Insulino-resistencia en pacientes con acné inflamatorio moderado a severo en consulta dermatológica y en la Unidad Educativa Andino de Quito en el período de abril a junio del 2016

DISERTACIÓN PREVIA A LA OBTENCIÓN DEL TÍTULO DE MÉDICO CIRUJANO

AUTOR

Pozo Gordillo Gabriela Lisseth

DIRECTOR DE TESIS

Dra. Luz María Dressendörfer

DIRECTOR METODOLÓGICO

Dra. Pamela Cabezas

Quito, 2016.
AGRADECIMIENTOS:

Agradezco a Dios, por iluminar mi camino y por alentarme cada día a seguir luchando por cada uno de mis sueños, por no desampararme y por ayudarme con cada obstáculo que se me atraviesa.

A mis padres Edwin y Mercedes, por su apoyo incondicional, su amor, ejemplo, tolerancia y comprensión, por nunca perder la confianza en mí y acompañarme día a día en mi camino.

A mis hermanos Verónica, Martín, Sandra y Vladimir, por ser mis mejores amigos, compañeros de vida y mentores, por siempre escucharme y ayudar a levantarme, por nunca abandonarme en ningún momento y siempre hacerme sonreír.

A mis hermosos sobrinos Camilo y Luciana porque con su espontaneidad y dulzura llenan mi vida de amor, risas y alegrías.

A la directora de tesis: Dra. Luz María Dressendörfer, por sus enseñanzas, interés, tiempo y apoyo absoluto en todo momento.

A la directora metodológica: Dra. Pamela Cabezas por su ayuda en la metodología de este estudio, sus consejos, sugerencias y recomendaciones.

A las doctoras Paola Jervis y Carolina Jervis, por su tiempo y ayuda para la realización de este proyecto.

A la Unidad Educativa Andino, en especial al Rector Lcdo. Ramiro Mafla, por abrirme las puertas de tan prestigiosa institución y permitirme la realización de esta investigación. Y a la Dra. Ana Romero médico de la institución por su gentil colaboración.
Al laboratorio DiserLab, por su responsabilidad y profesionalismo.

A mis amigos: David Aguirre, César Sáenz, Ariel Díaz y Wendy King, por su amistad incondicional y compartir conmigo el arduo camino de nuestra carrera.

Y a los pacientes y personas que fueron parte de esta investigación, por su participación y contribución.

A todos ustedes, muchísimas gracias.

Gabriela Pozo Gordillo
ÍNDICE DE CONTENIDOS

CONTENIDO

TÍTULO ... 1

AGRADECIEMIENTOS ... 2

CONTENIDO ... 4

ÍNDICE DE FIGURAS Y TABLAS ... 7

ÍNDICE DE GRÁFICOS .. 8

RESUMEN Y ABSTRACT ... 9

CONTENIDO

1. INTRODUCCIÓN .. 13

2. REVISIÓN BIBLIOGRÁFICA ... 17

 2.1 LA PIEL, GLÁNDULA SEBÁCEA Y SEBO .. 17

 2.2 ACNÉ .. 18

 2.2.1 CONCEPTO ... 18

 2.2.2 EPIDEMIOLOGÍA .. 19

 2.2.3 CLASIFICACIÓN .. 19

 2.2.4 ETIOPATOGÉNIA ... 22

 2.3 LA INSULINA Y LA PIEL ... 33
3.9 RECOLECCIÓN DE LA MUESTRA .. 57
 3.9.1 LUGAR .. 57
 3.9.2 INSTRUMENTO ... 57
 3.9.3 CRITERIOS DE INCLUSIÓN Y EXCLUSIÓN 57
 3.9.4 APLICACIÓN ... 58

3.10 ANÁLISIS DE DATOS ... 59

3.11 ASPECTOS BIOÉTICOS ... 59

4. RESULTADOS ... 60
 4.1 VARIABLES DE CONTROL .. 61
 4.2 VARIABLE DEPENDIENTE ACNÉ .. 66
 4.3 VARIABLE INDEPENDIENTE INSULINO-RESISTENCIA 67
 4.4 INSULINO-RESISTENCIA Y VARIABLES DE CONTROL 68
 4.5 ACNÉ Y VARIABLES DE CONTROL 69
 4.6 INSULINO-RESISTENCIA Y ACNÉ ... 70

5. DISCUSIÓN .. 72

6. CONCLUSIONES ... 75

7. RECOMENDACIONES ... 76

8. BIBLIOGRAFÍA .. 77

9. ANEXOS .. 81
ÍNDICE DE FIGURAS

Figura 1. Fisiopatología del acné ... 16
Figura 2. Acné de grado I ... 20
Figura 3. Acné de grado II ... 20
Figura 4. Acné de grado III ... 21
Figura 5. Esquema del rol del IGF-1 y dieta sobre la lipogénesis, hiperproliferación e inflamación ... 27
Figura 6. Los mediadores de la inflamación en el acné vulgar 32
Figura 7. Regulación de ACTH, LH, GH e IGF-1 en la síntesis de andrógenos suprarrenales y gonadales y el metabolismo cutáneo de andrógenos 42
Figura 8. Conexiones entre insulino-resistencia, hiperinsulinemia e hiperandrogenismo ... 44
Figura 9. Algoritmo de resistencia a la insulina y sus consecuencias 46

ÍNDICE DE TABLAS

Tabla 1. Clasificación del acné ... 22
Tabla 2. Principales hormonas implicadas en acné y sus funciones 24
Tabla 3. La activación de FGFR2b resulta en el incremento de la lipogénesis y en la formación del comedón ... 28
Tabla 4. IGF-1, andrógenos y acné ... 31
Tabla 5. Enfermedades de la piel asociadas con insulino-resistencia 34
Tabla 6. Operacionalización de las variables ... 55
Tabla 7. Determinación de la muestra para estudios de casos y controles 56
Tabla 8. Resultados de los análisis estadísticos comparados de los grupos de pacientes y controles. …………………………………………………………………………………. 60
Tabla 9. Variable de control Edad. Promedio, mediana, moda, S. …………………. 61
Tabla 10. Variable de control Género. Proporción ………………………………………. 62
Tabla 11. Característica Poblacional……………………………………………………….. 62
Tabla 12. Variable de control Glucosa. Promedio y desviación estándar……………… 63
Tabla 13. Variable de control Insulina. Promedio y desviación estándar. …………. 64
Tabla 14. Variable de control HOMA. Promedio y desviación estándar……………… 65
Tabla 15. Valores de HOMA y variables. Regresiones. ………………………………. 66
Tabla 16. Insulino-resistencia y edad……………………………………………………… 68
Tabla 17. Insulino-Resistencia y Género ………………………………………………… 69
Tabla 18. Acné y HOMA ……………………………………………………………………… 69
Tabla 19. Insulino-Resistencia y Acné……………………………………………………… 71

ÍNDICE DE GRÁFICOS

Gráfico 1. Variable de control Edad. Porcentaje……………………………………… 61
Gráfico 2. Variable de control Glucosa. Porcentaje…………………………………… 63
Gráfico 3. Variable de control Insulina. Porcentaje …………………………………….. 64
Gráfico 4. Variable de control HOMA. Frecuencia…………………………………… 65
Gráfico 5. Variable de dependiente Acné. Porcentaje ………………………………… 67
Gráfico 7. Variables Insulino-resistencia y acné………………………………………… 70
RESUMEN

El acné es una inflamación crónica de la unidad folículo pilo sebácea que afecta a más de 40 millones de personas en todo el mundo. Es más frecuente en la pubertad y en la edad adulta joven. Por ser una patología tan prevalente, se han realizado numerosos estudios a fin de encontrar los factores etiopatogénicos; algunos sugieren relación entre los niveles de insulina y la presencia de acné. Por ejemplo en un estudio realizado por Adebamowo et al. (2005) con seres humanos, se demostró que los andrógenos endógenos aumentan los niveles séricos de IGF-1, y los niveles de IGF-1 incrementan los niveles de andrógenos. En el estudio de Ben-Amitai et al. (2011) se demuestra por primera vez que la deficiencia de los niveles séricos de IGF-1 impide la aparición de acné. Por lo tanto el propósito de este estudio es demostrar la correlación etiológica entre la insulino-resistencia y acné inflamatorio de tipo moderado a severo en adolescentes y adultos jóvenes en consulta privada dermatológica (ya que no se considera al acné una enfermedad hospitalaria) y en la Unidad Educativa Andino de Quito, en el período de abril a junio del 2016.

Objetivo: Determinar la asociación entre insulino-resistencia y acné inflamatorio de tipo moderado a severo.

Materiales y métodos: En una consulta privada dermatológica ambulatoria de Quito y en la Unidad Educativa Andino de Quito, de abril a junio del 2016, se realizó un estudio analítico de casos y controles. Se incluyeron hombres y mujeres de 16 a 25 años con y sin acné, y se determinó insulino-resistencia mediante el índice: Homeostasis Model Assessment (HOMA-IR) para cada individuo.

Resultados: Los pacientes con acné inflamatorio moderado y severo fueron diagnosticados por la especialidad de dermatología. Tanto los niveles de glucosa en
sangre en ayunas (valor p>0.05, 89.5 ± 6.99 vs. 88.75 ± 6.58) como los de insulina (valor p>0.05, 11.60 ± 9.6 vs. 9.2 ± 5.43) no tuvieron diferencias significativas entre los grupos de casos y controles. Además, no hubo una diferencia significativa entre los pacientes con los controles sanos en términos de los valores de HOMA (p >0.05, 2.62 ± 2.21 vs. 2.04 ± 1.29). Pero sí se encontró correlación entre la edad y los valores de HOMA (p<0.05).

Conclusión: Los resultados sugieren que la resistencia a la insulina no tiene un rol en la patogénesis del acné.

Palabras clave: acné, insulina, insulino-resistencia.
ABSTRACT

Acne is a chronic inflammation of the sebaceous follicle pilo unit that affects more than 40 million people worldwide. It is more common in puberty and young adulthood. Because it is a prevalent disease, there have been numerous studies focusing on finding pathogenic factors; some studies suggest a relationship between insulin levels and the presence of acne. For example, in a study by Adebamowo et al. (2005) conducted in humans, it was found that endogenous androgens increase serum levels of IGF-1, and also, IGF-1 levels increase andrógenos. Moreover, the study by Ben-Amitai et al. (2011) demonstrates for the first time that the deficiency serum IGF-1 prevents the occurrence of acné. Therefore, the purpose of this study is to demonstrate the etiological correlation between insulin resistance and inflammatory acne of moderate to severe type in adolescents and young adults in dermatologic private practice (as acne is not considered a hospital disease) and in the Unidad Educativa Andino de Quito, during the period from April to June 2016.

Aim: To determine the association between insulin resistance and inflammatory acne of moderate to severe type.

Materials and Methods: An analytical case-control study was performed in a dermatologic private practice in Quito and in the Unidad Educativa Andino de Quito, from April to June 2016. Young men and women of 16 to 25 years with and without acne were included, and insulin resistance was determined by the index: Homeostasis Model Assessment (HOMA-IR) for each individual.

Results: Patients with moderate to severe inflammatory acne were diagnosed by dermatologist specialty. Both blood glucose levels (p value> 0.05, 89.5 ± 6.99 vs. 88.75 ± 6.58) and insulin (p value> 0.05, 11.60 ± 9.6 vs. 9.2 ± 5.43) during fasting
had no significant differences between groups of cases and controls. In addition, there was no significant difference between patients with healthy controls in terms of the values of HOMA (p > 0.05, 2.62 ± 2.21 vs. 2.04 ± 1.29). But there exists correlation between age and HOMA values (p <0.05).

Conclusion: The results suggest that insulin resistance does not have a role in the pathogenesis of acne.

Keywords: acne, insulin, insulin resistance.
1. INTRODUCCIÓN

El acné es la enfermedad de la piel que se presenta con mayor frecuencia. Existe una inflamación crónica de la unidad folículo pilo sebácea y puede ser el elemento común de muchas enfermedades sistémicas o síndromes vinculados a insulino-resistencia\(^1\), afecta a más de 40 millones de personas que incluye niñas desde los 11 años y niños desde los 12 años\(^2\).

Es la octava enfermedad más prevalente en todo el mundo según estima la “Carga mundial de la enfermedad” proyecto de la OMS\(^3\). Su prevalencia es del 85% en adolescentes, pero únicamente el 10% presenta acné de intensidad moderada y el 1% acné de intensidad severa. En el género femenino existe una prevalencia de 61% con una mayor incidencia entre los 15 a 17 años, mientras en el masculino la prevalencia es del 40% a los 12 años alcanzando 95% entre los 17 a 19 años\(^4\).

El acné afecta a las regiones de la piel con las más densas poblaciones de folículos sebáceos que incluyen la cara, parte superior del pecho y la espalda\(^5\).

La patogénesis del acné se explica por algunos mecanismos, estos son:

1) La hiperplasia de las glándulas sebáceas con un aumento en la producción de sebo, más la alteración de su composición.

2) La hiperqueratinización de los conductos pilo-sebáceos, que causan microcomedones, dichos factores estimulados por hormonas (andrógenos).

3) La colonización de *Propionibacterium acnés*.

4) Y una inflamación dérmica periglandular\(^4,6\).
El micro-comedón surge secundario a la proliferación de queratinocitos a nivel ductal con una oclusión del infundíbulo y la subsiguiente retención de sebo, se ha postulado que es la lesión primaria en el acné. Algunos estudios de piel normal en pacientes con tendencia al acné y con lesiones tempranas de acné sugieren que la inflamación puede preceder a la formación de micro-comedones y puede servir como un disparador para la hiperqueratinización que conduce a la oclusión folicular.

Existen varias hormonas involucradas en la patogenia del acné: andrógenos, estrógenos, hormona del crecimiento, insulina, factor de crecimiento insulínico tipo 1 (IGF-1), hormona liberadora de corticotropina, hormona adrenocorticotrópica, melanocortinas, progesterona y glucocorticoides.

La hormona del crecimiento y la IGF-1 desempeñan un muy importante papel en la homeostasis epidérmica. La hormona de crecimiento induce la síntesis hepática y secreción de IGF-1, el mediador del crecimiento. Tanto la insulina, como la hormona de crecimiento e IGF-1 tienen distintos efectos en el crecimiento y diferenciación del sebocito. El efecto de IGF-1 es mayor sobre la proliferación de queratinocitos, y tiene un efecto similar al de la insulina en la diferenciación de estos.

En un estudio realizado por Adebamowo CA. et al. (2005) con seres humanos, se demostró que los andrógenos endógenos aumentan los niveles séricos de IGF-1, y los niveles de IGF-1 incrementan los niveles de andrógenos; un círculo vicioso es establecido y en última instancia, incrementa la producción de sebo. Mientras en el
estudio de Ben-Amitai D. et al. (2011) se demuestra por primera vez que la deficiencia de los niveles séricos de IGF-1 impide la aparición de acné14.

Varias observaciones clínicas apuntan a un papel importante de los andrógenos en la patogénesis del acné. Los andrógenos desempeñan un papel esencial aumentando el tamaño de las glándulas sebáceas y estimulando la producción de sebo, así como en la estimulación de la proliferación de queratinocitos en el conducto de la glándula sebácea.

El acné comienza a desarrollarse en el momento de la adrenarquia, cuando la glándula suprarrenal comienza a producir grandes cantidades de drohidroepiandrosterona sulfatada (DHEA-S), un precursor para la testosterona15. En la pubertad se presenta una elevación de andrógenos ováricos y testiculares, lo que ocasiona una hiperproducción de insulina y de IGF-1 circulante, generando un estímulo en la producción de sebo, un aumento en la proliferación de queratinocitos, una alteración en la apoptosis y una disminución transitoria de la sensibilidad a la insulina aumentando está en el plasma (insulino-resistencia)16,17.

La insulino-resistencia es la incapacidad de la insulina para mantener la homeostasis glucídica por resistencia a la acción de la hormona en los tejidos periféricos (hígado, músculo estriado, tejido adiposo y el endotelio vascular), lo que conlleva a una hiperinsulinemia compensatoria. Esta disminución de la capacidad de acción de la hormona insulina trae como consecuencia una hiperinsulinemia compensatoria que puede ser compatible con una glucemia plasmática normal18.

14 Estudio de Ben-Amitai D. et al. (2011) se demuestra por primera vez que la deficiencia de los niveles séricos de IGF-1 impide la aparición de acné.

15 Varias observaciones clínicas apuntan a un papel importante de los andrógenos en la patogénesis del acné. Los andrógenos desempeñan un papel esencial aumentando el tamaño de las glándulas sebáceas y estimulando la producción de sebo, así como en la estimulación de la proliferación de queratinocitos en el conducto de la glándula sebácea.

16 El acné comienza a desarrollarse en el momento de la adrenarquia, cuando la glándula suprarrenal comienza a producir grandes cantidades de drohidroepiandrosterona sulfatada (DHEA-S), un precursor para la testosterona.

17 En la pubertad se presenta una elevación de andrógenos ováricos y testiculares, lo que ocasiona una hiperproducción de insulina y de IGF-1 circulante, generando un estímulo en la producción de sebo, un aumento en la proliferación de queratinocitos, una alteración en la apoptosis y una disminución transitoria de la sensibilidad a la insulina aumentando está en el plasma (insulino-resistencia).

18 La insulino-resistencia es la incapacidad de la insulina para mantener la homeostasis glucídica por resistencia a la acción de la hormona en los tejidos periféricos (hígado, músculo estriado, tejido adiposo y el endotelio vascular), lo que conlleva a una hiperinsulinemia compensatoria. Esta disminución de la capacidad de acción de la hormona insulina trae como consecuencia una hiperinsulinemia compensatoria que puede ser compatible con una glucemia plasmática normal.
Tanto la insulina como IGF-1 inhiben la síntesis hepática de globulina transportadora de hormonas sexuales (SHBG) lo que origina que la testosterona quede libre y por acción enzimática de la 5-α-reductasa que la transforma en 5-α-deshidrotestosterona (5-α-DHT), actúa sobre el órgano diana del folículo pilosebáceo y produce una mayor secreción sebácea. La 5-α-DHT y la testosterona estimulan directamente el sebocito, modifican la composición del sebo y hacen más gruesa la queratina del epitelio del conducto pilosebáceo, favoreciendo la retención del sebo dentro del folículo.4,19 \textbf{Figura 1.}

\begin{center}
\includegraphics[width=\textwidth]{figura1.png}
\end{center}

\textbf{Figura 1.} Fisiopatología del acné. (Realizado por Gabriela Pozo G.)
En un estudio de casos y controles realizado por Del Prete, et al. (2012), se encontró una diferencia entre los niveles de insulina en hombres con acné y pacientes sin acné del mismo sexo. Sin embargo en otros estudios, como en el de casos y controles realizado por Domínguez-Ugalde, et al. (2015) se reportó niveles de insulina similares en pacientes con acné en comparación con los controles sanos. Al igual que en el estudio de casos y controles de Balta I. et al. (2015), donde no se encuentran diferencias significativas entre los pacientes con acné post-adolescente (>25 años) y los sujetos de control.

Por lo que se encontró necesario conocer si existe una diferencia entre los niveles de insulina en pacientes adolescentes con y sin acné y si esta juega un importante papel durante la pubertad en la patogénesis del mismo.

2. REVISIÓN BIBLIOGRÁFICA

2.1 LA PIEL, GLÁNDULA SEBÁCEA Y SEBO

La piel es el mayor órgano endocrino del cuerpo humano. Tiene el potencial de proteger al organismo al aislarlo del medio que lo rodea, de proporcionar una ventana en el paciente, de excretar sustancias por glándulas como la glándula sebácea que es considerada el "cerebro de la piel" y una importante glándula endocrina cutánea, encargada de la producción de sebo, líquido encargado de la hidratación y lubricación de la piel y constituido por glicéridos y ácidos grasos libres en un 57,5%, ésteres céreos 26%, esculeno 12%, ésteres del colesterol 3% y colesterol 1,5%; que se produce de forma continua. Se han realizado numerosas investigaciones sobre la correlación entre las condiciones dermatológicas y las alteraciones metabólicas como la Resistencia a la...
Insulina (RI), con el fin de conocer la realidad con respecto a esta afección tan frecuente que otorgaría una herramienta útil para establecer protocolos terapéuticos que puedan optimizar los tratamientos en las consultas dermatológicas.1,2,3,4,5

2.2 ACNÉ

2.2.1 CONCEPTO

El acné es una inflamación crónica de la unidad folículo pilo-sebácea, forma parte del estado seborreico constitucional y aparece desde la adrenarquia. Aunque el acné no es una enfermedad que amenaza la vida, se asocia con una baja autoestima, baja calidad de vida y depresión.1,3

Es la enfermedad más común de la piel, aparece en un 85% de adolescentes. Persiste hasta la edad adulta en aproximadamente el 12% al 14% de los casos con implicaciones psicológicas y sociales de alta gravedad. Presenta una variedad de daños potenciales y se considera a menudo de manera incorrecta como un trastorno simple y autolimitado. Su frecuencia es mayor en el sexo masculino y comúnmente se encuentra en todas las áreas del cuerpo con altas concentraciones de glándulas pilosebáceas en particular la cara, la espalda y el pecho. Se puede presentar al principio una fase de pre-acné, que se caracteriza por la presencia de filamentos seborreicos y micro-comedones, posterior se puede observar lesiones que van desde no inflamatorias como los comedones abiertos o cerrados (puntos negros y blancos) a lesiones inflamatorias como pápulas, pústulas y nódulos, que dependiendo de su número se subdividen en acné inflamatorio leve, moderado e intenso. Las lesiones inflamatorias de acné pueden dar lugar a cicatrices permanentes, la gravedad de la que puede depender de los retrasos en el tratamiento de pacientes con acné.1,3,4,10,22
2.2.2 EPIDEMIOLOGÍA

El acné vulgar es una enfermedad multifactorial de la unidad pilosebácea que al ser tan prevalente, numerosos esfuerzos se realizan a nivel mundial a fin de entender los factores de etiología y patogenia, agentes implicados y en mejoras para las opciones terapéuticas².

Se estima afecta al 9,4% de la población global, 85% de los adolescentes, convirtiéndola en la octava enfermedad más prevalente en todo el mundo. Incluye niñas desde los 11 años y niños desde los 12 años, siendo los varones los más frecuentemente afectados, con formas más severas de la enfermedad, aunque estudios recientes hablan de edades de inicio más tempranas relacionadas a la pubertad precoz. De acuerdo a su gravedad el 10% va a ser de intensidad media y el 1% de intensidad severa y muy desfigurante²,³,⁴.

Según la edad y sexo su prevalencia es de 61% en niñas de 12 años con una incidencia máxima entre los 15 a 17 años. En los niños la prevalencia es del 40% a los 12 años y del 95% a los 16 años, con máxima frecuencia entre los 17 y 19 años¹⁰.

2.2.3 CLASIFICACIÓN

Se distinguen tres fases en el acné. La primera conocida como acné de grado I, comprende pápulas y pústulas foliculares y superficiales, se lo denomina también acné leve⁴ Figura 2.
Figura 2. Acné de grado I. Comedones cerrados y algunas pápulo-pústulas superficiales en mejillas y mentón.

La segunda fase o acné de grado II se presenta en el 10% de adolescentes, en esta fase se distinguen pústulas foliculares profundas que se presentan por paso del contenido folicular en la dermis y que junto a los comedones, pápulas y pústulas superficiales de la primera fase evolucionan a nódulos indurados⁴ Figura 3.

Figura 3. Acné de grado II. Comedones, pápulas y pústulas superficiales.
Los nódulos caracterizan a la tercera fase o acné grado III. Ésta y la segunda fase constituyen el acné de intensidad intermedia\(^4\) **Figura 4.**

Figura 4. Acné de grado III. Pápulas eritematosas, pústulas y discretos nódulos.

Al no presentarse tratamiento y continuar la evolución se produce la cuarta fase o acné de grado IV en el 1\% de adolescentes, donde existe una reacción inflamatoria alrededor del contenido folicular que se encuentra en la dermis profunda generando elementos nódulo-quísticos\(^4\).

Según el consenso de la Academia Americana en 1990 se resolvió solamente 2 formas de acné, el no inflamatorio o comedoniano y el acné inflamatorio, que presenta pápulas, pústulas y nódulos y que dependiendo del número de elementos que tenga el paciente, cada forma se subdivide en leve, moderada o intensa\(^2,4\).

Tabla 1.
CLASIFICACIÓN DEL ACNÉ

<table>
<thead>
<tr>
<th>SEGÚN LA INTENSIDAD</th>
<th>SEGÚN SU FASE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACNÉ NO INFLAMATORIO O</td>
<td>Comedones abiertos y cerrados, ocasionalmente se</td>
</tr>
<tr>
<td>COMEDONIANO</td>
<td>observan pápulas.</td>
</tr>
<tr>
<td>ACNÉ INFLAMATORIO</td>
<td>Acné Grado I</td>
</tr>
<tr>
<td>LEVE</td>
<td>Pápulas y pústulas foliculares y superficiales.</td>
</tr>
<tr>
<td>MODERADO</td>
<td>Acné Grado II</td>
</tr>
<tr>
<td></td>
<td>Pústulas foliculares profundas que junto con comedones,</td>
</tr>
<tr>
<td></td>
<td>pápulas y pústulas superficiales evolucionan a nódulos</td>
</tr>
<tr>
<td></td>
<td>inmaduros.</td>
</tr>
<tr>
<td></td>
<td>Acné Grado III</td>
</tr>
<tr>
<td></td>
<td>Nódulos maduros</td>
</tr>
<tr>
<td>SEVERO</td>
<td>Acné Grado IV</td>
</tr>
<tr>
<td></td>
<td>Reacción inflamatoria que genera elementos nódulo-qui</td>
</tr>
<tr>
<td></td>
<td>.stdouticos.</td>
</tr>
</tbody>
</table>

Tabla 1. Clasificación del acné. (Realizado por Gabriela Pozo G).

En un estudio publicado en la revista dermatológica: Indian J Dermatol Venereol Leprol (2009), clasifican al acné en 4 grados dependiendo de las lesiones que se pueden observar:

Grado 1. Comedones y pústulas ocasionales.
Grado 2. Pápulas, comedones y algunas pústulas.
Grado 3. Pústulas predominantemente, nódulos y abscesos.
Grado 4. Principalmente quistes, abscesos y cicatrices.

2.2.4 ETIOPATOGENIA

2.2.4.1 FACTORES ASOCIADOS AL DESARROLLO DEL ACNÉ

La patogenia del acné es multifactorial. Sus principales causas son:
2.2.4.1.1 **Hiperplasia sebácea**

La hiperplasia sebácea y el incremento de la cantidad de secreción de sebo, son producidos por la estimulación androgénica en los sebocitos, al aumento de la expresión de 5α-reductasa, y a la hiperreactividad de la glándula. Pero no solo se produce un incremento de la secreción de sebo; por acción hormonal se genera también una alteración de la composición y calidad del sebo que produce de forma primaria microcomedones\(^4,5,8,31\).

2.2.4.1.2 **Hiperproliferación de los queratinocitos foliculares**

La hiperproliferación de los queratinocitos se produce por el cambio en el patrón normal de queratinización del infrainfundíbulo, por influencia de andrógenos, colonización de bacterias, producción local de citoquinas y también de la composición lipídica del sebo\(^4,5,8,31\).

2.2.4.1.3 **Colonización bacteriana por *Propionibacterium acnés***

Propionibacterium acnés es el principal agente vinculado con el acné, que se encuentra en las zonas con mayor cantidad de folículos sebáceos y prolifera en mayor cantidad durante la pubertad. Tanto lesiones inflamatorias como no inflamatorias presentan están la colonización de ésta bacteria, en más del 80% de los casos\(^4,5,8,31\).

2.2.4.1.4 **Inflamación y desarrollo de la respuesta inmunitaria**

Tanto bacterias como sus productos contribuyen al desarrollo de citoquinas e inflamación. Por este motivo se activan células linfoides específicas, en especial IL-1\(\alpha\) que contribuye al desarrollo de las lesiones en el acné\(^4,5,8,31\).
2.2.4.2 HORMONAS Y ACNÉ

Varias hormonas endógenas juegan un papel importante en la patogénesis del acné. Las principales hormonas implicadas son: andrógenos, estrógenos, progesterona, hormona del crecimiento (GH), insulina, factor de crecimiento insulínico tipo 1 (IGF-1), hormona liberadora de corticotropina, hormona adrenocorticotrópica, melanocortinas y glucocorticoides8,9. Por lo tanto, en la práctica clínica es importante evaluar los niveles séricos de estas hormonas y tratar a los pacientes para evitar trastornos endocrinos graves a una edad temprana9 Tabla 2.

<table>
<thead>
<tr>
<th></th>
<th>ANDRÓGENOS</th>
<th>GH</th>
<th>INSULINA</th>
<th>IGF-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Actúa sobre crecimiento y diferenciación de sebocitos</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Aumenta el tamaño de glándulas sebáceas</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Estimula producción de sebo y sudor</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Estimula proliferación de queratinocitos</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Influye metabolismo de andrógenos a nivel adrenal y gonadal</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Mediador principal de los efectos de la GH</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Induce síntesis hepática de IGF-1</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>

Tabla 2. Principales hormonas implicadas en acné y sus funciones. (Realizado por Gabriela Pozo G.)

2.2.4.2.1 ROL DE LA IGF-1 EN EL ACNÉ

El acné inflamatorio común se produce cuando se elevan los andrógenos en la pubertad. Algunas investigaciones sugieren que el exceso de insulina compensatoria agrava de forma independiente el acné y cada vez hay más pruebas que apoyan la
interacción de la hormona del crecimiento (GH), la insulina, y el factor de crecimiento insulínico tipo 1 (IGF-1) durante la pubertad, y que puede tener un papel causal en la patogénesis del acné, influyendo en el metabolismo de los andrógenos a nivel adrenal y gonadal. La aparición de acné como parte de varios síndromes asociados con la resistencia a la insulina también proporciona evidencia a favor de correlación entre IGF-1 y acné11. En varios estudios se ha visto que bajos niveles del índice glicémico mejoran la gravedad del acné al igual que la sensibilidad a la insulina en estas personas. Por lo tanto, la insulina y el metabolismo de los carbohidratos pueden tener un rol en la etiología y severidad del acné5.

La hormona de crecimiento (GH) es secretada por la hipófisis anterior, su liberación se produce de forma irregular y cíclica e induce la síntesis hepática y secreción de IGF-1 que es un mediador principal de los efectos de la hormona del crecimiento (GH) y también se encarga de estimular el crecimiento del cuerpo a nivel sistémico y de promover sus efectos de crecimiento en casi todas las células corporales. Las hormonas mencionadas y la insulina presentan efectos en el crecimiento y la diferenciación de los sebocitos, que junto con los andrógenos participan en el aumento del tamaño de las glándulas sebáceas, la estimulación de la producción de sebo y sudor, así como en la estimulación de la proliferación de queratinocitos en los ductos sebo-glandulares y del acro infundíbulo. La base del acné por lo tanto reside en la unión de la acción hormonal y el metabolismo de los lípidos en la diferenciación de sebocitos. El acné no se desarrollará sin sebo, y el sebo no se producirá sin estimulación androgénica de sebocitos8,10,11.
El sistema del factor de crecimiento similar a la insulina (IGF) incluye IGF-1, IGF-2, y la proinsulina, al igual que tres receptores de IGF (receptor IGF-1, 2 y receptor de insulina) y seis proteínas de unión a IGF (IGFBP1 - IGFBP6). Este sistema participa en diferentes funciones como la proliferación celular, la síntesis de proteínas, la homeostasis de carbohidratos y el metabolismo óseo.

Los factores dietéticos aumentan los niveles de IGF1 sintetizados a partir de hígado. El IGF1 incrementa la señalización de los receptores de andrógenos produciendo un incremento en la expresión de FGF7 (factor de crecimiento de queratinocitos) y FGF10 (factor 10 de crecimiento de fibroblastos), los ligandos de FGFR2b (factor del receptor 2 de crecimiento de fibroblastos) señalizados en los queratinocitos. La activación de IGF1R y FGFR2b resulta en la producción de una cascada de señalización que activa PI3/Akt (cascada de señalización intracelular que regula el ciclo celular), MAPK (proteínas quinasas activadas por mitógenos), y fosfolipasa C (enzima hidrolasa), resultando en un incremento de los tres factores responsables del acné. (T en la figura representa la testosterona)11 Figura 5.
Con el inicio de la pubertad, hay un aumento en los niveles de andrógenos plasmáticos como ya se ha mencionado, estos estimulan el estroma perifolicular de infundíbulo y las glándulas sebáceas. Existe aumento de expresión del factor 10 de crecimiento de fibroblastos y del factor de crecimiento de queratinocitos (FGF10 y FGF7) respectivamente y a través de efecto paracrino, se unen en el factor del
receptor 2 de crecimiento de fibroblastos (FGFR2b) en los sebocitos y en los queratinocitos infundibulares. La activación del FGFR2b resulta en el aumento de expresión de IL-1α, mediador clave en la respuesta inflamatoria10,11 \textbf{Tabla 3}.

\begin{center}
\begin{tabular}{|c|c|}
\hline
Activación de FGFR2b & Incremento de expresión de IL-1α \\
\hline
Incremento expresión de Shh & Up regulación de ICAM-1, E-selectinas, VCAM1, migración celular de CD4 y macrófagos \\
\hline
Señal Shh-Ptch-Smo-Gli & Hiperproliferación de queratinocitos K6 y K16 \\
\hline
Diferenciación de sebocito terminal & Formación de comedón \\
\hline
Up regulación de MC5R & Lipogénesis \rightarrow ACNÉ \\
\hline
\end{tabular}
\end{center}

\textbf{Tabla 3}. La activación de FGFR2b resulta en el incremento de la lipogénesis y en la formación del comedón11. (Tomado de Indian Journal of Dermatology, Venereology and Leprology – Role of insulin resistance and diet in acne y traducido por Gabriela Pozo G.)

La glándula sebácea presenta receptores para el factor de crecimiento epidérmico (EGF), para el IGF-1 y para andrógenos. Esto da la razón por la cual individuos con el mal funcionamiento de los receptores de andrógenos no desarrollan acné4,5.

Se ha demostrado que los niveles en suero elevados del IGF-1 se correlacionan con la producción excesiva de sebo y acné. Tanto IGF-1 como la insulina estimulan por inducción del elemento regulador de esteroles factor de transcripción 1 de unión (SREBP 1) la lipogénesis de las glándulas sebáceas10.
El IGF-1 se sintetiza en la piel, principalmente por fibroblastos y melanocitos dérmicos y posiblemente, por los queratinocitos de la capa granulosa. Se encontró que la expresión de ARN mensajero del receptor del IGF-1 fue el más fuerte en las células basales de las glándulas sebáceas y los sebocitos inmaduros, mientras que la expresión de la proteína del receptor del IGF-1 fue uniforme e intensa en todas las regiones de la glándula. Este patrón de expresión sugiere un papel para IGF-1 como un mitógeno sebáceo y morfógeno. La insulina es un mitógeno cuando se une al receptor de insulina A (IR-A) o receptor del factor insulínico tipo 111.

La producción de sebo da inicio durante la pubertad y corresponde a los picos en los niveles de la hormona de crecimiento y de IGF-1. Durante la pubertad, también hay un descenso transitorio de la sensibilidad a la insulina. El acné comienza alrededor del mismo tiempo que el aumento gradual de la insulina en plasma, la preadolescencia incrementa el índice de masa corporal (IMC) e incrementa las concentraciones de IGF-1. La incidencia del acné corresponde más estrechamente con el curso cambiante de la insulina y los niveles de IGF-1 que de los cambios en los andrógenos plasmáticos. Esto se debe a la insulina y los picos de IGF-1 durante la pubertad tardía. El acné generalmente se resuelve para este tiempo, a pesar de que los andrógenos circulantes se mantienen sin cambios16.

En el estudio Del Pino Flores et al. (2013) se menciona que en mujeres y hombres con acné persistente, las concentraciones elevadas del IGF-1 junto con los andrógenos se correlacionan con el número de lesiones. Mientras en el estudio de Bodo C. Melnik et al. (2009) se menciona que el acné es una enfermedad
dependiente de andrógenos y el aumento de los niveles séricos de IGF-1 se han observado en mujeres y hombres adultos con acné. También se correlaciona a los niveles séricos de IGF-1 en las mujeres con acné con el número de lesiones causadas por este, los niveles séricos de dihidrotestosterona (DHT) y sulfato de dehidroepiandrosterona (DHEAS)8,10.

2.2.4.2.2 ROL DE LA DHEAS EN EL ACNÉ

La hiperqueratosis es el primer evento identificado en el desarrollo del acné. En su etiología intervienen en primer lugar los andrógenos. Cuando los niños entran en la adrenarquía, comienzan a producir dehidroepiandrosterona- sulfatada (DHEA-S) un andrógeno de potencia media en las cápsulas suprarrenales que es precursor para la testosterona. Éste se transformará por la acción de la 3-β-hidroxiestroide deshidrogenasa (3-β-HSD) en androstenediona y ésta a su vez, se convertirá en testosterona por la acción de la 17-β-hidroxiestroide deshidrogenasa (17-β-HSD)4,5.

Si la testosterona no se liga a la globulina transportadora de testosterona (TeBG), también llamada globulina transportadora de hormonas sexuales (SHBG) quedará en el suero libre y por acción enzimática de la 5-a-reductasa tipo 1, se transformará en 5-a-deshidrotestosterona (5-a-DHT)4.

2.2.4.2.3 ROL DE LA 5-a-DHT EN EL ACNÉ

La 5-a-DHT actúa sobre el folículo pilo-sebáceo condicionando mayor secreción sebácea, se encarga de igual manera de modificar la composición del sebo y de engrosar la queratina del epitelio del conducto pilo-sebáceo para favorecer la
retneción del sebo dentro de la unidad folicular. La testosterona libre y la 5-a-DHT estimulan especialmente los sebocitos que se encuentran en la cara para la producción de grasa⁴.

El hiperandrogenismo se asocia con un aumento de la producción de sebo y el desarrollo del acné severo. La piel propensa al acné presenta más receptores de andrógenos y mayor actividad de 5α-reductasa que la piel no involucrada. Al contrario, los anti-andrógenos disminuyen la síntesis de lípidos sebáceos y mejoran el acné¹⁵. El acné se produce entonces en los adolescentes cuando la GH es secretada al máximo y los niveles de IGF-1 son los más altos. El aumento de la actividad de la 5-alfa-reductasa aumenta la conversión de testosterona a dihidrotestosterona en la piel¹¹ **Tabla 4.**

<table>
<thead>
<tr>
<th>Leche</th>
<th>IGF-1</th>
<th>Estimula 5α reductasa en dieta alga en glucosa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Síntesis de andrógenos Adrenales y Gonadales</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Transducción de la señal de Receptor de Andrógenos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Proliferación de Sebocitos</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lipogénesis</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acné</td>
</tr>
</tbody>
</table>

Tabla 4. IGF-1, andrógenos y acné¹¹. (Tomado de Indian Journal of Dermatology, Venereology and Leprology – Role of insulin resistance and diet in acne y traducido por Gabriela Pozo G.)

La inflamación puede ser un fenómeno primario o un fenómeno secundario. La expresión de interleucina 1-alfa ha sido identificada en micro-comedones, y tiene un
papel en el desarrollo del acné. El acné presenta predisposición genética condición que se hereda en un patrón autosómico dominante con penetrancia incompleta\(^5\).

En estudios de folículos de piel de pacientes con y sin acné se demostró la presencia de proliferación de marcadores de inflamación antes de la formación de micro-comedones y de un aumento de células T CD3+, CD4+, IL-1 una citoquina pro-inflamatoria, y de los marcadores vasculares VCAM y E-selectina. La IL-1\(\beta\) estimula la proliferación de queratinocitos lo que favorece la formación de micro-comedones mientras la expresión de VCAM y E-selectina es importante para la inmovilización y migración de células inflamatorias de la circulación a la dermis\(^7,24\). \textbf{Figura 6}.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figura6.png}
\caption{Los mediadores de la inflamación en el acné vulgar\(^7\). (Tomado de Practical Dermatology – The Role of Inflammation in Acne Vulgaris y traducido por Gabriela Pozo)}
\end{figure}

En las lesiones de acné inflamatorias y en piel normal se mostró que existen genes cuya expresión está aumentada en las lesiones implicadas en procesos inflamatorios.
Los principales genes incluyen metaloproteínasas de la matriz MMP-1 y MMP-3, así como la citoquina pro-inflamatoria IL-8 y CXCL -2. Este hallazgo determinó la correlación entre mediadores de la inflamación y P. acné7.

2.2.4.2.4 ROL DE LOS LÍPIDOS EN EL ACNÉ

Los lípidos producidos por las glándulas sebáceas participan en una variedad de roles como en la transducción de señales y vías biológicas. Los lípidos de las glándulas sebáceas presentan propiedades pro-y anti-inflamatorios directos, mientras que la inducción de las vías de 5-lipoxigenasa y de la ciclooxigenasa-2 en sebocitos conducen a la producción de lípidos pro-inflamatorios. Los folículos pilosebáceos en las lesiones de acné están rodeados por los macrófagos que expresan TLR2 en su superficie, su presencia conduce a la activación del factor nuclear de transcripción y por lo tanto la producción de citosinas22.

2.3 LA INSULINA Y LA PIEL

2.3.1 CONCEPTO

La insulina es una hormona anabólica producida por las células β de los islotes de Langerhans del páncreas que constituye la principal hormona reguladora de los mecanismos de homeostasis en el metabolismo de los glúcidos y de los lípidos. Entre sus funciones, una de las principales es la disminución de la glucemia, al disminuir la gluconeogénesis y la glucogenolisis hepática, además de facilitar el transporte y entrada de la glucosa a la célula del tejido muscular estriado y del tejido adiposo, así como la entrada de ácidos grasos y aminoácidos a través de la membrana celular para
la obtención de energía; al suceder esto aumenta la expresión y la acción de las enzimas que catalizan la síntesis de glucógeno, lípidos y proteínas8,18.

La unidad pilosebácea a partir de la pubertad y por la acción de varias hormonas da comienzo a sus funciones. La insulina tiene a la piel como uno de sus órganos blanco donde realizará sus efectos anabólicos. En condiciones normales tiene un importante papel en la homeostasis y la fisiología de la piel al regular el equilibrio entre la proliferación y diferenciación de los queratinocitos, una necesidad previa para la formación de la estructura epidérmica. Mientras que bajo condiciones de inflamación crónica, como acné o psoriasis, elevados niveles de citoquinas pro-inflamatorias se activan, lo que induce a resistencia a la insulina (RI), bloqueando la diferenciación y aumentando la proliferación de queratinocitos basales. **Tabla 5.** Ademáš, la insulina se ha demostrado que disminuye una proteína de unión de IGF-I, lo que puede facilitar el efecto de IGF-I sobre la proliferación celular1,8,25.

<table>
<thead>
<tr>
<th>ENFERMEDADES DE LA PIEL E INSULINO-RESISTENCIA (IR)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONDICIONES FUERTEMENTE ASOCIADAS CON IR</td>
</tr>
<tr>
<td>Acantosis nigricans</td>
</tr>
<tr>
<td>Acné</td>
</tr>
<tr>
<td>Psoriasis</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Tabla 5. Enfermedades de la piel asociadas con insulino-resistencia1. (Tomado de The Scientific World Journal – Insulin Resistance and Skin Diseases y traducido por Gabriela Pozo G.)

34
2.3.2 ENFERMEDADES DE LA PIEL FUERTEMENTE ASOCIADAS CON LA INSULINA Y LA INSULINO-RESISTENCIA.

2.3.2.1 PSORIASIS Y SÍNDROME METABÓLICO EN RELACIÓN CON INSULINO-RESISTENCIA.

La psoriasis es una enfermedad inflamatoria crónica de causa hereditaria y multifactorial, que afecta 1 - 3% de la población. Se caracteriza por brotes sucesivos de placas eritematosas – descamativas, localizadas en superficies extensoras de la piel y cuero cabelludo31,32.

El síndrome metabólico se define como el conjunto de anormalidades metabólicas que aumentan el riesgo de desarrollar enfermedad cardiovascular, cerebrovascular y diabetes mellitus tipo 232.

En múltiples estudios como el realizado por Ramos E. et al. (2008) sobre los Factores de Riesgo Cardiovasculares en pacientes con Psoriasis, se concluye la coexistencia entre el síndrome metabólico, insulino-resistencia y psoriasis31. En otro estudio de casos y controles realizado por Vásquez CA. (2014) sobre la Prevalencia de Síndrome Metabólico en pacientes con Psoriasis, se menciona que además de las medidas iniciales como dieta, ejercicio, control de lípidos y de presión arterial, la utilización de medicamentos como: metformina, tiazolinedionas y acarbosa disminuyen el riesgo de progresión de la alteración de la tolerancia de glucosa, en ayunas, e intolerancia a la glucosa a diabetes tipo 2, y recalca el uso de metformina.
para reducción de la progresión de intolerancia a la glucosa en aproximadamente 31%; y una reducción de 17% de síndrome metabólico32.

\subsection*{2.3.2.2 ACANTOSIS NIGRICANS, ACROCORDONES Y DIABETES.}

La importancia del sobrepeso y la obesidad va más allá de los trastornos en la imagen corporal; en la población infantil el sobrepeso es uno de los problemas de salud pública más graves del siglo XXI. Se estima que en 2010 existieron 42 millones de niños con sobrepeso a nivel mundial. Si se deja al sobrepeso y obesidad sin la correcta intervención del personal de salud, pueden desencadenar en una serie de trastornos severos de salud, como resistencia a la insulina, diabetes mellitus, dislipidemia, hipertensión arterial, síndrome metabólico, disfunción hepática, hiperuricemia, entre otros33.

La Acantosis nigricans es la presencia de pliegues hiperpigmentados en las zonas de flexión33. Mientras los acrocordones son tumores benignos, pediculados, que aparecen con frecuencia en las zonas de fricción como, cuello, axilas, zona infra-mamaria y región inguinal; su fisiopatología no es muy clara, pero se menciona que la hiperinsulinemia provoca la sobreexpresión del receptor del Epidermal Growth Factor (EGF-R) y elevación de la producción del Transforming-Growth Factor (TGF)-b 1. Estos efectos disminuyen la síntesis de IGFBP-3, factor que inhibe el crecimiento celular dentro del queratinocito, y al disminuir este receptor aumenta la disponibilidad del IGF-1, factor que favorece la proliferación fibrocítica34.

Las dos patologías, tanto Acantosis nigricans como acrocordones, se han relacionado con resistencia a la insulina y trastornos metabólicos33. Además varios artículos
señalan la asociación entre la diabetes mellitus tipo 2 y acrocordones; por ser estos la segunda complicación más común en los pacientes diabéticos con una prevalencia del 44%.

2.3.2.3 SÍNDROME DE OVARIO POLIQUÍSTICO
El acné puede ser un componente común de muchas enfermedades sistémicas o síndromes que también suelen estar vinculadas a resistencia a la insulina. Este es el caso del síndrome de ovario poliquístico (SOP), condición que requiere evaluaciones metabólicas y hormonales al igual que medicación de sensibilización para la insulina. En este contexto, el SOP representa el escenario clínico más común y bien conocido de resistencia a la insulina y acné. De hecho, SOP, que por lo general se caracteriza por hiperandrogenismo, anovulación crónica, y poliquistosis ovárica, muestra acné en el 70% de los casos, de los cuales de 19% a 37% de mujeres presenta acné de tipo moderado a severo. En particular, el acné que se origina o persiste en la edad adulta y es refractaria a los tratamientos convencionales debe plantear la sospecha de síndrome de ovario poliquístico subyacente. Las mujeres con SOP tienen anormalidades en el metabolismo de los andrógenos y los estrógenos y en el control de la producción de andrógenos; Por otra parte, el SOP se asocia también con insulino-resistencia periférica e hiperinsulinemia.

2.3.3 INSULINA, IGF-1 Y ACNÉ
Desde que los receptores de insulina y de factor de crecimiento insulínico tipo 1 se expresan en los queratinocitos epidérmicos. La hiperinsulinemia puede conducir a un aumento de la proliferación de los queratinocitos basales dentro del conducto de la
unidad del folículo pilosebáceo induciendo fallidamente a la diferenciación terminal de los corneocitos foliculares y participando así activamente en la patogénesis del acné.

Además, la insulina junto con el IGF-1 promueven una alta producción de sebo estimulando la lipogénesis de las glándulas sebáceas por inducción de la respuesta de la proteína-1 de esteroles (SREBP-1) que regula de preferencia a los genes para la síntesis de ácidos grasos, estimulan la síntesis de andrógenos suprarrenales e inhiben la producción hepática de la globulina fijadora de hormonas sexuales (SHBG), lo que permite un aumento de la biodisponibilidad de andrógenos.

En experimentos con animales se observó que los andrógenos inducen rápidamente la expresión de SREBP-1 con lo cual se ha demostrado la importancia de IGF-1 para la síntesis de lípidos en los sebocitos y en la proliferación de queratinocitos. La SREBP-1c aumenta en respuesta a la señalización de insulina y se encuentra implicada en el desarrollo de la resistencia a la misma y a la regulación de los componentes de la vía de señalización de la insulina.

Las melanocortinas (ACTH y MSH) regulan la lipogénesis en los sebocitos que expresan tanto receptor de melanocortina-1 (MC-1R) y MC-5R que es un marcador para la diferenciación de sebocitos. Los sebocitos y queratinocitos en los ductos de las glándulas de la piel implicada en acné mostraron una muy intensa expresión de los receptores (MC-1R) a diferencia de la piel normal.

También el IGF-1 es capaz de estimular la síntesis de 5α reductasa, de andrógenos suprarrenales y gonadales, la transducción de señales del receptor de andrógenos, la
proliferación de sebocitos, la producción de sebo, y la lipogénesis, afectando el desarrollo del acné. De hecho IGF-1 es el promotor del crecimiento de la pubertad, juega un papel central en el acné e induce hiperandrogenismo. Estudios sugieren que la dieta con baja carga glicémica es capaz de mejorar el acné. Además, hay evidencia de que una dieta baja carga glucémica puede reducir el tamaño de las glándulas sebáceas, disminuir la inflamación, y disminuir la expresión de la interleucina-8 proinflamatoria, todos los que muestran una influencia positiva en el curso clínico, la intensidad del acné y la producción de sebo. Clínicamente se ha demostrado que IGF-1 se correlaciona con el número de lesiones de acné en mujeres adultas y los niveles más altos significativamente de IGF-1 se han descrito en mujeres con acné en comparación con los sujetos control o que no presentan acné1,16.

La hiperinsulinemia se ha implicado en la fisiopatología del acné debido a su asociación con el aumento de la biodisponibilidad de andrógenos y las concentraciones libres de factor de crecimiento insulínico tipo 1 (IGF-I) como se mencionó anteriormente. El papel de la insulina en el desarrollo del acné es apoyado por la alta prevalencia del acné en las mujeres con síndrome de ovario poliquístico (SOP), una condición asociada con la resistencia a la insulina, hiperinsulinemia e hiperandrogenismo8,25.

La sensibilidad a la insulina y la globulina transportadora de hormonas sexuales tienen una relación directamente proporcional, ya que cuando hay resistencia a la insulina aumenta el índice de andrógenos libres. Hay reportes de más incidencia de acné cuando las concentraciones del IGF-1 se encuentran elevadas, en mujeres
adultas y en hombres jóvenes. Se reportó que al disminuir las concentraciones de insulina y del IGF-1 en ayuno y postprandial, disminuye la proliferación de queratinocitos y la producción de sebo, y se disminuyen en consecuencia, las lesiones de acné. La relación entre hormona del crecimiento y el IGF-1 influye de manera importante en la producción de DHEAS en la glándula suprarrenal, dependiente de la estimulación por la hormona adrenocorticotrópica (ACTH). El IGF-1 aumenta la sensibilidad de las glándulas adrenales a la ACTH al activar la expresión y actividad de enzimas clave para la biosíntesis de andrógenos adrenales.

El IGF-1 media las acciones y promueve el crecimiento lineal de la hormona de crecimiento (GH). Estos dos sistemas también ejercen actividad en todo el cuerpo y sus acciones no siempre están interconectadas. El eje GH-IGF-1 juega un papel importante para la producción de ACTH dependiente de DHEAS de la glándula adrenal humana. El IGF-1 aumenta la sensibilidad de la glándula suprarrenal para ACTH, e induce la expresión y la actividad de las enzimas clave para la biosíntesis de andrógenos adrenales como sulfato de dehidroepiandrosterona.

En las niñas prepúberes saludables al igual que en las niñas prepúberes con adrenarquia prematura se ha informado una correlación positiva entre los niveles séricos de DHEAS e IGF-1. La pubertad normal se caracteriza por un estado de resistencia a la insulina transitoria asociada con un aumento en la producción de esteroides sexuales gonadales y andrógenos suprarrenales.

La síntesis de andrógenos por parte de los ovarios se produce por la participación del sistema IGF. Los receptores de insulina están presentes en los ovarios, y se ha
demostrado in vitro que la insulina incrementa la hormona luteinizante (LH) dependiente de la secreción de andrógenos de las células tecales y que la insulina puede estimular directamente la producción de andrógenos por las células del estroma del ovario. Después del incremento de la hormona luteinizante (LH), hay un aumento significativo de IGF-1 y progesterona en el folículo dominante. IGF-1 ejerce efectos estimuladores sobre la síntesis de estrógenos de células de la granulosa y la esteroidogénesis ovárica mediante el aumento de la eficacia de la LH en las células de la teca intersticiales10,11.

En los hombres los niveles testiculares de IGF-1 aumentan durante la pubertad y coincide con una mayor producción de testosterona. IGF-1 estimula la proliferación de precursores de células de Leydig y es un mediador esencial local de la síntesis de ADN testicular y esteroidogénesis11.

Tanto el ARNm del IGF-1, como la proteína receptora del IGF-1 se han identificado en células de Leydig, en las células peritubulares y en los espermatocitos. Los niveles testiculares de IGF-1 incrementan durante la pubertad y coinciden con el aumento de la producción de la testosterona10,11.

El IGF-1, además de LH, estimula la proliferación de precursores de células de Leydig y es un mediador esencial local de la síntesis de ADN testicular y la esteroidogénesis. La inhibición específica del receptor del IGF-1 (IGF1R) produjo un aumento de la apoptosis de las células de Leydig. Por lo tanto, el sistema IGF es
de importancia para la diferenciación de células de Leydig, la mitogénesis, anti-apoptosis y la biosíntesis de andrógenos10 Figura 7.

Figura 7. Regulación de ACTH, LH, GH e IGF-1 en la síntesis de andrógenos suprarrenales y gonadales y el metabolismo cutáneo de andrógenos10. (Tomado de Exp Dermatol – Role of insulin, insulin-like growth factor-1, hyperglycemic food and milk consumption in the pathogenesis of acne vulgaris y traducido por Gabriela Pozo G.)

2.4 INSULINO-RESISTENCIA

2.4.1 CONCEPTO

La Insulino-Resistencia (IR) es la incapacidad de la hormona insulina para mantener la homeostasis glucídica por resistencia a la acción de la hormona en los tejidos periféricos (hígado, músculo estriado, tejido adiposo y el endotelio vascular), lo que conlleva a una hiperinsulinemia compensatoria, asociada a un estado inflamatorio crónico, principal etiopatogenia del Síndrome de Insulino-Resistencia (SIR)18.

42
Debido a que el IGF1 libre es un potente mitógeno para prácticamente todos los tejidos del cuerpo, promueve el acné a través de hiperqueratinización. La reducción de los niveles de IGFBP3 después de la hiperinsulinemia o después de la ingestión de alimentos con alto índice glucémico también hace que exista mayor IGF1 libre disponible y mayor regulación de proliferación celular.\(^{11,18}\)

La resistencia a la insulina está entre las alteraciones endocrinas con mayor prevalencia que oscila entre 3,0 y 8,4 % de los niños y adolescentes, según las clasificaciones del III Panel de Tratamiento para los Adultos, el Programa Nacional de Educación y Control del Colesterol (NCEP-ATP III), Modificado para Niños y Adolescentes y de la Organización Mundial de la Salud respectivamente y se asocia con las principales enfermedades de distribución mundial, que incluyen la diabetes mellitus, la aterosclerosis, la esteatosis hepática no alcohólica y alteraciones ovulatorias. Es detonante de muchas alteraciones metabólicas por lo que se toma en cuenta con respecto a la fisiopatología del acné.\(^{8,18}\)

Es importante conocer que el consumo de alimentos de alto índice glucémico provoca hiperglucemia, por esta razón el páncreas responde liberando grandes cantidades de insulina para bajar los niveles de azúcar en la sangre. Cuanta más insulina libera el páncreas, menos eficaz se convierte como un resultado de la disminución de la sensibilidad de las células a la insulina. Para contrarrestar este efecto, el páncreas tiene que incrementar la secreción de insulina. La hiperinsulinemia crónica y aguda inicia la cascada hormonal que favorece el crecimiento tisular mediante la estimulación de los niveles de IGF-1 libres...
incrementados y la reducción de los niveles de proteína 3 de unión a IGF (IGFBP3)11,18.

La hiperinsulinemia, acelera la lipogenesis con incremento de la producción de ácidos grasos libres, lo que reduce los niveles de globulina fijadora de hormonas sexuales (SHBG), incrementando los niveles de la hormona luteinizante (LH) y la hormona folículo estimulante (FSH) y finalmente conduciendo a un incremento de la producción de andrógenos ováricos y potenciando el hiperandrogenismo1 Figura 8.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{diagrama.pdf}
\caption{Conexiones entre insulino-resistencia, hiperinsulinemia e hiperandrogenismo1. (Tomado de The Scientific World Journal – Insulin Resistance and Skin Diseases y traducido por Gabriela Pozo G.)}
\end{figure}
La hiperinsulinemia influencia la concentración de IGF-1 circulante y de insulina como factor de crecimiento de proteína 3 (IGFBP-3), que actúa directamente en la proliferación de queratinocitos y en la apoptosis. En un estado de hiperinsulinemia, los niveles de IGF-1 incrementan, mientras que los niveles de IGFBP-3 disminuyen, lo que lleva a un desequilibrio que culmina en la hiperproliferación de queratinocitos. El IGF-1 aparece para mediar los factores comedogénicos, tales como andrógenos, hormona de crecimiento y glucocorticoides. Los andrógenos endógenos por lo tanto aumentan los niveles séricos de IGF-1, y los niveles de IGF-1 incrementan los niveles de andrógenos, se establece un círculo vicioso y en por último se aumenta la producción de sebo. Cuando estos acontecimientos sobrevienen de manera crónica generan consecuencias metabólicas que se expresan en diversas afecciones, en las que el denominador común es el aumento del crecimiento de tejidos, como el incremento de estatura y la menarquia o pubertad tempranas; Así como su desarrollo sin regulación, como en el síndrome de ovario poliquístico, la alopecia androgenética, el acné, la acantosis nigricans, los fibromas blandos y la promoción de cáncer de células epiteliales.
Figura 9. Algoritmo de resistencia a la insulina y sus consecuencias. (Tomado de Dermatol Rev Mex - La unidad pilosebácea y su relación con la resistencia a la insulina en pacientes con acné y modificado por Gabriela Pozo G.)

Otro mecanismo que relaciona la resistencia a la insulina y el desarrollo del acné es el agravamiento de la diana de mamífero de la rapamicina complejo 1 (mTORC1)

La estimulación de la vía de señalización a través de una dieta occidental puede estar asociada con el acné con un mayor índice de masa corporal, resistencia a la insulina y la aparición temprana de la menarquía.
En general, estos acontecimientos pueden influir en 1 o más de las 4 causas subyacentes de acné: aumento de 1) la proliferación de los queratinocitos basales dentro del conducto pilosebáceo, 2) la descamación anormal de corneocitos foliculares, 3) aumenta de andrógenos mediada en la producción de sebo, y 4) la colonización y la inflamación del comedón por *Propionibacterium acnes*25.

En un estudio de 42 pacientes adolescentes, 21 con Síndrome de Laron (caracterizado por déficit congénito de IGF-1) y 21 controles sanos fueron sometidos a la administración del IGF-1, que desencadenó su pubertad. Como resultados, la pubertad se retrasó en todos los pacientes no tratados. De las 6 pacientes tratadas, 3 presentaron signos de hiperandrogenismo (oligo-amenorrea) y acné durante la sobredosificación de IGF-1. Pero al interrumpirse el tratamiento, el acné desapareció en las 3 pacientes. Este estudio demuestra que la deficiencia de IGF-1 previene la aparición de acné y que una interacción entre IGF-1 y andrógenos es necesaria para su desarrollo28.

En otro estudio realizado para determinar la relación entre acné y resistencia a la insulina en hombres se comparó a 22 varones jóvenes con acné con 22 controles de la misma edad y sexo. Se evaluaron varios parámetros clínicos, así como bioquímicos: (HOMA) encontrando significancia (p = 0,016). Estos resultados pusieron de manifiesto la presencia de resistencia a la insulina que desempeña un papel importante para el desarrollo del acné en hombres20.
2.4.2 INSULINO-RESISTENCIA, DIETA Y ACNÉ

Según el estudio realizado por Costa, A. et al. (2010), acerca de la influencia de la dieta en la etiología del acné se sugiere que los alimentos con un índice glicémico bajo, influyen en la composición del sebo mediante efectos metabólicos y/o, en los niveles de testosterona y andrógenos libres. Menciona también que una dieta de bajo índice glicémico puede reducir las poblaciones de glucógeno en los tejidos del cuerpo (músculo e hígado), lo que limita la lipogénesis sebácea. De igual forma puede reducir la biodisponibilidad de testosterona y la concentración de DHEA-S17.

En un estudio de casos y controles realizado por Robyn, NS. et al. (2007) para determinar si la dieta con bajo índice glicémico mejora los síntomas en el acné; se sometió al grupo de casos a 12 semanas de dieta, basada en la ingestión de 45% de carbohidratos de bajo índice glicémico. Por el contrario el grupo de control se alimentó durante esas semanas con hincapié en ingestión de carbohidratos sin cálculo del índice glicémico. Luego de las 12 semanas, se encontró que el grupo de casos tenía menor número de lesiones de acné, mayor reducción de peso e IMC y una mejoría en la sensibilidad a la insulina que el grupo de control. Por lo cual los factores de estilo de vida relacionados con la nutrición pueden desempeñar un papel en la patogénesis del acné25.

Otro estudio realizado por Hyuck, HK. et al. (2012), sugiere que los componentes de la dieta occidental se asocian con el desarrollo del acné. También revela que una dieta con alta carga glucémica puede inducir hiperinsulinemia significativa, causando una cascada hormonal que conduce a la producción de sebo inducida por andrógenos.
y de factor de crecimiento de queratinocitos. Además, los individuos con deficiencia congénita de IGF-1 o el síndrome de Laron son casi libres de acné.

2.5 INDICE HOMA

En cuanto a Insulino-resistencia e hiperinsulinemia, la referencia estándar para su evaluación es el índice HOMA por sus siglas en inglés de Homeostatic Model Assessment Glucose, fue descrito por primera vez en 1985 por Matthews et al. Es un esquema matemático que permite evaluar la sensibilidad a la insulina y la función de las células β. Se calcula multiplicando la insulina plasmática en ayunas por la glucosa plasmática en ayunas y luego se divide para la constante 22,5. El punto de corte de HOMA-IR en la población hispana es de 3,80 mientras en la caucásica es de 2,60. El modelo HOMA da un cálculo basal de resistencia a la insulina.

Las concentraciones de insulina basal se han considerado como un medidor seguro para la determinación de insulino-resistencia en los estudios epidemiológicos, debido a que existe una buena correlación entre ésta y los resultados reportados empleando índices como el "homeostasis model assessment" (HOMA) que es utilizado para la valoración de IR debido a su practicidad y bajo costo.

2.6 TRATAMIENTO

Durante la pubertad es normal encontrar resistencia a la insulina transitoria asociada con el aumento de los esteroides sexuales por las gónadas y los andrógenos adrenales. En un estudio realizado en mujeres españolas con resistencia a la insulina
y exceso de andrógenos, que comparó el efecto de anticonceptivos contra hipoglucemiantes orales, se encontró que al mejorar la utilización de glucosa con hipoglucemiantes orales (metformina) mejoró la sensibilización a la insulina, en comparación con la administración de hormonas antiandrógenas anticonceptivas.

2.6.1 TERAPIA HORMONAL EN ACNÉ
La terapia hormonal para el acné tiene como finalidad disminuir la producción de sebo debido a la acción de los andrógenos sobre el folículo sebáceo. Es usada en mujeres adultas con hiperandrogenismo que no responden a la terapia tópica convencional, en mujeres que tienen profundos nódulos y pápulas inflamatorias en la parte inferior de cara y/o cuello, en mujeres que presentan severa seborrea, alopecia androgénica, hiperandrogenismo adrenal, acné que aparece en la menstruación, cuando el tratamiento antibiótico no tuvo resultados adecuados, en síndrome SAHA, o se puede utilizar como alternativa a cursos repetidos de isotretinoína.

Está constituida por: supresores de la producción de andrógenos ováricos (anticonceptivos orales), bloqueadores de los receptores androgénicos (espironolactona, flutamide, acetato de ciproterona) y supresores adrenales de andrógenos (glucocorticoides).

2.6.1.1 ANTICONCEPTIVOS ORALES
Los Anticonceptivos Orales, actúan suprimiendo la producción de andrógenos a nivel de la glándula suprarrenal, a nivel periférico y de ováricos, por la supresión directa de las gonadotropinas, con disminución la producción de sebo.
Se utilizan en mujeres que además de tratar el acné, desean anticoncepción. Se usa un estrógeno, de preferencia etinilestradiol en asociación con una progestina de tercera generación como desogestrel, norgestimato, gestoden, ciproterona o drosperinona.35

2.6.1.2 BLOQUEADORES DE LOS RECEPTORES ANDROGÉNICOS

Los bloqueadores de los receptores androgénicos bloquean los andrógenos a nivel de la glándula sebácea. Los más utilizados son:

La ciproterona que tiene actividad dual, bloquea los receptores androgénicos y sirve como progesterona en los anticonceptivos orales al utilizarse en combinación con etinilestradiol. Sus efectos secundarios más serios son hepatotoxicidad y feminización del feto masculino en mujeres en edad fértil.

La espironolactona es un bloqueador esteroideo sintético de los receptores androgénicos y un inhibidor de la 5-alfa reductasa. En dosis de 50mg a 100mg dos veces al día reduce la secreción de sebo. Entre sus efectos colaterales importantes están la feminización e hiperkalemia. Se usa en acné resistente a la terapia común.

El flutamide es un bloqueador no esteroideo de receptores androgénicos. Su dosis es de 62.5 a 250mg al día. Puede producir disminución de la libido y hepatitis.35

2.6.1.3 BLOQUEADORES DE LA PRODUCCIÓN ANDROGÉNICA ADRENAL

Como lo son los corticosteroides, son muy útiles en el tratamiento del acné inflamatorio muy severo, en el acné fulminans y en el fenómeno de exacerbación del
acné en los pacientes en tratamiento con isotretinoína. La metilprednisona se indica en dosis de 0,5 a 1 mg/ kg/día por 4 a 6 semanas y que se reducen en forma gradual. En las lesiones nodulares grandes de más de dos semanas de duración, las inyecciones intralesionales con acetonida de triamcinolona son de gran utilidad.

2.6.2 HIPOGLUCEMIANTES ORALES

En el estudio de Stabile et al. se informa que el uso de sensibilizadores de insulina, en especial la metformina, no sólo mejoran el acné, la irregularidad del ciclo menstrual y el hirsutismo en pacientes con síndrome de ovario poliquístico, sino también reducen la resistencia a la insulina, los niveles de andrógenos en suero, las gonadotropinas, así como la reducen la respuesta inflamatoria del cuerpo. Estos estudios describen la importancia de la resistencia a la insulina en la patogénesis del acné vulgaris y subrayan el uso de la metformina y la dieta como una posible terapia adyuvante en esta condición.

El tratamiento con metformina tiene acción contra-reguladora para los cambios durante la pubertad inducidos por el eje de la insulina-IGF-1. Los pacientes con síndrome de ovario poliquístico en tratamiento con metformina muestran una disminución en los niveles de IGF-1 y de andrógenos en suero elevada. El tratamiento con metformina de las niñas con pubertad precoz impide la aparición de la pubertad temprana en 0,4 años y produce una disminución significativa en los niveles de IGF-1, insulina en ayunas, DHEAS y testosterona.
La dosis de Metformina que se recomienda para menores de 17 años y adultos jóvenes es de 500mg dos veces al día, luego de las comidas. Hay algunos eventos adversos asociados con su uso, incluyendo problemas gastrointestinales (dolor abdominal y diarrea) y en algunos raros casos, acidosis láctica y disfunción renal.

3. MÉTODOS

3.1 JUSTIFICACIÓN

Siendo el acné una de las enfermedades más prevalentes a nivel mundial existen numerosos estudios que se han publicado en los últimos años para investigar si la insulino-resistencia se asocia con la etiología de acné. En ellos se ha demostrado que el metabolismo de la insulina y de hidratos de carbono puede tener un papel en la etiología y gravedad de la acné.

El papel de la insulina en el desarrollo del acné es apoyado también por la alta prevalencia de acné en las mujeres con síndrome de ovario poliquístico (SOP), una condición asociada con la resistencia a la insulina, la hiperinsulinemia y el hiperandrogenismo.

Aunque existen estudios que refutan la asociación entre el acné y la insulino-resistencia, se han presentado nuevos artículos que han llevado recientemente a la luz evidencia contraria a las conclusiones anteriores. El hecho de conocer nuestra realidad con respecto al acné, una patología tan frecuente nos concedería una herramienta útil para plantearnos futuras investigaciones y poder establecer protocolos terapéuticos que optimicen el tratamiento del mismo en nuestro medio.
De esta manera los tratamientos destinados a reducir la secreción de insulina o la resistencia a la insulina, tales como la metformina, ayudarán para mejorar el acné y otras múltiples afecciones asociadas con insulino-resistencia. Por lo tanto, nos gustaría investigar si la resistencia a la insulina influye en la etiopatogenia del acné.

3.2 PLANTEAMIENTO DEL PROBLEMA

¿Es la insulino-resistencia un factor asociado al acné inflamatorio en hombres y mujeres de 16 a 25 años con acné moderado a severo en consulta privada dermatológica y en la Unidad Educativa Andino de Quito en el período de abril a junio del 2016?

3.3 OBJETIVO GENERAL

Determinar la asociación entre insulino-resistencia y acné inflamatorio en hombres y mujeres de 16 a 25 años con acné moderado a severo en consulta privada dermatológica y en la Unidad Educativa Andino de Quito en el período de abril a junio del 2016.

3.4 OBJETIVOS ESPECÍFICOS

- Determinar la prevalencia de pacientes de 16 a 25 años con insulino-resistencia y acné inflamatorio de tipo moderado a severo en una consulta privada dermatológica y en la Unidad Educativa Andino de Quito en el período de abril a junio del 2016.
• Comparar los niveles de HOMA en pacientes con acné inflamatorio de tipo moderado a severo respecto a pacientes sin acné en el período de abril a junio del 2016.

• Establecer si la insulino-resistencia es un factor asociado a la etiología del acné inflamatorio de tipo moderado a severo.

3.5 HIPÓTESIS

La insulino-resistencia es un factor asociado a la etiología del acné inflamatorio de tipo moderado a severo.

3.6 OPERACIONALIZACIÓN DE LAS VARIABLES

<table>
<thead>
<tr>
<th>Variable general</th>
<th>Variable específica</th>
<th>Categoría/Escala</th>
<th>Indicador</th>
</tr>
</thead>
<tbody>
<tr>
<td>Independiente</td>
<td>Insulino-resistencia</td>
<td>Sí/No</td>
<td>Proporciones</td>
</tr>
<tr>
<td>Dependiente</td>
<td>Acné</td>
<td>Sí/No</td>
<td>Proporciones</td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edad</td>
<td>Edad cronológica</td>
<td>años</td>
<td>Promedio, mediana, moda, S.</td>
</tr>
<tr>
<td>Género</td>
<td>Género</td>
<td>Masculino/Femenino</td>
<td>Proporción</td>
</tr>
<tr>
<td>Glucosa</td>
<td>Glucosa</td>
<td>Normal <100 mg/dl</td>
<td>Proporción, media</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alterado >100 mg/dl</td>
<td></td>
</tr>
<tr>
<td>Insulina</td>
<td>Insulina</td>
<td>Normal <25 ulU/ml</td>
<td>Proporción, media</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alterado >25 ulU/ml</td>
<td></td>
</tr>
<tr>
<td>HOMA</td>
<td>Índice HOMA</td>
<td>Normal <3</td>
<td>Proporción</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Alterado >3</td>
<td></td>
</tr>
</tbody>
</table>

3.7 DISEÑO DEL ESTUDIO

Estudio de casos y controles donde se comparó el resultado del índice HOMA entre participantes que presentan acné de tipo moderado a severo frente a los que no presentan acné.

3.8 UNIVERSO Y MUESTRA

El total de la población de estudio fue de 80 participantes, hombres y mujeres de 16 a 25 años, asignados de igual tamaño, 40 para el grupo de estudio (con acné de tipo moderado a severo) y 40 para el grupo control (sin acné).

Se determinó el tamaño de cada grupo (caso y control) del proyecto de investigación mediante el programa CALCULEK para estudios de casos y controles con un IC: 95%, valor Z: 1.96, Proporción 1: 0.2, Proporción 2: 0.46, Población de estudio: 80 personas Tabla7.

<table>
<thead>
<tr>
<th>MUESTRAS PARA COMPARAR PROP.</th>
<th>valor z</th>
<th>error alfa</th>
<th>significancia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor z de alfa (en dos colas)**</td>
<td>1.96</td>
<td>1%</td>
<td>99%</td>
</tr>
<tr>
<td>Valor z de beta (una cola)**</td>
<td>0.84</td>
<td>5%</td>
<td>95%</td>
</tr>
</tbody>
</table>

3.9 RECOLECCIÓN DE LA MUESTRA

3.9.1 LUGAR
Se llevó a cabo en una consulta privada dermatológica ambulatoria de Quito y en la Unidad Educativa Andino de Quito.

3.9.2 INSTRUMENTO
Mediante veno-punción se obtuvo sangre venosa periférica de hombres y mujeres entre 16 a 25 años de edad, con y sin acné, posterior a 10-12 horas de ayuno, y se procedió a medir Glucosa e Insulina Basal, para posterior determinación del índice HOMA en el laboratorio DiserLab de la Pontificia Universidad Católica del Ecuador.

3.9.3 CRITERIOS DE INCLUSIÓN Y EXCLUSIÓN

3.9.3.1 Criterios de inclusión
- Paciente masculino o femenino de 16 a 25 años
- Presencia de acné de tipo moderado a severo

3.9.3.2 Criterios de exclusión
- Uso de medicamentos conocidos por afectar el metabolismo de la insulina
- Tratamiento hormonal por cualquier razón en los 3 meses anteriores
- Consumo de cigarrillos
- Disfunción de la tiroides
- Diabetes mellitus
- Hipertensión
- Enfermedad vascular aterosclerótica
- Cáncer
- Embarazo
- Otras enfermedades inflamatorias sistémicas
- IMC >30 kg/m²

3.9.4 APLICACIÓN

La recolección de la información se llevó a cabo una consulta privada dermatológica ambulatoria y en la Unidad Educativa Andino, en donde se buscaron personas con acné que cumplan tanto con los criterios de inclusión como los de exclusión y que deseen ser parte de la investigación. Se procedió a la realización de historias clínicas a cada uno de los casos, con posterior diagnóstico y tratamiento por parte de médicos expertos en la especialidad. Luego de la firma del consentimiento informado los pacientes, con y sin acné, acudieron al laboratorio DiserLab de la Universidad Católica donde se realizó la toma de muestras. Para finalizar el estudio, los participantes acudieron a sus médicos encargados para la entrega de resultados y asesoría necesaria.

La sangre fue extraída de los participantes por flebotomistas especializados del laboratorio DiserLab, quienes se encargaron del adecuado manejo y análisis de las muestras según su protocolo.
3.10 ANÁLISIS DE DATOS

Una vez terminado el trabajo de campo, se preparó una base de datos con los resultados de los participantes en una hoja electrónica de Microsoft Office Excel 2010® y realizó los cálculos estadísticos usando el programa Statistical Package for Social Sciences (SPSS) v20.0. El cálculo del valor p menor de 0.05 fue considerado diferentemente significativo. Cálculo de valor p menor de 0.10 fue considerado como diferencia levemente significativa.

3.11 ASPECTOS BIOÉTICOS

Las personas que participaron en éste estudio, luego de escuchar información verbal sobre los detalles, firmaron un consentimiento informado realizado según las normas estipuladas por la Organización Mundial de la Salud (OMS), donde se detalla claramente los derechos de cada participante y el compromiso por parte de los investigadores, indicando la confidencialidad con la que se manejará la información de cada participante.

Para los pacientes menores de 18 años se realizó el respectivo asentimiento informado donde se adjuntó una hoja informativa para los representantes y padres de familia, indicando los procedimientos que se realizará a cada participante, el lugar donde se realizará y los beneficios y perjuicios de participar en la investigación.
4. RESULTADOS

Cuarenta pacientes con acné inflamatorio moderado y severo y cuarenta controles sanos fueron incluidos en el estudio. Los grupos de pacientes y controles fueron pareados de acuerdo a su edad y género. El grupo de pacientes estuvo constituido por (21 mujeres, 26.2%; 19 hombres, 23.8%) y el grupo de controles (21 mujeres, 26.2%; 19 hombres, 23.8%). No hubo diferencia significativa entre los grupos de pacientes y controles con respecto a la edad (p >0.05). El rango de edad de los grupos fue de 16 a 24 años (promedio de edad: 17,13± 1.77). No hubo diferencia significativa entre los grupos en término de glucosa (valor p >0.05, 89,5±6,99 vs. 88,75±6,58). Los niveles de insulina tampoco presentaron diferencias entre los grupos (valor p >0.05, 11,60±9,6 vs. 9,2±5,43). Al igual que los anteriores no hubo diferencia significativa entre los grupos de pacientes y controles en términos de los valores del HOMA (p>0.05, 2.62±2.21 vs. 2.04±1.29). Los resultados de los análisis estadísticos comparados de los grupos de pacientes y controles se resumen en la Tabla 8.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Casos (n=40) Media ± S</th>
<th>Controles (n=40) Media ± S</th>
<th>Valor p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Edad</td>
<td>17,13 ± 1,78</td>
<td>17,13 ± 1,78</td>
<td>1</td>
</tr>
<tr>
<td>Glucosa (mg/dl)</td>
<td>89,5 ± 6,99</td>
<td>88,75 ± 6,58</td>
<td>0,55</td>
</tr>
<tr>
<td>Insulina (ulU/ml)</td>
<td>11,60 ± 9,6</td>
<td>9,2 ± 5,43</td>
<td>0,30</td>
</tr>
<tr>
<td>HOMA</td>
<td>2,62 ± 2,21</td>
<td>2,04 ± 1,29</td>
<td>0,78</td>
</tr>
</tbody>
</table>

Tabla 8. Resultados de los análisis estadísticos comparados de los grupos de pacientes y controles.
4.1 VARIABLES DE CONTROL

Edad

El promedio de edad en los casos y en los controles es de 17.1 ± 1.7 años. La mediana para casos y controles es de 16.5 años, y 16 años es la edad que más se repite en la muestra Tabla 9.

<table>
<thead>
<tr>
<th>EDAD</th>
<th>Promedio</th>
<th>Mediana</th>
<th>Moda</th>
<th>S</th>
<th>Rango mínimo</th>
<th>Rango máximo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casos</td>
<td>17,13</td>
<td>16,50</td>
<td>16</td>
<td>1,786</td>
<td>16</td>
<td>24</td>
</tr>
<tr>
<td>Controles</td>
<td>17,13</td>
<td>16,50</td>
<td>16</td>
<td>1,786</td>
<td>16</td>
<td>24</td>
</tr>
</tbody>
</table>

La prevalencia de edad en el estudio es de 16 años que corresponde a 40 personas (50%), seguidas por 22 personas de 17 años (27.5%) Gráfico 1.

Género

De los 80 participantes del estudio, 40 pertenecieron al grupo de casos (50%), en este grupo 21 participantes (26.2%) son de género femenino y 19 (23.8%) de género masculino. El número de controles es de 40 participantes (50%), con 21 personas (26.2%) de género femenino y 19 (23.8%) de género masculino Tabla 10.

<table>
<thead>
<tr>
<th>GÉNERO</th>
<th>Femenino</th>
<th>Masculino</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casos (n)</td>
<td>21 (26,2%)</td>
<td>19 (23,8%)</td>
</tr>
<tr>
<td>Controles (n)</td>
<td>21 (26,2%)</td>
<td>19 (23,8%)</td>
</tr>
<tr>
<td>Total</td>
<td>42 (52,5%)</td>
<td>38 (47,5%)</td>
</tr>
</tbody>
</table>

Tabla 10. Variable de control Género. Proporción
Fuente: Gabriela Pozo G. 2016

Característica Poblacional

De la población de 80 participantes, 42 (52,5%) pertenecieron al género femenino, con edades que van desde los 16 a 19 años y una edad media de 16,6 años. En tanto al género masculino, participaron 38 (47,5%) personas, con edades de 16 a 24 años; su edad media es de 17,6 años.

<table>
<thead>
<tr>
<th>Edad (años)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Género</td>
</tr>
<tr>
<td>------------</td>
</tr>
<tr>
<td>Femenino</td>
</tr>
<tr>
<td>Masculino</td>
</tr>
</tbody>
</table>

Glucosa

El promedio del valor de glucosa en los casos es de 89.5 mg/dl ± 6.99 mg/dl y en los controles es de 88.75 mg/dl ± 6.58. La diferencia entre ambos grupos no es estadísticamente significativa (p >0.05) Tabla 12.

<table>
<thead>
<tr>
<th>GLUCOSA</th>
<th>PROMEDIO</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casos</td>
<td>89,5 mg/dl</td>
<td>6,99</td>
</tr>
<tr>
<td>Controles</td>
<td>88,75 mg/dl</td>
<td>6,58</td>
</tr>
</tbody>
</table>

Un total de 77 participantes (96.3%) presentó valores de glucosa dentro de la normalidad <100 mg/dl, mientras únicamente 3 (3.8%) presentaron valores por encima de la normalidad >100 mg/dl Gráfico 2.

Insulina

El promedio de niveles de insulina para los es de 11.6 ulU/ml ± 9,6. Los controles tienen un promedio de 9.2 ulU/ml con una desviación estándar de 5.43. La diferencia entre ambos grupos no es estadísticamente significativa (p >0.05) **Tabla 13.**

<table>
<thead>
<tr>
<th>INSULINA</th>
<th>PROMEDIO</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casos</td>
<td>11,605 ulU/ml</td>
<td>9,60</td>
</tr>
<tr>
<td>Controles</td>
<td>9,208 ulU/ml</td>
<td>5,43</td>
</tr>
</tbody>
</table>

Los valores de normalidad de insulina se encuentran entre 2.6 a 24.9 ulU/ml. En este estudio encontramos que 76 participantes (95%) tuvieron los valores de insulina dentro de la normalidad y 4 (5%) sobre los valores de normalidad **Gráfico 3.**

HOMA

La media del valor de HOMA en los casos es de 2.62 ± 2.21 y los controles tienen un promedio de 2.04 con una desviación estándar de 1.29. La diferencia entre ambos grupos no es estadísticamente significativa (p >0.05) **Tabla 14**.

<table>
<thead>
<tr>
<th>HOMA</th>
<th>PROMEDIO</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casos</td>
<td>2,62</td>
<td>2,21</td>
</tr>
<tr>
<td>Controles</td>
<td>2,04</td>
<td>1,29</td>
</tr>
</tbody>
</table>

Tabla 14. Variable de control HOMA. Promedio y desviación estándar.
Fuente: Gabriela Pozo G. 2016

Los valores de *Homeostatic Model Assessment Glucose* (HOMA) superiores a 3 son considerados como Insulino-resistencia. En la población de estudio encontramos a 63 participantes (78.8%) con niveles normales de éste índice y 17 (21.3%) con niveles alterados o insulino-resistencia **Gráfico 4**.

Gráfico 4. Variable de control HOMA. Frecuencia. Fuente: Gabriela Pozo G. 2016
Regresiones de valores de HOMA

Al realizar regresiones estadísticas comparando los valores de HOMA con el resto de variables podemos observar que los participantes de 16 a 17 años significativamente presentan 1.33 más valor de índice HOMA que los mayores de 20 años (p<0,05). Con respecto al género, las mujeres presentaron 0,04 más valor de HOMA, pero no se encontró una diferencia significativa entre hombres y mujeres. Y finalmente existe una diferencia levemente significativa entre las personas que no tienen acné con los pacientes con acné severo (p<0,10), por presentar 1.08 menos valor del índice que los enfermos. **Tabla 15.**

<table>
<thead>
<tr>
<th></th>
<th>Coeficiente</th>
<th>Error Standard</th>
<th>Valor p</th>
</tr>
</thead>
<tbody>
<tr>
<td>16 – 17 años</td>
<td>1,33</td>
<td>0,67</td>
<td>0,04</td>
</tr>
<tr>
<td>Género</td>
<td>0,04</td>
<td>0,42</td>
<td>0,92</td>
</tr>
<tr>
<td>No acné</td>
<td>-1,08</td>
<td>0,59</td>
<td>0,07</td>
</tr>
<tr>
<td>Acné Moderado</td>
<td>-0,76</td>
<td>0,64</td>
<td>0,23</td>
</tr>
</tbody>
</table>

4.2 VARIABLE DEPENDIENTE ACNÉ

Dentro de la población de estudio de 40 personas que presentan acné 28 (35%) muestran acné de tipo moderado, mientras 12 (15%) exhiben acné de tipo severo. **Gráfico 5.**

4.3 VARIABLE INDEPENDIENTE INSULINO-RESISTENCIA

En el estudio se encontró que 17 participantes (21.3%) presentaron resistencia a la insulina, mientras 63 participantes (78.8%) no la presentaron Gráfico 6.

4.4 INSULINO-RESISTENCIA Y VARIABLES DE CONTROL

Insulino-Resistencia y Edad

Los participantes de 16 años presentaron la mayor prevalencia de resistencia a la insulina 15%, seguido por los participantes de 17 años de edad con 4 personas (4.7%). No hay diferencia significativa entre la presencia o no de resistencia a la insulina con respecto a la edad (p > 0.05) Tabla 16.

<table>
<thead>
<tr>
<th>Edad</th>
<th>IR SI</th>
<th>IR NO</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>12 (15%)</td>
<td>28 (35%)</td>
<td>40 (50%)</td>
</tr>
<tr>
<td>17</td>
<td>4 (5%)</td>
<td>18 (22,5%)</td>
<td>22 (27,5%)</td>
</tr>
<tr>
<td>18</td>
<td>1 (1,2%)</td>
<td>7 (8,8%)</td>
<td>8 (10%)</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>2 (2,5%)</td>
<td>2 (2,5%)</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>6 (7,5%)</td>
<td>6 (7,5%)</td>
</tr>
<tr>
<td>24</td>
<td>0</td>
<td>2 (2,5%)</td>
<td>2 (2,5%)</td>
</tr>
<tr>
<td>Total</td>
<td>17 (21,2%)</td>
<td>63 (78,8%)</td>
<td>80 (100%)</td>
</tr>
</tbody>
</table>

Insulino-Resistencia y Género

Del grupo de casos de género femenino, formado por 21 participantes, 6 presentaron Insulino-Resistencia y 15 no lo hicieron. En el grupo control formado por 21 participantes, 4 presentaron resistencia a la insulina y, 17 no la presentaron. La diferencia entre ambos grupos no es estadísticamente significativa (p > 0.05) Tabla 17.

<table>
<thead>
<tr>
<th>Edad</th>
<th>IR SI</th>
<th>IR NO</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>3 (15%)</td>
<td>15 (75%)</td>
<td>18 (85%)</td>
</tr>
<tr>
<td>17</td>
<td>1 (5%)</td>
<td>16 (85%)</td>
<td>17 (95%)</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>3 (15%)</td>
<td>3 (15%)</td>
</tr>
<tr>
<td>19</td>
<td>1 (5%)</td>
<td>2 (10%)</td>
<td>3 (15%)</td>
</tr>
<tr>
<td>21</td>
<td>0</td>
<td>1 (5%)</td>
<td>1 (5%)</td>
</tr>
<tr>
<td>24</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>6 (29%)</td>
<td>15 (71%)</td>
<td>21 (100%)</td>
</tr>
</tbody>
</table>

presentaron. Al igual que en el género femenino la diferencia entre ambos grupos no es estadísticamente significativa (p> 0.05) **Tabla 17.**

<table>
<thead>
<tr>
<th></th>
<th>FEMENINO</th>
<th>MASCULINO</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulino-resistencia SI</td>
<td>10 (12,5%)</td>
<td>7 (8,8%)</td>
<td>17 (21,2%)</td>
</tr>
<tr>
<td></td>
<td>6 casos 4 controles</td>
<td>3 casos 4 controles</td>
<td></td>
</tr>
<tr>
<td>Insulino-resistencia NO</td>
<td>32 (40%)</td>
<td>31 (38,8%)</td>
<td>63 (78,8%)</td>
</tr>
<tr>
<td></td>
<td>15 casos 17 controles</td>
<td>16 casos 15 controles</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>42 (52,5%)</td>
<td>38 (47,5%)</td>
<td>80 (100%)</td>
</tr>
<tr>
<td></td>
<td>21 casos 21 controles</td>
<td>19 casos 19 controles</td>
<td></td>
</tr>
</tbody>
</table>

Tabla 17. Insulino-Resistencia y Género. Fuente: Gabriela Pozo G. 2016

4.5 ACNÉ Y VARIABLES DE CONTROL

Acné y HOMA

De los 40 pacientes con acné inflamatorio moderado 5 (6,2%) presentaron un HOMA mayor al nivel normal al igual que 4 pacientes (5%) con acné severo. De los participantes sin acné 8 (10%) presenta valores de HOMA mayores a 3 **Tabla 18.**

<table>
<thead>
<tr>
<th></th>
<th>No Acné</th>
<th>Moderado</th>
<th>Severo</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOMA <3</td>
<td>32 (40%)</td>
<td>23 (28,8%)</td>
<td>8 (10%)</td>
<td>63 (78,8%)</td>
</tr>
<tr>
<td></td>
<td>8 (10%)</td>
<td>5 (6,2%)</td>
<td>4 (5%)</td>
<td>17 (21,2%)</td>
</tr>
<tr>
<td>HOMA >3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>40 (50%)</td>
<td>28 (35%)</td>
<td>12 (15%)</td>
<td>80 (100%)</td>
</tr>
</tbody>
</table>

Tabla 18. Acné y HOMA. Fuente: Gabriela Pozo G. 2016
4.6 INSULINO-RESISTENCIA Y ACNÉ
de los 40 pacientes con acné, 9 pacientes (11,2%) presentaron insulino-resistencia y, 31 de ellos (38,8%) no presentaron resistencia a la insulina. **Gráfico 7.**

En el grupo control, formado por 40 participantes, 8 personas (10%) presentaron resistencia a la insulina y, 32 (40%) no la presentaron **Gráfico 7.**

La diferencia entre los grupos no es estadísticamente significativa (chi cuadrada: 0.075 y valor p: 0.785). El OR es de 1.161, que indica que la resistencia a la insulina es un factor asociado al acné **Tabla 19**.

<table>
<thead>
<tr>
<th></th>
<th>ACNÉ SI</th>
<th>ACNÉ NO</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulino-resistencia SI</td>
<td>9 (11,2%)</td>
<td>8 (10%)</td>
<td>17 (21,2%)</td>
</tr>
<tr>
<td>Insulino-resistencia NO</td>
<td>31 (38,8%)</td>
<td>32 (40%)</td>
<td>63 (78,8%)</td>
</tr>
<tr>
<td>TOTAL</td>
<td>40 (50%)</td>
<td>40 (50%)</td>
<td>80 (100%)</td>
</tr>
</tbody>
</table>

5. DISCUSIÓN

El acné es una enfermedad multifactorial de la unidad pilo-sebácea que se presenta con gran frecuencia. La hiperplasia de las glándulas sebáceas, la hiperproliferación/hiperqueratosis folicular, la inflamación y el aumento de la colonización de Propionibacterium acnes son factores etiológicos en la patogénesis del acné.

Actualmente existe un incremento en la evidencia que apoya la interacción durante la pubertad de hormonas como insulina, factor de crecimiento de insulina tipo 1, y hormona del crecimiento, que tienen un papel causal en la patogénesis del acné por su influencia adrenal y gonadal en el metabolismo de los andrógenos.

En nuestro estudio se encontró una diferencia significativa en los valores del índice HOMA con respecto a la edad y al tipo de acné. Esto también se demuestra en el estudio de casos y controles de Nazan et al. (2015), donde se estudió a 243 casos con acné severo y a 156 controles sanos. No se encontró diferencia significativa en los valores de glucosa pero sí se encontró una gran diferencia significativa (p<0.001) en los niveles de insulina y HOMA entre los grupos de casos y controles. Estos resultados sugieren que la resistencia a la insulina puede tener un rol en la patogénesis del acné.

El estudio de del Prete et al. (2012) investiga la relación entre el acné y resistencia a la insulina en varones jóvenes. Se estudió a 44 hombres, 22 casos y 22 controles de la misma edad y sexo. Se encontró una diferencia estadísticamente significativa en
los niveles de insulina y otros parámetros como el IMC, los niveles de glucosa, los valores de HOMA y la curva de tolerancia a la glucosa y señalan que la resistencia a la insulina parece desempeñar un papel muy importante en el desarrollo del acné20.

Los resultados de nuestro estudio no demostraron una asociación significativa entre el acné moderado o severo con la resistencia a la insulina como es el caso del estudio de casos y controles de Ilknur et al. (2015) donde se estudió a 35 casos y 35 controles y se midió varios parámetros, entre ellos el índice HOMA y no se encontraron diferencias significativas entre casos y controles con respecto a los valores de éste índice16.

Por ejemplo el estudio de casos y controles de Domínguez et al. (2015) donde se comparan los niveles de insulina en pacientes con acné moderado a severo respecto a pacientes sin acné. Se encontró que los niveles de insulina fueron similares entre los grupos y no existió una diferencia significativa19.

Otros estudios señalan que dietas hiperglicémicas y el consumo de leche, pueden inducir lipogénesis sebácea, mayor producción de sebo y la proliferación de queratinocitos, lo que puede agravar el acné11. Así lo demuestra el estudio realizado por Hyuck et al. (2012), donde un total de 32 pacientes con acné leve a moderado fueron sometidos a una dieta con bajo nivel glicémico durante 10 semanas. Los resultados demostraron mejoría clínica significativa en el número de lesiones de acné, al igual que una reducción del tamaño de la glándula sebácea, disminución de la inflamación y expresión de IL-827.
Esto también lo demuestra el estudio de casos y controles de Robyn et al. (2007) donde se estudiaron a 43 pacientes con acné, quienes fueron sometidos a una dieta de baja carga glicémica durante 12 semanas; mientras los controles sanos tuvieron una dieta rica en carbohidratos. Se encontró una disminución significativa del número de lesiones, al igual que una disminución de peso, de IMC, y una mejoría a la sensibilidad a la insulina que las personas del grupo de control. Lo que sugiere que la disminución de la glucosa mejora la resistencia a la insulina y por ende el acné. 25

En el estudio del investigador Jung et al. (2010) que se realizó en una población coreana que no consume tradicionalmente lácteos se informó que su nivel de IGF-1 fue significativamente menor que en los pacientes con acné, y sugieren que, "una dieta con alta carga glucémica desempeñan un papel en la exacerbación del acné en los coreanos". 26

Sin embargo, estas aseveraciones todavía necesitan confirmación debido a que no se cuenta con suficiente evidencia científica.
6. CONCLUSIONES

- El estudio sugiere que la insulino-resistencia no se asocia significativamente a la presencia de acné de tipo moderado a severo.

- Los pacientes con acné moderado a severo no tienen un mayor riesgo de presentar resistencia a la insulina que las personas sin acné.

- Las personas más jóvenes, entre 16 a 17 años presentan un mayor valor del índice HOMA con respecto a las personas mayores de 20 años.

- Las personas sin acné tienen un menor valor de índice HOMA en comparación con los pacientes con acné severo.

- Existe un mayor número de mujeres con respecto a hombres que presentan resistencia a la insulina.
7. RECOMENDACIONES

- Se debería investigar la asociación entre resistencia a la insulina y acné en un grupo de mayor población y de preferencia con únicamente pacientes que presenten acné de tipo severo.

- Además del HOMA, se podría analizar variables como índice de masa corporal, la alimentación de los pacientes, colesterol y triglicéridos; de esta manera se podría conocer sobre la asociación de éstos factores con el acné.

- El índice HOMA es un valor muy posible de cuantificar en los pacientes; si se realizara en todos aquellos con patologías asociadas a resistencia a la insulina, se podría brindar una mejor asesoría y tratamiento al problema.
8. BIBLIOGRAFÍA

9. ANEXOS

DOCUMENTO DE CONSENTIMIENTO INFORMADO PARA TOMA DE MUESTRAS BIOLÓGICAS SANGUÍNEAS (GLUCOSA E INSULINA)

INVESTIGADOR: GABRIELA POZO GORDILLO

Este Formulario de Consentimiento Informado se dirige a hombres y mujeres de 16 a 25 años atendidos en Consulta Dermatológica del Hospital Metropolitano de Quito y estudiantes de la Unidad Educativa Andino; que se les invita a participar en la investigación: Insulino-resistencia en pacientes con acné inflamatorio moderado a severo en consulta dermatológica y en la Unidad Educativa Andino de Quito en el período de abril a mayo del 2016 y que presentan acné inflamatorio de tipo moderado a severo, o para personas sanas que cumplan con los criterios de inclusión dispuestos en la investigación.

Gabriela Pozo Gordillo
Pontificia Universidad Católica del Ecuador

PARTE I: INFORMACIÓN

Introducción
Yo soy Gabriela Pozo, egresada de la facultad de Medicina de la Pontificia Universidad Católica del Ecuador. Estamos investigando sobre el acné, que es muy común en este país. Le voy a dar información e invitarle a participar de esta investigación. No tiene que decidir hoy si participar o no. Antes de decidirse, puede hablar con alguien con quien se sienta cómodo sobre la investigación. Puede que haya algunas palabras que no entienda. Por favor, me detiene según le informo para darme tiempo a explicarle. Si tiene preguntas puede preguntarme.

Propósito
El acné es una de las enfermedades más comunes y que se presenta con mucha frecuencia a nivel mundial en adolescentes y adultos jóvenes. Existen numerosas causas para que se presente esta enfermedad; motivo por el cual se realiza ésta investigación, con la finalidad de encontrar una de sus principales causas y así ayudar con el tratamiento.

Tipo de Intervención de Investigación
Esta investigación incluirá la extracción de sangre de una vena de cualquier brazo con el uso de una jeringa.

Selección de participantes
Estamos invitando a hombres y mujeres de 16 a 25 años atendidos en Consulta Dermatológica del Hospital Metropolitano de Quito y estudiantes de la Unidad Educativa Andino, que presenten acné inflamatorio de tipo moderado a severo y a personas sanas que deseen participar en la investigación sobre la relación de la resistencia a la insulina con el acné.
Participación Voluntaria
Su participación en esta investigación es totalmente voluntaria. Usted puede elegir participar o no hacerlo. Usted puede cambiar de idea más tarde y dejar de participar aun cuando haya aceptado antes.

Procedimientos y Protocolo

A. Procedimientos desconocidos
Extraeremos sangre de su brazo usando una aguja de jeringa. La extracción de sangre será realizada por personal especializado, luego de un ayuno igual/mayor a 10 horas. Al final de la investigación, su muestra de sangre será eliminada.

B. Descripción del Proceso
La extracción de sangre se realizará a pacientes con acné de tipo moderado a severo posterior al diagnóstico de un especialista de la piel (Dermatólogo) y personas sin acné.

Para garantizar la seguridad del paciente la extracción de sangre se realizará por personal capacitado, bajo condiciones de seguridad, y sin costo alguno en los laboratorios DiserLab de la Universidad Católica. Se procederá a la extracción de aproximadamente 5ml de sangre venosa (1 tubo de ensayo) de cualquier brazo mediante una aguja de jeringa, siempre y cuando el paciente se encuentre en ayuno.

Duración
Ejemplo: La investigación durará 1 día en total. Durante este tiempo las personas con acné serán examinadas por un especialista de la piel, quien realizará una historia clínica. Posterior a esto los pacientes con y sin acné acudirán al laboratorio DiserLab de la Universidad Católica para la extracción de la sangre. El tiempo de la extracción será de aproximadamente 5 a 10 minutos durante ese día. Luego de la extracción, 1 semana después, nos gustaría tener un encuentro con usted para la entrega de los resultados de sus análisis de muestra de sangre y poder realizar las explicaciones pertinentes.

Efectos Secundarios
En el caso de la toma de muestra sanguínea, puede producirse un mínimo moretón en la zona del pinchazo, por lo que será conveniente que después se realice presión sobre la zona puncionada.

Riesgos
En algunos pacientes, por sus características individuales, resulta difícil extraer la muestra de sangre, por lo que tal vez sea preciso puncionarles repetidas veces hasta obtener la muestra de sangre.

Molestias
Al participar en esta investigación experimentará molestias al realizarle el pinchazo para la extracción de sangre de su brazo.
Beneficios
Si usted participa en esta investigación, tendrá los siguientes beneficios: en el caso de presentar acné, un médico especialista en la piel podrá examinarle, diagnosticarle y tratarle. Y tanto para personas con cómo sin acné, se les realizará exámenes de sangre para el diagnóstico de resistencia a la insulina, con posterior asesoría sobre riesgos y posible tratamiento, sin costo alguno.

Incentivos
Les proveeremos a los estudiantes de la Unidad Educativa Andino el transporte desde su institución al laboratorio DisersLab en la Universidad Católica y luego de la extracción sanguínea se les brindará un refrigerio por su colaboración.

Confidencialidad
La información que recojamos por este proyecto de investigación se mantendrá confidencial. La información acerca de usted que se recogerá durante la investigación será puesta fuera de alcance y nadie sino los investigadores tendrán acceso a verla. Cualquier información acerca de usted no será compartida ni entregada a nadie excepto a usted y al médico encargado de su institución.

Compartiendo los Resultados
El conocimiento que obtengamos por realizar esta investigación se compartirá con usted antes de que se haga disponible al público. No se compartirá información confidencial. Los resultados se publicaran para que otras personas interesadas puedan aprender de nuestra investigación sin el uso de su identidad.

Derecho a negarse o retirarse
Usted no tiene por qué participar en esta investigación si no desea hacerlo y el negarse a participar no le afectará en ninguna forma. Puede dejar de participar en la investigación en cualquier momento que desee. Su tratamiento no será afectado en ninguna forma o usted no tiene por qué tomar parte en esta investigación si no desea hacerlo. Puede dejar de participar en la investigación en cualquier momento que quiera. Es su elección y todos sus derechos serán respetados.

Alternativas a la Participación
Si usted no desea tomar parte en la investigación, podrá sin ningún problema continuar con sus actividades diarias.

A Quién Contactar
Si tiene cualquier pregunta puede hacerlas ahora o más tarde, incluso después de haberse iniciado el estudio. Si desea hacer preguntas más tarde, puede contactar a: Gabriela Pozo, celular: 0985667258.
PARTE II: FORMULARIO DE CONSENTIMIENTO

He sido invitado a participar en la investigación de insulino-resistencia en acné. Entiendo que me extraerán sangre de mi brazo con el uso de una aguja jeringa. He sido informado de que los riesgos son mínimos y pueden incluir solo un moretón. Sé que obtendré beneficios conociendo el resultado de mis análisis. Se me ha proporcionado el nombre de un investigador que puede ser fácilmente contactado usando el nombre y el teléfono celular que se me ha dado de esa persona.

He leído la información proporcionada o me ha sido leída. He tenido la oportunidad de preguntar sobre ella y se me ha contestado satisfactoriamente las preguntas que he realizado. Consiento voluntariamente participar en esta investigación como participante y entiendo que tengo el derecho de retirarme de la investigación en cualquier momento sin que me afecte en ninguna manera.

Nombre del Participante______________________________________

Firma del Participante _______________________________________

Fecha ___________________________ Día/mes/año

Si es analfabeto Un testigo que sepa leer y escribir debe firmar (si es posible, esta persona debiera seleccionarse por el participante y no debiera tener conexión con el equipo de investigación). Los participantes analfabetos debieran incluir su huella dactilar también.

He sido testigo de la lectura exacta del documento de consentimiento para el potencial participante y el individuo ha tenido la oportunidad de hacer preguntas. Confirme que el individuo ha dado consentimiento libremente.

Nombre del testigo_____________________ Y Huella dactilar del participante

Firma del testigo ______________________ Fecha_________________ Día/mes/año

He leído con exactitud o he sido testigo de la lectura exacta del documento de consentimiento informado para el potencial participante y el individuo ha tenido la oportunidad de hacer preguntas. Confirme que el individuo ha dado consentimiento libremente.

Nombre del Investigador___________________________

Firma del Investigador___________________________

Fecha ___________________________ Día/mes/año

Ha sido proporcionada al participante una copia de este documento de Consentimiento Informado ________(iniciales del investigador/asistente).
HISTORIA CLÍNICA PARA PACIENTES CON ACNÉ
INFLAMATORIO MODERADO A SEVERO

Ficha de Identificación.

Nombre__

Sexo__________ Edad__________ Fecha Nacimiento____________________

Lugar nacimiento__________________ Ocupación______________________

Motivo de Consulta__

Antecedentes Personales Patológicos.

Cardiovasculares_____ Pulmonares____ Digestivos____ Diabetes____

Renales____ Quirúrgicos___ Alérgicos_____ Transfusiones____

Hormonas____ Tiroides_____ CA____

Medicamentos____________________ Especifique____________________

Antecedentes Personales No Patológicos

Alcohol:___

Tabaquismo:___
Drogas:___

Otros.___

Antecedentes Familiares:

__

__

Antecedentes Gineco-obstétricos:

Menarquia______ Ritmo ________ F.U.M.___________

G____ P____ A_____ C_____

Uso de Métodos Anticonceptivos: Si _____ No ______

¿Cuáles? ___

Enfermedad Actual:

__

__

__

__

__

__
Exploración física.

Peso_____ Talla_____ IMC_____

Laboratorio

Diagnóstico

Fecha______________________

Firma______________________