas

SUBTOTAL Estándarizar 4

DISCIPLINAR

1. Comprobación de la herramienta
 - Comprobación de la herramienta
 - Comprobación de la herramienta
 - Comprobación de la herramienta

2. Cumplimiento de normas y colaboraciones
 - Cumplimiento de normas y colaboraciones
 - Cumplimiento de normas y colaboraciones
 - Cumplimiento de normas y colaboraciones

3. Cumplimiento de EPP
 - Cumplimiento de EPP
 - Cumplimiento de EPP
 - Cumplimiento de EPP

4. Cumplimiento de Comprobaciones
 - Cumplimiento de Comprobaciones
 - Cumplimiento de Comprobaciones
 - Cumplimiento de Comprobaciones

SUBTOTAL Disciplinar 4

PUNTAJE TOTAL

SELECCIONAR 3

ORDENAR 4

LIMPIAR 4

STANDARDIZAR 4

DISCIPLINAR 4

PROMEDIO 4

296
ANEXO 24. Autodisciplina de Proceso de NDT “5S”.

CHECKLIST PARA AUDITORIA 5 S’s

<table>
<thead>
<tr>
<th>Áreas Operativas</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>SELECCIONAR</td>
<td>x 4</td>
</tr>
<tr>
<td>1. Selección</td>
<td></td>
</tr>
<tr>
<td>Sede lo necesario en el lugar de trabajo</td>
<td>x 4</td>
</tr>
<tr>
<td>Sede los equipos o patrones</td>
<td>x 5</td>
</tr>
<tr>
<td>Sede en el piso</td>
<td>x 5</td>
</tr>
<tr>
<td>SUBTOTAL Seleccionar</td>
<td>5</td>
</tr>
<tr>
<td>2. ORDENAR</td>
<td></td>
</tr>
<tr>
<td>Documentación para el trabajo</td>
<td>x 5</td>
</tr>
<tr>
<td>Superficies, máquinas, equipos, utensilios</td>
<td>x 3</td>
</tr>
<tr>
<td>Inventariado</td>
<td>x 2</td>
</tr>
<tr>
<td>SUBTOTAL Ordenar</td>
<td>4</td>
</tr>
<tr>
<td>3. LIMPEAR</td>
<td></td>
</tr>
<tr>
<td>Limpieza de infraestructura</td>
<td>x 4</td>
</tr>
<tr>
<td>Limpieza equipos, máquinas, utensilios</td>
<td>x 4</td>
</tr>
<tr>
<td>Tamaño de los equipos</td>
<td>x 5</td>
</tr>
<tr>
<td>SUBTOTAL Limpiar</td>
<td>4</td>
</tr>
<tr>
<td>4. ESTANDARIZAR</td>
<td></td>
</tr>
<tr>
<td>Seguridad industrial</td>
<td>x 5</td>
</tr>
<tr>
<td>Seguridad de área</td>
<td>x 3</td>
</tr>
<tr>
<td>SUBTOTAL Estandarizar</td>
<td>3</td>
</tr>
<tr>
<td>5. DISCIPLINAR</td>
<td></td>
</tr>
<tr>
<td>Conocimiento de la herramienta</td>
<td>x 4</td>
</tr>
<tr>
<td>Cumplimiento de reglas y procedimientos</td>
<td>x 4</td>
</tr>
<tr>
<td>Cumplimiento del uso de EPP</td>
<td>x 5</td>
</tr>
<tr>
<td>SUBTOTAL Disciplinar</td>
<td>4</td>
</tr>
</tbody>
</table>

PUNTAJE TOTAL
- SELECCIONAR: 5
- ORDENAR: 4
- LIMPIAR: 4
- ESTANDARIZAR: 3
- DISCIPLINAR: 4
- PROMEDIO: 4

![Diagrama de la checklist para auditoria 5 S’s de Tenaris](image-url)
ANEXO 25. Autodisciplina de Sub Proceso de Pre Acoplado “5S”.

![Diagrama de metodo auditórico para 5S](image)

Checklist para Auditoría 5 S’s

<table>
<thead>
<tr>
<th>Áreas Operativas</th>
<th>Observaciones</th>
</tr>
</thead>
</table>
| **Seleccionar** | - Sin objetos extraños, objetos e instrucciones.
| | - Sin herramientas, y material expuesto frente al lugar de trabajo.
| | - Cables personales o herramientas.
| | - Cables de alimentación o instrumentación. |
| | - Sin objetos extraños (o algo que no ha sido designado). |
| | - Cables o equipo (o algo que no ha sido designado). |
| | - Cables o equipo (o algo que no ha sido designado). |
| **Ordenar** | - Obstáculos o equipos.
| | - Obstáculos o equipos. |
| **Limpiar** | - Registros de trabajo.
| | - Registros de trabajo. |
| **Seguridad y Salud** | - Equipos de seguridad y salud.
| | - Equipos de seguridad y salud. |
| | - Equipos de seguridad y salud. |
| | - Equipos de seguridad y salud. |
| | - Equipos de seguridad y salud. |

Puntaje Total

- **Seleccionar**: 3
- **Ordenar**: 6
- **Limpiar**: 4
- **Estandarizar**: 4
- **Disciplinar**: 4
- **Progreso**: 3
ANEXO 26. Autodisciplina de Sub Proceso de Acoplado Automático “5S”.

<table>
<thead>
<tr>
<th>Áreas Operativas</th>
<th>OBSERVACIONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. SELECCIONAR</td>
<td></td>
</tr>
<tr>
<td>1. Documentación</td>
<td></td>
</tr>
<tr>
<td>2. PERSONAL</td>
<td></td>
</tr>
<tr>
<td>3. MATERIALES</td>
<td></td>
</tr>
<tr>
<td>SUBTOTAL Selección</td>
<td>4</td>
</tr>
<tr>
<td>2. ORDENAR</td>
<td></td>
</tr>
<tr>
<td>1. INTEGRALIDAD</td>
<td></td>
</tr>
<tr>
<td>2. PERSONAL</td>
<td></td>
</tr>
<tr>
<td>3. MATERIALES</td>
<td></td>
</tr>
<tr>
<td>SUBTOTAL Ordenar</td>
<td>4</td>
</tr>
<tr>
<td>3. LIMPIAR</td>
<td></td>
</tr>
<tr>
<td>1. SEGURIDAD</td>
<td></td>
</tr>
<tr>
<td>2. PERSONAL</td>
<td></td>
</tr>
<tr>
<td>3. MATERIALES</td>
<td></td>
</tr>
<tr>
<td>SUBTOTAL Limpiar</td>
<td>4</td>
</tr>
<tr>
<td>4. STD.</td>
<td></td>
</tr>
<tr>
<td>1. IDENTIFICACIÓN</td>
<td></td>
</tr>
<tr>
<td>2. MATERIALES</td>
<td></td>
</tr>
<tr>
<td>3. PERSONAL</td>
<td></td>
</tr>
<tr>
<td>SUBTOTAL Estandarizar</td>
<td>4</td>
</tr>
<tr>
<td>5. DISCIPLINAR</td>
<td></td>
</tr>
<tr>
<td>1. COMPLEMENTARÍA</td>
<td></td>
</tr>
<tr>
<td>2. PERSONAL</td>
<td></td>
</tr>
<tr>
<td>3. MATERIALES</td>
<td></td>
</tr>
<tr>
<td>SUBTOTAL Disciplinar</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PUNTAJE TOTAL</th>
<th>SELECCIONAR</th>
<th>ORDENAR</th>
<th>LIMPIAR</th>
<th>Estandarizar</th>
<th>Disciplinar</th>
<th>PROMEDIO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

299
ANEXO 27. Autodisciplina de Proceso de BME “5S”.

<table>
<thead>
<tr>
<th>Área</th>
<th>Subárea</th>
<th>Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. SELECCIONAR</td>
<td>1. Instrumentación</td>
<td>- Dispositivos eléctricos, radicales o detectores en funcionamiento</td>
</tr>
<tr>
<td></td>
<td>2. Paredes, techo y suelo</td>
<td>- Obstáculos que impidan el paso de vehículos o personas</td>
</tr>
<tr>
<td></td>
<td>3. Andadores</td>
<td>- Patines, escaleras, puentones, rampas, etc.</td>
</tr>
<tr>
<td></td>
<td>4. Fuentes de luz</td>
<td>- Iluminación adecuada para el trabajo</td>
</tr>
<tr>
<td></td>
<td>5. Material en obra</td>
<td>- Material no deseado</td>
</tr>
<tr>
<td></td>
<td>6. Herramientas</td>
<td>- Herramientas y materiales requeridos sobre el lugar de trabajo</td>
</tr>
<tr>
<td></td>
<td>7. Bienes de equipo</td>
<td>- Equipos propuestos anteriormente</td>
</tr>
<tr>
<td></td>
<td>8. Material en el piso</td>
<td>- Nuevos equipos, equipos, herramientas (excepto lo que ha sido designado)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Código S</th>
<th>Punto S</th>
<th>Actitud (1)</th>
<th>Actitud (2)</th>
<th>Actitud (3)</th>
<th>Actitud (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>S2</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>S3</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>S4</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>S5</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>

PUNTAJE TOTAL
- SELECCIONAR: 2
- LIMPIAR: 4
- ORDENAR: 4
- DISCIPLINAR: 4
- PROMEDIO: 4

Áreas de Operaciones
- Área 1: Instrumentación
- Área 2: Paredes, techo y suelo
- Área 3: Andadores
- Área 4: Fuentes de luz
- Área 5: Material en obra
- Área 6: Herramientas
- Área 7: Bienes de equipo
- Área 8: Material en el piso

Checklist para auditoría 5 S's

Subtotal Seleccionar: 2
Subtotal Ordenar: 4
Subtotal Limpiar: 3
Subtotal Estandarizar: 4
Subtotal Disciplinario: 4

Promedio: 4
ANEXO 28. Cumplimiento de Programa de "5S"s

<table>
<thead>
<tr>
<th>AREA</th>
<th>oct-14</th>
<th>nov-14</th>
<th>dic-14</th>
<th>ene-15</th>
<th>feb-15</th>
<th>mar-15</th>
<th>promedio</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROSCADO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INSPECCIÓN DE ROSCA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRE ACOPLADO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACOPLADO AUTOMÁTICO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BME</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Identificación de Oficinas.

Identificación de Contenedores de materiales de la Planta

Identificación de Equipos de Planta

Señalética de Insumos de Materiales Químicos

Identificación de Contenedores de materiales de la Planta
Continuación de Anexo 29. Implementación de Gestión Visual

Identificación de Materiales Químicos.

Identificación de Materiales, Equipos, EPP, etc en Armarios de Estaciones

Cartelera Informativa de las áreas

Informativo de área de Planta

Marcación de Paso Peatonal

Marcación de Uso de Producción
ANEXO 30. Capacitación de nuevo método de trabajo.