La transmisión de precios en el mercado agrícola:
El caso del arroz y maíz en Ecuador, periodo 2000-2014

Dricelmo Alejandro Tamayo León
dri_tamayo@hotmail.com

Director: Juan Carlos Palacios Mora
jcpalacios@seya-ec.com

Quito, Marzo de 2016
Resumen

La presente investigación estudia la transmisión de precios entre el mercado internacional y nacional para los productos agrícolas: arroz y maíz duro, en el período comprendido entre enero de 2000 a diciembre de 2014. La hipótesis de Ley de un solo precio señala que los precios en dos mercados integrados tenderán a converger a un solo precio, y que la diferencia entre ambos se debe únicamente a los costos de transacción. Se analiza pues las series de precios del mercado doméstico e internacional de arroz y maíz duro para determinar si están cointegrados con sus respectivos mercados externos, y cuál es su dinámica de transmisión de precios. Para ello se emplean modelos econométricos que permiten identificar si existe una relación causal entre el precio internacional y nacional, si los pares de series están cointegrados, la velocidad de ajuste al equilibrio de largo plazo y si la transmisión de precios es simétrica o no, es decir si los precios domésticos presentan cambios similares ante un aumento que ante una disminución de los precios externos. Los resultados muestran evidencia que el mercado nacional de arroz (nivel productor y mayorista) y maíz duro (nivel productor) se encuentra cointegrado con los mercados internacionales y que tanto la transmisión de precios como la velocidad de ajuste al equilibrio es baja, adicionalmente no existe suficiente evidencia para caracterizar a la transmisión de precios como asimétrica para los dos productos analizados.

Palabras clave: ley de un solo precio, cointegración de mercados, transmisión de precios, simetría en transmisión de precios, series de tiempo.
A mis padres, Edwin y Sheyla, y hermano, Ramiro, por su incondicional amor y apoyo en cada momento de mi vida, por brindarme siempre palabras y consejos perfectos. Todo lo que he logrado hasta el momento ha sido gracias a ellos.

A mi director de Tesis, Juan Carlos Palacios, por brindarme su amistad, consejos y guiarme en la realización de este trabajo.

Agradezco igualmente a Rebeca, por su compañía incondicional y apoyo moral para concluir esta etapa de mis estudios y ser mi fortaleza para alcanzar las metas propuestas.
La transmisión de precios en el mercado agrícola: El caso del arroz y maíz en Ecuador, período 2000-2014

Introducción .. 8

Metodología del Trabajo .. 11
 Pregunta general.. 12
 Preguntas específicas .. 12
 Objetivo general.. 12
 Objetivos específicos .. 12

Fundamentación teórica .. 13
 Comercialización y características de los productos agrícolas ... 13
 Integración de mercados .. 16
 Transmisión de precios ... 20
 Barreras Comerciales .. 25

Marco Metodológico ... 27

Caracterización del mercado de arroz y maíz. ... 38
 Mercado de arroz .. 39
 Producción, área cosechada y rendimiento ... 40
 Comercio Internacional ... 44
 Mercado de maíz duro .. 49
 Producción, área cosechada y rendimiento ... 50
 Comercio Internacional ... 54
 Indicadores comerciales .. 59
 Precios nacionales e internacionales ... 64
 Políticas comerciales y agrícolas en el período 2000 – 2014 ... 68

Análisis de integración de mercado. .. 71
 Características de las series .. 72
 Estimación modelo VAR .. 73
 Estimación modelo VEC .. 80
 Estimación modelo ECM asumiendo simetría en la transmisión de precios .. 88
 Estimación modelo ECM asumiendo asimetría en la transmisión de precios ... 91

Conclusiones .. 93

Recomendaciones ... 96

Referencias Bibliográficas ... 97

Anexos .. 103
Índice de Tablas

Tabla 1. Resumen descriptivo de precios domésticos: arroz y maíz duro (USD/Tm) ... 64
Tabla 2. Resultados prueba Dickey Fuller (p-valor) series Ecuador .. 72
Tabla 3. Selección de rezagos para la estimación del modelo VAR.. 74
Tabla 4. Resumen estimación modelos VAR reducidos.. 75
Tabla 5. Prueba sobre el término de error de modelos VAR... 76
Tabla 6. Prueba de causalidad Granger... 78
Tabla 7. Pruebas de cointegración... 83
Tabla 8. Resultados estimación VEC.. 85
Tabla 9. Prueba sobre el término de error de modelos VEC... 86
Tabla 10. Resultados estimación ECM asumiendo simetría.. 89
Tabla 11. Prueba sobre el término de error de modelos ECM.. 90
Tabla 12. Resultados estimación ECM asumiendo asimetría... 91
Tabla 13. Prueba sobre el término de error de modelos ECM asumiendo asimetría................................. 92

Índice de Ilustraciones

Ilustración 1. Representación de 2 mercados independientes... 17
Ilustración 2. Representación de 2 mercados integrados... 18
Ilustración 3. Series simuladas: caminata aleatoria... 29
Ilustración 4. Evolución de la Producción de arroz (Millones Tm)... 40
Ilustración 5. Principales países productores de Arroz – 2013 (%)... 41
Ilustración 6. Mapa de producción de arroz 2013... 42
Ilustración 7. Principales países con la mayor superficie cosechada de arroz – 2013 (%)............................ 43
Ilustración 8. Evolución del rendimiento de Arroz (Tm/Ha) en Ecuador y el Mundo................................. 44
Ilustración 9. Evolución de las exportaciones de arroz.. 45
Ilustración 10. Principales exportadores de arroz - 2013.. 46
Ilustración 11. Composición de exportaciones de arroz - 2013... 46
Ilustración 12. Destino de exportaciones de arroz de Ecuador... 47
Ilustración 13. Principales importadores de arroz - 2013... 48
Ilustración 14. Evolución de las importaciones de arroz en Ecuador... 49
Ilustración 15. Evolución de la Producción de maíz (Millones Tm).. 50
Ilustración 16. Principales países productores de Maíz – 2013 (%).. 51
Ilustración 17. Mapa de producción de maíz 2013.. 52
Ilustración 18. Principales países con la mayor superficie cosechada de maíz – 2013 (%)......................... 53
Ilustración 19. Evolución del rendimiento de Maíz (Tm/Ha) en Ecuador y el Mundo.............................. 54
Ilustración 20. Evolución de las exportaciones de maíz.. 55
Ilustración 21. Principales exportadores de maíz - 2013.. 56
Ilustración 22. Destino de exportaciones de maíz de Ecuador... 57
Ilustración 23. Principales importadores de maíz - 2013.. 58
Ilustración 24. Evolución de las importaciones de maíz.. 58
Ilustración 25. Coeficiente de Apertura Económica... 60
Glosario de términos

Asimetría en la transmisión de precios: Diferencia en el ajuste del precio, dependiendo de si el shock externo fue positivo o negativo.

Causalidad en el sentido Granger: Se dice que existe causalidad en el sentido de Granger entre dos variables, si una de las variables ayuda a predecir el futuro de otra. De este modo la causalidad en el sentido Granger es una condición necesaria pero no suficiente para la existencia de verdadera causalidad.

Caminata aleatoria: Es un proceso donde el valor actual de una variable está compuesto de su valor pasado más un término de error definido como ruido blanco (una variable normal que no está correlacionada con sus valores pasados y que tiene media igual a cero). La implicación de un proceso de caminata aleatoria es que la mejor predicción de una variable en el siguiente periodo es su valor actual, o en otras palabras, es un proceso en el cual no se puede predecir el cambio de una variable en función del periodo anterior. Esto implica, que el cambio en la variable es puramente aleatorio. El promedio de una caminata aleatoria es constante pero su varianza no.

Cointegración: Es un concepto que permite capturar las relaciones de equilibrio a largo plazo entre dos variables. La cointegración implica que dos series de datos se mueven muy similares en el largo plazo, a pesar de que en el corto plazo puedan tener desviaciones.

Estacionariedad: Estacionariedad es definida como una cualidad de un proceso en cual los parámetros estadísticos de un proceso (promedio y desviación estándar) no cambian en el tiempo.

Ley de un solo precio: Esta teoría señala que los precios en dos mercados integrados tenderán a converger a un solo precio, y que la diferencia entre ambos se debe únicamente a los costos de transacción.

Series de tiempo: Una serie de tiempo es una secuencia de datos, medido generalmente en tiempos sucesivos, espaciado por intervalos de tiempo uniformes (semana, mes, año, etc.).

Raíz unitaria: Se dice que una variable contiene raíz unitaria si no es estacionaria.
Introducción

Durante el siglo XX y XXI se ha vivido una fuerte globalización económica, la cual ha consistido en la integración internacional de las economías nacionales. Esta integración se ha fundamentado principalmente en la liberalización del comercio internacional, inversiones, intercambio tecnológico y migraciones de trabajadores (Albi E, 2005). En este sentido, la globalización económica ha logrado que el mundo se vuelva interdependiente, en donde las decisiones tomadas en un país afectan a otros.

Bajo este estado, si las mercancías pueden fluir libremente entre las distintas economías, el precio de cada bien liberalizado tenderá a converger a un precio único en un mercado global (Pippenger et al, 2007). Esto implica, por lo tanto, que los cambios de precio de un bien suscitado en un lugar determinado, se transmitirán hacia el resto de mercado mundial, cambiando los precios en la misma dirección.

El estudio de la integración de mercados y de sus efectos en la transmisión de precios como tal es de gran importancia puesto que brindan herramientas necesarias para que los productores domésticos puedan desarrollar competencias en términos de innovación o una mejora en sus técnicas agrícolas, que los hagan capaces de estar a la altura de la competencia internacional. Esto se debe a que existe presión externa a los productores locales cuando hay cambios de precios, ante la posibilidad de que la demanda local acceda a la oferta externa. Así mismo existen presiones sobre la demanda si ante cambios positivos de precios en el mercado externo, la demanda externa pueda acceder a la oferta local, empujando el precio local hacia arriba.

Del mismo modo, las reformas gubernamentales se encuentran relacionadas a los precios, por lo que una inadecuada transmisión de precios se convertirá en obstáculo para que las reformas tengan el efecto deseado (Hernandez et al, 2009).

Una medida del impacto de la integración económica es el grado en que los mismos productos se venden al mismo precio en cada país, donde la diferencia entre los precios está dada sólo por el costo de transporte entre los mercados, obedeciendo con ello la “Ley de un solo precio” (Pippenger et al, 2007). Si esta condición se cumple, los mercados están integrados y la transmisión de precios es perfecta, sin embargo esta condición no se cumple siempre debido a distintos factores tales como: políticas comerciales protecciónistas y el control y abuso del poder de mercado (Hernandez et al, 2009).

En cuanto a los productos, el arroz y maíz duro fueron escogidos debido a que son productos considerados de primera necesidad y están vinculados a la seguridad alimentaria, en especial para aquellas personas de bajos ingresos (FAO, 2008) Adicionalmente, al ser productos consumidos globalmente y ser considerados “commodities”, es decir productos relativamente homogéneos, facilita la
comparación entre distintos países y mercados, lo que los hace atractivos desde el punto de vista investigativo.

En cuanto al panorama internacional, se consideran estos productos debido al fuerte incremento que experimentaron los precios de dichos productos durante el 2007 y 2008. Adicional a ello, a partir del segundo semestre del año 2008, los productos agrícolas, entre ellos el arroz y el maíz, presentaron una disminución en sus precios (Hernandez et al, 2009). En este sentido, existe un gran interés para conocer si existe una transmisión de precios similar desde el mercado externo al mercado doméstico frente a un alza o baja de precios.

El arroz es considerado el cultivo más importante del mundo. Ello se debe a que más del 40% de la población mundial depende de dicho cultivo para el 80% de su dieta; y proporciona el 20% del consumo de calorías per cápita en todo el mundo (Benavides et al 2005). El maíz presenta el más alto potencial para la producción de carbohidratos por unidad de superficie por día. Es el primer cereal en rendimiento de grano por hectárea y después del trigo, es el segundo en producción total. Este cultivo visto como alimento humano, para animales o como materia prima para productos industriales, tiene gran importancia económica a nivel mundial (Paiwal et al, 2001).

Por lo tanto, dado el permanente proceso de integración de los mercados; especialmente de los "commodities" como el arroz y maíz, se plantea identificar econométricamente cómo la evolución de los precios internacionales de estos bienes se transmite al mercado ecuatoriano. Es igual importante notar que estos mercados han visto cambios bruscos de los precios entre 2007 y 2008, y si la transmisión es directa, pone gran presión en el mercado interno.

La presente investigación se ha estructurado de la siguiente manera: La fundamentación teórica reseña la teoría más relevante a la presente disertación, tratando los temas del origen teórico la integración de mercado, ley de un solo precio y sobre la comercialización y formación de precios en los mercados agrícolas, además se expone la discusión teórica y empírica que versa sobre la transmisión de precios. En el marco metodológico, se examinan las técnicas utilizadas para comprobar la cointegración de mercados y transmisión de precios.

En el primer capítulo se analizan los rasgos más importantes del mercado ecuatoriano de arroz y maíz, además se investiga sobre el comercio internacional y nacional de estos productos. Posterior a ello, se expone información relevante a los precios nacionales e internacionales de estos commodities y finalmente se analizan las principales políticas comerciales y agrícolas adoptadas en Ecuador que tuvieron y tienen impacto en la formación de precios de estos productos.
El segundo capítulo explora los resultados del análisis de cointegración de mercados y transmisión de precios desde el mercado internacional al mercado nacional para los mercados de arroz y maíz duro. De este modo, se estiman las relaciones a largo plazo y se estiman los efectos que tienen los mercados internacionales sobre el mercado nacional de arroz y maíz duro, comprobando de manera empírica a la ley de un solo precio. Finalmente, se investiga si la transmisión de precios se produce de manera simétrica o no, es decir, si cambios externos positivos se transmiten de la misma forma que las variaciones de precios negativas al mercado doméstico de Ecuador, para el caso del arroz y maíz duro.

El análisis realizado expone que el mercado de arroz y maíz duro son bastante restrictivos, puesto que las políticas comerciales y agrícolas han protegido a los productores de las fluctuaciones de precios externas, estableciendo escenarios más estables a los productores para llevar a cabo nuevas inversiones, además de asegurar la venta de sus cultivos. Se evidencia la existencia de cointegración entre los mercados internacionales y nacionales de arroz y maíz duro en el periodo 2000-2014, lo que señala que en el largo plazo los precios internacionales comparten una tendencia común con los precios nacionales. De esta forma se comprueba de manera empírica a la formulación teórica que versa en torno a la ley de un solo precio. Además, se identifica que la transmisión de precios tiene una velocidad de ajuste baja y que se transmite simétricamente, es decir que los cambios tanto positivos como negativos se transmiten de la misma forma al mercado nacional.
Metodología del Trabajo

La presente disertación estudia la transmisión de precios entre el mercado internacional y nacional para los productos agrícolas: arroz y maíz, en el período comprendido entre enero de 2000 a diciembre de 2014, contándose con más de un centenar de datos mensuales para la aplicación de metodologías pertinentes.

Se recopila entonces información cuantitativa de los precios agrícolas a nivel productor y mayorista, además de información pertinente sobre estos mercados tanto a nivel nacional como internacional. Estos datos provienen de fuentes primarias; para el estudio descriptivo se recolectó la información referente a producción, área cosechada y rendimiento de la ESPAC para información de Ecuador y de la Organización de las Naciones Unidas para la Agricultura y la Alimentación (FAO por sus siglas en inglés) para la información internacional. Para el análisis respecto a comercio internacional, se utilizó la información del Banco Central del Ecuador y la Base de Datos de Estadísticas del Comercio Internacional (COMTRADE por sus siglas en inglés). Para el análisis de cointegración y transmisión de precios se utilizaron las bases de datos del Sistema de Información Nacional del Ministerio de Agricultura (SINAGAP), en temas de precios tanto a nivel de productor como mayorista, adicionalmente se utilizarán las bases de datos correspondientes a precios internacionales de los principales commodities que se tranzan en el mercado mundial provenientes del Fondo Monetario Internacional, Banco Mundial y FAO.

El tratamiento a la información recopilada de series de tiempo comprende la aplicación de metodologías para evaluar en primer lugar de que orden de integración son. Conforme procedimientos aplicados en otros trabajos de investigación que fueron revisados para el desarrollo de la presente disertación, se realizó la transformación de las series de precios a términos logarítmicos. Una vez comprobada la estacionariedad de las nuevas series, se realizó la estimación de modelos de Vectores Autoregresivos (VAR) para aplicar el test de casualidad de Granger, el mismo que permite analizar si existe alguna asociación significativa entre los rezagos de una variable y el presente de otra entre las series de precio analizadas. Posterior a ello, se realizaron pruebas de cointegración y de este modo se determinó si las series están cointegradas con sus pares internacionales. Adicionalmente se obtuvo la relación de largo plazo y la velocidad de ajuste. Finalmente se realizaron estimaciones para identificar si la transmisión de precios es simétrica o asimétrica.

En base a la metodología expuesta, esta disertación responde las siguientes preguntas de investigación:
Pregunta general

¿Cuál es la forma en la que se transmiten los precios en los productos agrícolas: arroz y maíz, desde los mercados internacionales hacia el mercado nacional?

Preguntas específicas

I. ¿Cómo se conforman los mercados de arroz y maíz en Ecuador?

II. ¿De qué manera los movimientos en los precios internacionales se plasman en la evolución de los precios nacionales?

III. ¿Existe una transmisión diferente frente a un incremento que ante una disminución de precios?

Estas preguntas generan los siguientes objetivos:

Objetivo general

Identificar la forma en la que se transmiten los precios en los productos agrícolas: arroz y maíz, desde los mercados internacionales hacia el mercado nacional

Objetivos específicos

I. Caracterizar los mercados de arroz y maíz en Ecuador.

II. Analizar la manera en que los movimientos en los precios internacionales se plasman en la evolución de los precios nacionales

III. Identificar si existe una transmisión diferente frente a un incremento que ante una disminución de precios.
Fundamentación teórica

La siguiente revisión teórica, permite tener una comprensión general de la discusión teórica de la integración de mercados, de la transmisión de precios y de los desarrollos empíricos que se han desarrollado para la investigación de estas temáticas. Esta revisión teórica se estructura en tres secciones, en la primera sección se expone los aspectos relevantes acerca de la comercialización y ciertas características de los mercados agrícolas. Esto se articula con la formación de precios. En la segunda sección se expone a la Ley de un Solo Precio y la integración de mercados. Finalmente, se hace referencia a la transmisión de precios y se explica el rol que juega la simetría en este proceso.

Comercialización y características de los productos agrícolas

Es necesario definir el proceso de comercialización agrícola para iniciar la discusión sobre la integración de mercados y posteriormente medir dicha integración a través de la transmisión de precios. Adicionalmente se deben caracterizar a los productos, la producción y el consumo de los productos agrícolas debido a que poseen ciertas especificaciones que afectan a los mercados e influyen en los precios de las mercaderías.

En la literatura se encuentran distintos conceptos referentes a la comercialización agrícola, sin embargo se puede identificar un consenso en torno a que dicha comercialización consiste en un conjunto de actividades que agregan valor a los productos (FAO, 1990). El concepto de utilidad en economía está vinculado a la satisfacción de necesidades, y por lo tanto, los consumidores están dispuestos a pagar para obtener determinados objetos en el tiempo y forma deseada.

En este sentido, la comercialización de los productos agrícolas es definida por Marques y Aguiar (1993) como:

“Un sistema de actividades productivas que adicionan utilidad de forma, tiempo, espacio que posee el producto, siendo que los individuos que realizan estas actividades reciben remuneraciones por los servicios prestados, ya que realizan procesos productivos y permiten la disponibilidad del producto en el sitio, época y forma deseada por los consumidores.”

En el concepto expuesto, se identifican dos elementos que explican el funcionamiento del proceso de comercialización agrícola. En primer lugar, se hace referencia a la existencia de distintos niveles de mercado por los cuales transita un determinado producto agrícola antes de llegar al consumidor final (nivel productor, mayorista, minorista), con la existencia de oferta y demanda derivada para cada nivel. Esto es, con oferta y demanda de artículos que intervienen en la producción de mercancías de consumo.
final (Marshall A., 1982). Es importante mencionar que los niveles de mercados pueden o no estar integrados y del mismo modo, transmitir o no precios.

Por su parte, el segundo factor concierne a la existencia de intermediarios que exploran oportunidades de integración entre los diferentes niveles de mercado y que se caracterizan por la posesión de información, constituyéndose en importantes actores en los mercados. En este sentido, asumiendo que existen tres niveles de mercado: productor, mayorista y consumidor, cada eslabón carga un costo adicional al producto para el siguiente nivel, se encuentra una remuneración para los actores, lo que comúnmente se conoce como el margen de comercialización.

Conforme a la abstracción que existe en la definición de mercado, la economía establece que los mercados consisten en puntos de contrato entre compradores y vendedores (Samuelson, 1952). Es así que la principal contribución de esta definición es la multidimensionalidad, puesto que los mercados no necesariamente son locales físicamente, sino pueden asumir formas virtuales, mercados futuros, entre otros.

De manera general los mercados consisten en mecanismos de intercambio de señales, a través de los precios relativos de las mercaderías, emitiendo señales que guían a los agentes económicos interesados (Bromley, 1997). De esta forma, para que las señales emitidas por los mercados sean veraces o legítimas, se destaca la relevancia de la presencia del Estado, por medio de estructuras institucionales que garanticen su adecuado funcionamiento. Es así que el mercado puede definirse como el “espacio” en donde ocurre la comercialización, es decir, el sitio (físico o virtual) donde actúan las fuerzas de oferta y demanda, y se realizan las transferencias de bienes y servicios a cambio de dinero. En donde el ambiente institucional, a través de la intervención del Estado, impone límites a los mercados.

Por otra parte, la extensión de mercado hace referencia al área de influencia de un producto, específicamente de su precio. De este modo, dos mercados A y B constituyen un mismo mercado si las variaciones del precio en A influencian las variaciones de precios en B (Rapsomanikis et al. 2003).

El precio de mercado de un determinado producto refleja el equilibrio entre la cantidad máxima de dinero que los consumidores están dispuestos a pagar y el mínimo que los productores están dispuestos a recibir, cabe mencionar que el “equilibrio” está determinado por las fuerzas de oferta y demanda del mercado. Este sistema de formación de precios es la característica de mercados competitivos y es la consecuencia de la estructura de mercado y de las negociaciones entre compradores y vendedores.

Existe una serie de factores que pueden interferir en la formación de precios en los diferentes mercados. La FAO (2004:42) establece tres factores determinantes estructurales de los precios agrícolas: “las tendencias de la oferta y demanda interna, tendencias a largo plazo de los precios internacionales, y la
La presencia de exportaciones subsidiadas en los mercados mundiales”. Además de estos factores, la política económica nacional también ejerce presión sobre los precios agrícolas a través de instrumentos sectoriales como macroeconómicos (FAO, 2004).

Un elemento fundamental a considerar en la formación de precios de los productos agrícolas es la causalidad de transmisión de precios. Es decir, si un mercado es el que fija los precios para los demás o si simplemente toma a los precios como dados, además se debe considerar la elasticidad de transmisión de estos precios, puesto que de ello dependerá la sensibilidad o exposición de un mercado a las variaciones de precios en otro mercado (Rapsomanikis et al. 2003). Estos conceptos serán abordados con mayor detalle en el desarrollo de esta fundamentación teórica.

Del mismo modo, es importante considerar los aspectos naturales que condicionan la oferta de los productos, así como los efectos aleatorios de las condiciones climáticas y exposición a ataques de plagas y enfermedades, sobre todo durante el período de maduración del producto. De este modo los factores no previsibles dificultan conocer exactamente cuáles serán las condiciones de producción y por ende su precio. Tales factores causan precios oscilantes y mayores riesgos para el productor agrícola en relación a otras actividades económicas.

Finalmente, una característica propia de los productos agrícolas es que son considerados “commodities”. La expresión “commodity agrícola” es comúnmente utilizada para hacer referencia a un conjunto de mercaderías que son estandarizables, es decir productos homogéneos. Además, se trata de mercancías comercializables a gran escala generalmente en las bolsas de valores. Los productos seleccionados para la presente disertación no son la excepción, puesto que son productos homogéneos y comercializados mundialmente. Además, son productos que forman parte esencial de la dieta de millones de personas, sobretodo en países en vías de desarrollo. En consecuencia, las variaciones de los precios del arroz y maíz tienen repercusiones directas sobre su seguridad alimentaria (FAO, 2008).

Una vez contextualizado el proceso general de comercialización de productos agrícolas y su formación de precios, en la siguiente sección se profundiza en los conceptos referentes a la integración de mercados y la transmisión de precios entre diferentes mercados.
Integración de mercados

El proceso de globalización y el desarrollo tecnológico, que sobretodo ha tenido lugar a partir del siglo XX, ha permitido el flujo de una mayor cantidad de información entre mercados distanciados espacialmente y la posibilidad de la integración entre ellos.

Las relaciones entre mercados distanciados espacialmente pueden ser descritas por precios, volúmenes de comercio o ambos. Los análisis basados en volúmenes de comercio generalmente no pueden establecer si las condiciones de equilibrio espacial se mantienen, y por lo tanto si el comercio agota todas las rentas de arbitraje con el propósito de garantizar la eficiencia de Pareto. Por su parte, los análisis de precios no explica lo suficiente sobre el comportamiento actual del comercio.

Sin embargo, no existe un concepto claro sobre lo que implica propiamente la integración de mercados. En macroeconomía y economía internacional, el concepto comúnmente utilizado se enfoca en la “transaccionabilidad”. Esto es, la noción de que un bien es comercializado entre dos economías o que los mercados intermediarios son indiferentes entre exportar de un país a otro y de no hacerlo (Barret, 2001).

La transaccionabilidad señala la transferencia del exceso de demanda de un mercado a otro, como flujos actuales o potenciales. De este modo, flujos de comercio positivos son suficientes para demostrar la integración de mercados bajo este enfoque. Sin embargo, los precios no necesitan estar equilibrados entre mercados; es así que la integración de mercados conceptualizados como transaccionabilidad son consistentes con distribuciones Pareto – Ineficientes (Barret, 2001). Adicionalmente, esta aproximación es bastante limitada para explicar la integración entre mercados, puesto que dos mercados independientes pueden presentar cierto flujo de mercadería, mas no necesariamente estar integrados. En este sentido, es importante considerar que existen distintos grados de integración, por ejemplo si existen dos países que comercializan pocos bienes y otro par de países con mayores relaciones comerciales, en ambos casos se caracterizan a las relaciones comerciales con el concepto de integración. No obstante, claramente el segundo par de países presentará un nivel de integración mayor donde es más probable que los precios también tiendan a equilibrarse.

Por esta razón, se ha desarrollado otro enfoque que implica que dos mercados están integrados si el arbitraje tiene retornos marginales iguales a cero. Este concepto versa sobre la óptica de eficiencia de mercado, basado en un precio de equilibrio, considerando como un supuesto fundamental al libre comercio (Barret, 2001). Ello se debe a que la eficiencia de mercados solamente se obtiene cuando el precio en dos mercados difiere solamente por los costos de transacción. Es decir, hace referencia a la asignación eficiente de recursos escasos y servicios, teniendo como consecuencia la convergencia de los precios.
En este contexto, destaca la literatura referente a la Ley de un Solo Precio, que postula que si se lleva a cabo la comercialización y que todas las oportunidades de arbitraje lucrativa desaparecieran, los precios se igualarían (Barret, 2001).

Para ilustrar y facilitar el entendimiento de cómo la integración de mercados lleva a la convergencia de precios en mercados que interactúan, se genera una situación hipotética en la cual se parte de un estado inicial donde los mercados son independientes, separados geográficamente y están imposibilitados de comercializar. Para ambos mercados se analiza el mercado local de un mismo producto.

![Ilustración 1. Representación de 2 mercados independientes.](image)

Fuente: Krugman et al, 2004
Elaboración: Drichelmo Tamayo

El precio y la cantidad de equilibrio en cada mercado son determinados por la intersección de sus curvas de oferta y demanda. En el mercado 1, el precio de equilibrio corresponde a p_0^1 y la cantidad de equilibrio a q_0^1. De la misma forma, en el mercado 2, el precio de equilibrio es p_0^2 y la cantidad de equilibrio es q_0^2. Es importante mencionar que en la ilustración p_0^1 es menor que p_0^2.

Las diferencias significativas en precios de una mercancía crean condiciones para la existencia de las llamadas operaciones de arbitraje, definida por Krugman et al. (2004) como la práctica de comprar a un precio más bajo en una localidad para vender a un precio mayor en otra. Si esos mercados están integrados, la principal consecuencia de estas operaciones es evidente en términos de convergencia de precios.

Asumiendo que los mercados 1 y 2 establecen relaciones comerciales sin barreras, se presentarán nuevos precios y cantidades de equilibrio conforme la Ilustración 2. Es importante mencionar que no se consideran los costos de transporte u otros costos de transacción en el gráfico.
En la ilustración 2 se evidencia la Ley de un Solo Precio y las operaciones de arbitraje entre dos mercados. Las mercancías se trasladan del mercado con menor precio hacia el mercado con un precio mayor, resultando en una transferencia de oferta del mercado 1 para el mercado 2.

Se observa que la cantidad excedente en el mercado 1 $q_1^1 - q_1^2$ se oferta en el mercado 2, abasteciendo la demanda excedente $q_2^1 - q_2^2$, lo cual genera la convergencia de los precios en ambos mercados para p_0 . Es así, que el comercio induce a una elevación de precios en el mercado con precios bajos, en función del aumento de la cantidad demandada, mientras que provoca la caída de los precios en el mercado con precios altos, debido al exceso de la cantidad ofrecida. Dicho proceso sucede hasta el momento en que los precios en ambos mercados son iguales. Esto implica, por lo tanto, que un cambio futuro en las condiciones de oferta o demanda en uno de los dos mercados llevará a cambios en los precios de ambos mercados por los mecanismos ya descritos.

El cumplimiento de esta ley, tuviése como consecuencia la perfecta integración de mercados, puesto que la variación de precios en un mercado, sería completamente transmitida a otro, provocando de ese modo la convergencia de precios entre dichos mercados. Estos precios diferirían únicamente por los costos de transacción.

Sin embargo, existen varios autores que critican a la Ley de un Solo Precio (Fackler, 2001; Miljkovic, 1999; Sexton et al. 1991). Las críticas consisten en que las premisas de esta ley no se hacen evidentes en el análisis de los datos observados, puesto que existen barreras comerciales tales como cuotas, subsidios, intervenciones gubernamentales, etc. Además de costos diferenciados de transacción.
Zahniser (2005), define a la integración de mercados como la forma en la cual uno o más mercados separados se combinan para formar un mercado común. Dicha integración es visible cuando existe un incremento en los flujos de comercio a través de las fronteras, entendiendo al comercio no solo de productos de consumo finales sino también bienes intermedios y materias primas.

De este modo, puede encontrarse que la definición de integración de mercados previamente mencionada parte del concepto de transaccionabilidad. Sin embargo, en la literatura se encuentra que la integración de mercados y su definición versa sobre el concepto la Ley de un Solo Precio (Rapsomanikis et al. 2003; Barret, 2001).

Está claro que el concepto de integración de mercados está fuertemente vinculado a los dos enfoques mencionados: transaccionabilidad (flujo de mercadería entre diferentes mercados) y la Ley de un Solo Precio (convergencia de precios entre los mercados integrados). No obstante el presente trabajo, a pesar de las limitaciones, adopta como concepto de integración de mercados al relacionado con el enfoque de la Ley de un Solo Precio, puesto que ésta cumple con los objetivos propuestos en esta disertación. Adicionalmente, es importante aclarar que la Ley de un Solo Precio es un concepto teórico y que el aspecto empírico más relevante sobre este tema es la transmisión de precios entre mercados integrados.

Es importante mencionar que existen factores que contribuyen para que los mercados no presenten una integración perfecta: a) mercados autárquicos; b) existencia de impedimentos para el comercio (arbitraje) eficiente, como por ejemplo: barreras de entrada, información imperfecta o aversión al riesgo; o competencia imperfecta (Sexton et al, 1993).

La discusión metodológica respecto a la integración de mercados y de la transmisión de precios fundamentalmente nace de ejercicios teóricos y empíricos en los mercados de valores, en donde los precios de un activo se ven influenciados por cambios en los precios de otros activos. Del mismo modo, existe un importante desarrollo del análisis de integración de mercados en temas macroeconómicos, para identificar tendencias a largo plazo entre variables macroeconómicas y causalidad entre las mismas.

Con respecto a las aproximaciones de la integración de mercados en el ámbito de la macroeconomía se han desarrollado estudios sobre las relaciones existentes entre la productividad media de la economía, el diferencial en las tasas de interés activas en moneda extranjera, los términos de intercambio y la relación Gasto del Gobierno a PIB, empleando modelos de corrección de errores que permiten establecer las relaciones de largo plazo entre estas variables (Gianelly, D. et al. 2006). También se ha realizado análisis de cointegración para identificar las relaciones entre los ingresos fiscales, producto interno bruto, niveles de precio y comercio externo, aplicando un análisis de cointegración. Adicionalmente se han desarrollado estudios sobre la relación causal entre el desarrollo del mercado financiero y el crecimiento económico (Vazakidis, A. et al. 2010) empleado modelos de vectores con errores compuestos.
Por su parte en el ámbito de mercados financieros se han desarrollado estudios sobre las relaciones de los activos financieros en los mercados financieros durante el periodo de recuperación y la crisis financiera (Kusolpalalert, A. 2011). Este estudio fue realizado en Tailandia, con el objetivo de examinar las relaciones de largo plazo entre el índice SET (Bolsa de Valores de Tailandia), precio del oro, Bonos del gobierno de 1 año, 2 años y 10 años, y la tasa T-bill de 1 y 3 meses en los mercados financieros de Tailandia para el periodo 2001-2010. Para ello utilizan modelos de vectores de corrección de errores con el objetivo de encontrar la velocidad de ajuste al equilibrio de largo plazo. Adicionalmente el estudio identifica el impacto en cada variable como resultado del cambio en otras variables utilizando Funciones de Impulso Respuesta.

Posteriormente, los conceptos de integración de mercados expuestos al comienzo de la presente sección y su desarrollo metodológico fueron empleados en los mercados agrícolas para identificar relaciones de largo plazo entre commodities agrícolas en diferentes mercados o diferentes niveles de su cadena. Asimismo se analiza la transmisión de precios, la velocidad de ajuste y si la transmisión de precios es o no simétrica. Bajo este contexto se han desarrollado diversos estudios y análisis sobre la cointegración de mercados y la transmisión de precios en los mercados agrícolas, la presente disertación forma parte de uno de estos trabajos, puesto que busca las relaciones existentes entre los mercados agrícolas internacionales de arroz y maíz duro con los mercados domésticos del Ecuador. En la siguiente sección, se examinarán los fundamentos detrás de la transmisión de precios y además se presentarán estudios direccionados bajo la lógica de los mercados agrícolas, que servirán como referente metodológico y para el contraste de los resultados de la presente disertación.

Transmisión de precios

Un aspecto fundamental cuando se analiza la política comercial en los mercados agrícolas globales es entender como los mercados de commodities domésticos van a responder a cambios en los precios internacionales. Es así que la transmisión de precios desde mercados internacionales al mercado doméstico es fundamental para comprender la integración de los agentes económicos dentro de los mercados.

Para ello se ha desarrollado un cuerpo teórico en torno a la transmisión de precios, el mismo que se enfoca en analizar como ocurre la dinámica de precios entre dos mercados integrados. El concepto de transmisión de precios está basado principalmente en tres componentes: a) co-movimiento de precios y ajuste completo, lo cual significa que los cambios de precios en un mercado se transmiten ‘completamente’ a otro en todos los puntos de tiempo; b) dinámica y velocidad de ajuste, es decir, el proceso por el cual los cambios en los precios en un mercado se ‘filtran’ a otro mercado o niveles del mismo mercado; c) asimetría de respuesta, movimientos hacia arriba o debajo en los precios en el mercado son simétricamente o asimétricamente transmitidos al otro (Balcombe et al, 2002).
Es importante mencionar que la transmisión de precios no solamente se centra en estudiar la relación entre dos mercados, sino también la dinámica existente entre diferentes niveles de una misma cadena (Gutiérrez M., 2012; Cih et al, 2013; Alfaro et al, 2009; Goodwin., 2006). Esto último se lo hace con el objetivo de analizar la rigidez de precios en la transmisión entre los eslabones de la cadena de comercialización, asimetrías e identificar qué consecuencias tienen estos factores en el resto de eslabones de la cadena.

La presente disertación se enfocará en analizar la transmisión de precios que existe en el mercado de arroz y maíz duro de Ecuador tanto a nivel productor como mayorista con el mercado internacional. Es decir, la relación existente entre las series de precio entre el mercado mundial y mercado doméstico, con el fin de observar como un shock de precios es transmitido de un mercado a otro.

En la sección anterior se expuso la Ley de un Solo Precio, que establece a la convergencia de precios entre mercados integrados como resultado de las operaciones comerciales bajo un escenario de libre mercado, culminando en precios que se diferencian únicamente entre los mercados por sus costos de transacción. En este sentido, la convergencia de precios en el mercado de commodities es el mejor indicador de la integración de mercados, puesto que el proceso de transmisión de precios ya incluye todos los costos relevantes que se generan por el comercio, por ejemplo: costos de transporte, barreras comerciales, los efectos de estructuras de mercado monopolizadas, costos asociados con guerras, entre otros (Findlay et al, 2001).

La completa transmisión de precios entre dos mercados ocurre cuando los cambios de precios en un mercado son completamente e instantáneamente transmitidos a los precios de otro mercado, como postula la Ley de un Solo Precio. Bajo ese escenario, los mercados se encuentran integrados. Adicionalmente, esta definición implica que si los cambios en el precio no son transmitidos instantáneamente, pero sí después de un cierto tiempo, la transmisión de precios es incompleta en el corto plazo, pero completa en el largo plazo (Rapsomanikis et al, 2003). Es así, que la distinción entre la transmisión de precios a corto y largo plazo es importante, y la velocidad a la cual los precios se ajustan en las relaciones a largo plazo es esencial para entender el grado en que los mercados están integrados en el corto plazo (Rapsomanikis et al, 2003).

En la literatura se han encontrado ciertos factores que afectan a la dinámica de precios entre los mercados integrados, los cuales pueden ser resumidos de la siguiente manera:

a) Costos de transporte y de transacción, siendo clasificados en tres grandes grupos: información, negociación y costos de ejecución. (McNew, 1996; Barret et al, 2002);
b) Poder de mercado, que hace referencia a la estructura de mercado predominante y la capacidad de los agentes de determinar el precio (Wohlgenant, 1999; Goodwin et al, 1999; Dhar et al, 1998; McCorriston et al, 2001);

c) Economías de escala que pueden influenciar el poder de mercado (McCorriston et al, 2001);

d) Homogeneidad o diferenciación de un producto, que concierne a la relaciones de sustitutabilidad afectando la transmisión de precios (Conforti, 2004);

e) Tasa de cambio, variaciones que son transmitidas a los precios de los productos de acuerdo con la mayor o menor habilidad de las empresas en administrarlas (Dornbusch, 1987; Froot et al, 1989; Knetter, 1993);

f) Políticas internas, medidas de intervención gubernamental como forma de protección a shocks de oferta o exceso de demanda (Mundlak et al, 1992; Zanias, 1993; Baffes et al, 2001; Thompson et al, 2002; Sharma, 2002).

Por su parte, es importante mencionar que el desarrollo teórico sobre la transmisión de precios ha evolucionado buscando responder tres preguntas principales: a) ¿A qué nivel de mercado se originan las variaciones de los precios y en qué sentido esas variaciones se transmiten?; b) ¿Durante qué periodo se da la transmisión y con qué intensidad?; y, c) ¿Cómo es la simetría en la transmisión de precios? (Mundlak et al, 1992)

La identificación del nivel de mercado que lidera la transmisión de precios y el sentido en que ésta se da se realiza a través de pruebas de causalidad, y consiste en verificar si los valores presentes y pasados de una variable son importantes para explicar el valor presente de otra. Es decir, se refiere a verificar en qué nivel de mercado se origina la dinámica de precios y para dónde es transmitida (Mundlak et al, 1992).

La elasticidad de transmisión de precios consiste en un parámetro para el análisis de la intensidad de transmisión y mide el impacto porcentual de una variación de precio en un nivel de mercado sobre el precio de otro nivel (Conforti, 2004). En otras palabras, en cuanto varía el precio en un nivel de mercado debido a la variación de 1% en los precios de otro nivel. De este modo, la elasticidad de transmisión de precio se refiere a la variación relativa del precio de un nivel de mercado en relación a la variación del precio de otro nivel. Consiste en una medida de sensibilidad de un mercado debido a la oscilación de los precios en otro mercado.

La simetría en la transmisión de precios, hace referencia tanto a la magnitud como la velocidad de respuesta de los diferentes precios en relación a si la transmisión es igual o no si los cambios en precios son positivos o negativos (Conforti, 2004). Por ahora solo basta saber que cuando se reconoce su existencia, se asumen dos diferentes elasticidades de transmisión, una para aumento y otra para disminuciones de precios. Este tema será retomado en la siguiente sección.
La búsqueda de estas respuestas permitirá medir la integración de mercados a través de la transmisión de precios entre ellos y, por lo tanto, consisten en objetivos específicos de esta disertación.

Bajo esta lógica se han desarrollado distintas investigaciones que buscan responder estas interrogantes. Hernandez K; et al (2009), realizan un análisis sobre la transmisión de precios en los mercados del maíz duro y arroz en América Latina, buscando evidenciar si existe transmisión, y en el caso de que sí exista, con qué velocidad ocurre y si es asimétrica o no. Para ello analiza la transmisión de precios en los mercados de maíz amarillo y arroz en Brasil, Chile, Costa Rica, Guatemala, El Salvador, Nicaragua, Panamá y Honduras, utilizando datos de precios mayoristas y/o productor dependiendo de la disponibilidad de información en cada uno de estos países. Realizan este análisis en torno a Ley de un Solo Precio, aplicando métodos de cointegración y modelos de corrección de errores, los que permiten cuantificar la transmisión de precios y la velocidad en la que ocurre.

De manera general concluyen que Brasil tiene una transmisión de precios mayor en el mercado del arroz. Una situación similar se da para Chile en el caso del maíz. Por su parte, los mercados Centroamericanos, no pueden ser distinguidos por una integración particularmente baja o alta. Encuentran que la transmisión de precios es más fuerte en el mercado mayorista que en el productor. Adicionalmente emplean modelos de corrección de errores asumiendo una transmisión asimétrica, para identificar si en efecto existe una transmisión de precios asimétrica entre los mercados analizados. No obstante, no encuentran pruebas suficientes para determinar si la transmisión de precios es asimétrica. Finalmente identifican que la ausencia de transmisión de precios, en ciertos mercados analizados, se debe principalmente a un poder de mercado excesivo por parte de los mayoristas y por políticas proteccionistas a nivel productor.

En Argentina se llevó a cabo otra investigación en torno a la transmisión de precios. Giorgetti et al. (2007) realiza una comparación entre los precios internacionales y nacionales, y encuentra la existencia de una relación de cointegración en el precio internacional del maíz y soja durante el período 1985-2003. Además verifica la versión absoluta de la ley de un solo precio entre los dos mercados, puesto que frente a desequilibrios en la relación de largo plazo entre el precio interno y externo, ambos reaccionan en el período siguiente para volver al equilibrio. Para ello el autor primero determinó las propiedades econométricas de las series y posteriormente comprobó la integración de los mercados aplicando el análisis de cointegración por medio de vectores autoregresivos.

Otro estudio que examina la transmisión de precios en la región es el realizado por Fiess y Lederman (2004). Los autores, examinan la diferencia en la transmisión de precios antes y después del tratado de libre comercio entre México y Estados Unidos. Los autores concluyen que existe transmisión de precios antes y después del tratado, no obstante, como es de esperar, la transmisión es más veloz después del tratado de libre comercio. De esta forma comprueban de manera empírica la ley de un solo precio.
Un trabajo similar que explora la transmisión de precios dentro de los mercados agrícolas es el de Mengisty Seyoum (2010) que analiza el sistema de transmisión de precios en el mercado de café de Etiopía. El estudio cubre el período entre 1991 y 2009, empleando el modelo de vectores con corrección de errores para identificar si existe causalidad entre el mercado internacional y el mercado de Etiopía a nivel productor y mayorista, la velocidad de ajuste y si existe una respuesta asimétrica. Los resultados de la metodología empleada sugieren que el coeficiente de ajuste para el precio productor es de 3% si existe un shock en el mercado de café en los mercados internacionales en el corto plazo. Lo que indica que tan solo el 3% del shock es transmitido al mercado doméstico en cada mes. De manera general, el autor concluye que el mercado a nivel productor y el mercado internacional no son dependientes y que existen relaciones muy débiles entre ellos.

Paralelamente, Minot N. (2010) analiza la transmisión de precios de los cambios de precios en alimentos mundiales en el mercado de África Sub Sahariana. Para ello utiliza los precios mensuales de maíz, arroz y trigo de los países que pertenecen a África Sub Sahariana (62 series de precio), y emplea un modelo de vectores con corrección de errores para examinar la relación existente entre los precios internacionales y los precios domésticos de los países de esta región África. El autor encuentra que tan solo 13 de las 62 series de precios presentan una relación de largo plazo, en las cuales el precio doméstico estaba influenciado por el precio internacional del mismo commodity. De estos 13 precios domésticos, tan solo 6 tenían una elasticidad de transmisión de largo plazo que fuese estadísticamente significativo, los cuales fluctuaban entre 0.16 y 0.97, con una mediana de 0.54 el mismo que indica que el 54% de un cambio porcentual en el precio internacional sería transmitido al precio doméstico del mismo commodity.

Adicionalmente encuentra diferencias entre los commodities. Tan solo el 10% de los precios de maíz domésticos puestos a prueba fueron significativamente relacionados con los precios internacionales del maíz, pero aproximadamente la mitad de los precios de arroz doméstico están relacionados con los precios mundiales de arroz. Lo que demuestra que los mercados de arroz de África estaban generalmente mejor conectados con los mercados mundiales en comparación con el mercado del maíz.

Por otra parte, también cabe mencionar que uno de los aspectos más relevantes en la teoría desarrollada por la transmisión de precios, corresponde a la asimetría en los mecanismos de dicha transmisión. En la literatura, el concepto de asimetría comúnmente aceptado se asocia tanto a la magnitud como la velocidad de respuesta de los diferentes precios. Generalmente las respuestas rápidas y simétricas de los precios ante shocks suelen considerarse propias de los mercados eficientes, aunque no necesariamente la existencia de asimetrías en la transmisión debe ser atribuida como característica de mercados ineficientes.

Otro de los aspectos, por los que es relevante el estudio de la asimetría en la transmisión precios, es que dos mercados pueden estar integrados solo parcialmente, debido a una transmisión asimétrica (Hernández et al. 2009).
Varios análisis empíricos han identificado al poder de mercado, los costos de transacción, el grado de sustitutibilidad de insumos en el proceso productivo, al nivel de inventarios tanto a nivel productor como minorista y la intervención pública como posibles causas que determinan la existencia de relaciones de precios asimétricos (Meyer et al. 2004; Bailay et al. 1989; Griffith et al. 1994; Chavas et al. 2004; Reagan et al. 1982; Kinnucan et al. 1987). Sin embargo, la literatura empírica no ofrece resultados concluyentes en una determinada dirección. Ello se debe a que los resultados dependen del producto analizado, el país de estudio, la frecuencia de los datos y del método de análisis empleado (Kaabia et al. 2008).

Siendo identificada la importancia de la asimetría en el análisis de la transmisión de precios, se ha propuesto desarrollar este tema como parte de un objetivo específico para la presente disertación. En este sentido, la formulación matemática y su respectivo desarrollo serán retomados posteriormente conforme avanza el presente trabajo.

Barreras Comerciales

Como se ha mencionado en el desarrollo de las secciones anteriores, las barreras comerciales y el control y abuso de poder de mercado son los elementos con mayor incidencia en la literatura revisada para la explicación de la no integración de mercados y la no transmisión de precios, total o de forma parcial. La presente disertación no aborda la problemática que gira en torno al control y abuso de poder de mercado, debido a la no disponibilidad de la información en fuentes de acceso públicas, y debido a que el propio análisis e investigación de esta temática formaría en sí misma una investigación independiente. Es por ello que se analiza únicamente a las políticas comerciales como un posible factor que afecte las relaciones de integración y transmisión.

La política de comercio exterior puede incentivar o desincentivar a la producción, debido a que influye en los precios y en las cantidades de los productos que se importan para ser comercializados en el mercado interno, además de los efectos sobre los precios internos a causa de las exportaciones (Organización de las Naciones Unidas para la Agricultura y la Alimentación - FAO, 2004).

Permitir el comercio libre de barreras permite la transmisión de precios, aunque no siempre esta transmisión es deseada tanto desde el lado de la oferta como de la demanda. Desde la oferta puede ser indeseable una apertura comercial total, ya que la presión a la baja de los precios de ciertos productos puede afectar a la población que se dedica a su producción. Desde la demanda una apertura comercial también puede ser sensible si el precio externo es mayor, ya que puede causar encarecimiento y desabastecimiento. Es por ello que los gobiernos crean mecanismos de protección para desincentivar el comercio de ciertos bienes. Estas barreras son utilizadas para fortalecer la producción local, protección de empleos locales, proteger industrias emergentes, reducir los problemas de balanzas de pagos, promover las actividades de exportación, recaudación fiscal, entre otros (Krugman et al, 2006).
La Ley de un Solo Precio expone que en ausencia de distorsiones, la diferencia de precios de un mismo bien entre dos mercados separados espacialmente se debe únicamente por el costo de transporte (Pippenger et al, 2007). Es por ello que las barreras comerciales, entendidas como distorsiones de mercado, pueden afectar al nivel general de precios en una economía y por ende dificultar la comprobación de la hipótesis de integración de mercados. En la realidad existen tanto barreras de entrada como de salida de mercancías, donde las barreras de entrada tenderán a mantener los precios locales más altos que los externos y viceversa con las barreras de salida.

Adicionalmente, a las barreras comerciales se las puede desagregar entre barreras arancelarias y no arancelarias. El primer tipo de barrera comercial hace referencia a impuestos que se gravan sobre bienes que son comercializados. Los más comunes son los aranceles a las importaciones que gravan a los bienes que son introducidos al país. También existen aranceles a las exportaciones para bienes que son enviados desde un determinado país. Estos impuestos son aplicados sobre una serie de bases. Un arancel fijo es una tarifa basada en unidades y un arancel ad valorem es una tarifa basada en un porcentaje del valor del ítem; también pueden existir aranceles compuestos, los cuales hacen referencia a aranceles que se encuentran constituidos por aranceles específicos y por aranceles ad valorem.

Por otra parte, las barreras comerciales no arancelarias hacen referencia a reglas, regulaciones e incluso a la burocracia que retrasan o impiden la compra de bienes extranjeros. En este tipo de barreras comerciales se encuentran las cuotas, barreras técnicas y valoración en la aduana.

En cuanto a los productos agrícolas, éstos se encuentran altamente regulados tanto por cuotas como por aranceles como mecanismos de protección a los productores y consumidores locales. De hecho, el sector agrícola es tan sensible que los productores domésticos en la mayoría de países industrializados reciben subsidios de manera directa y por medio de precios domésticos artificialmente elevados. Del mismo modo, las exportaciones agrícolas son subsidiadas (Krugman et al 2006).

Como conclusión general del marco teórico, en el extremo de autarquía total (incluso sin contrabando) los precios se deberán únicamente a las condiciones del mercado local, mientras que las condiciones externas no transmitirán ningún tipo de información al mercado interno. No obstante, Ecuador y la mayoría de países vive una realidad híbrida donde no existe ni total autarquía ni total apertura comercial, y aunque existan barreras estrictas sobre ciertos bienes, las condiciones de los mercados externos, aunque débilmente, pueden crear presiones y por ende transmitirse al mercado local. Paralelamente, pueden generarse transmisiones asimétricas de precios en relación a la dirección del cambio del precio internacional. Agregando a esto las características de homogeneidad internacional que comparten el arroz y el maíz duro, lo que los convierten en commodities, se obtienen las características teóricas necesarias para un análisis de transmisión de precios desde los mercados internacionales al mercado ecuatoriano y su asimetría para estos dos bienes.
Marco Metodológico

Conforme a la revisión de literatura expuesta en la sección anterior, se identificaron ciertas técnicas econométricas que han sido utilizadas en otras investigaciones para responder preguntas similares a las propuestas en la presente disertación, en este sentido en base a esta revisión literaria y a la formulación metodológica propia de la integración de mercados y transmisión de precios se han seleccionado las metodologías más apropiadas para abordar esta problemática y responder a las preguntas de investigación planteadas. Es así que en esta sección se presentarán los principales enfoques metodológicos utilizados para analizar la integración de mercados y la transmisión de precios, identificando cuales son los principales modelos teóricos y sus aplicaciones.

Una serie de tiempo hace referencia la observación de un conjunto de valores de una variable a través del tiempo, esta información debe estar recopilada en intervalos regulares: diaria, semanal, mensual, anual, etc. Cabe mencionar, que gran parte del trabajo empírico con datos de series de tiempo supone que éstas son estacionarias, es decir, que su media y varianza no varían sistemáticamente con el tiempo (Gujarati et al, 2009).

Es importante mencionar, que los procesos estocásticos estacionarios han sido objeto de estudio de las series de tiempo. Estos procesos se caracterizan porque tienen una media y varianza constante en el tiempo y el valor de la covarianza entre dos periodos depende sólo de la distancia o rezago entre esos dos periodos, y no del tiempo en el cual se calculó la covarianza.

\[
\begin{align*}
E(y_t) &= \mu_t = \mu \\
Var(y_t) &= \sigma_t^2 = \sigma^2 \\
Cov(y_t, y_{t+j}) &= \sigma_j
\end{align*}
\]

A pesar de que el interés de los estudios de serie de tiempo se centra en las series de tiempo estacionarias, también existen series de tiempo no estacionarias que no cumplen con las características mencionadas anteriormente. El mejor ejemplo para comprender una serie de tiempo no estacionaria es la caminata aleatoria, que es definida por Lawler y Limic (2010) como un proceso estocástico formado por una sucesiva suma de variables aleatorias independientes e idénticamente distribuidas.

Existen dos tipos de caminata aleatoria, el primero hace referencia a la caminata aleatoria sin deriva y el segundo a la caminata aleatoria con deriva. La diferencia entre estos dos tipos, es la inclusión de un término constante o intercepto.
Conforme Becketti S. (2013), la caminata aleatoria sin deriva puede ser definida de la siguiente manera:

\[y_t = y_{t-1} + u_t \] \hspace{1cm} (4)

En este caso, la variable de interés toma el valor del periodo anterior más un error aleatorio con media cero y varianza constante e independientemente distribuida. De este modo, al hacer un proceso iterativo, se obtiene el siguiente resultado

\[y_2 = y_1 + u_2 = y_0 + u_1 + u_2 \] \hspace{1cm} (5)
\[y_t = y_0 + \sum u_t \] \hspace{1cm} (6)

Por lo tanto,

\[E(y_t) = E \left(y_0 + \sum u_t \right) = y_0 \] \hspace{1cm} (7)
\[var(y_t) = t\sigma^2 \] \hspace{1cm} (8)

De este modo, la esperanza de \(Y \) corresponde a su valor inicial, pero conforme aumenta \(t \), su varianza aumenta de manera indefinida. Una característica de este tipo de modelos, es la persistencia de los choques aleatorios (Gujarati et al, 2009). El segundo término de la ecuación (6), \(\sum u_t \), también es conocido como tendencia estocástica.

La caminata aleatoria con deriva puede ser definida de la siguiente manera:

\[y_t = \delta + y_{t-1} + u_t \] \hspace{1cm} (9)

Donde \(\delta \), se conoce como el parámetro de deriva, puesto que la serie presentará una tendencia ascendente si \(\delta > 0 \) y descendente si \(\delta < 0 \). Cabe mencionar que no sólo la varianza no permanece constante sino que la media tampoco, puesto que, conforme aumenta \(t \) la media también lo hará si \(\delta > 0 \) y disminuye si \(\delta < 0 \).
A continuación, se presentan estos dos tipos de series de tiempo no estacionarias, para observar la diferencia entre ellas:

Ilustración 3. Series simuladas: caminata aleatoria

La distinción entre procesos estocásticos estacionarios y no estacionarios es fundamental para conocer si la tendencia que se observa en las series de tiempo. La primera hace referencia a si la tendencia es predecible y no variable, mientras que la segunda hace referencia a si la tendencia no es predecible.

Para identificar si una serie es estacionaria o no, se utiliza la prueba Dickey Fuller Aumentada. Consiste en una prueba de raíz unitaria en series de tiempo. El hecho de que la prueba indique que no existe raíz unitaria, implica que la serie es estacionaria. Conforme Beckett S. (2013), esta prueba lleva a cabo la siguiente estimación:

\[\Delta y_t = \beta_1 + \beta_2 t + \delta y_{t-1} + \sum_{i=1}^{m} \alpha_i \Delta y_{t-i} + u_t \]

(10)

Fuente: Series simuladas
Elaboración: Drichelmo Tamayo
En esta ecuación β_1 representa una constante, β_2 es el coeficiente de la tendencia; u_t es el término de error de ruido blanco. Esta prueba estima la significancia de δ y su hipótesis nula es que $\delta = 0$. Si la hipótesis nula es cierta, existe raíz unitaria; es decir es no estacionaria y su hipótesis alternativa es que $\delta < 0$, no existe raíz unitaria y por lo tanto la serie es estacionaria.

Es así, que pueden identificarse distintas órdenes de integración para que una serie no estacionaria sea estacionaria, es decir el número de veces que se debe diferenciar la serie (Becketti, S. 2013). Si x_t no es estacionaria, pero Δx_t si lo es, entonces x_t es de orden de integración 1, $x_t \sim I(1)$; si Δx_t no es estacionaria pero $\Delta^2 x_t$ es estacionaria entonces x_t es de orden de integración 2, $x_t \sim I(2)$.

Proceso Autoregresivo

Un proceso autoregresivo es un proceso cuya variable dependiente está siendo explicada por sí misma en un periodo anterior y un término aleatorio (Becketti, S. 2013). Es importante mencionar que un modelo autoregresivo no es siempre estacionario. A continuación se muestra el proceso autoregresivo más simple AR(1):

$$y_t = c + \alpha y_{t-1} + u_t$$
$$u_t \sim iid[0, \sigma^2]$$

(11)

La condición para que el proceso sea estacionario es que $|\alpha| < 1$. En este caso la media marginal, viene dada por

$$E(y_t) = c + \alpha E(y_{t-1})$$

(12)

$$\mu = \frac{c}{1 - \alpha}$$

(13)

El modelo puede ser escrito de la siguiente manera:

$$y_t - \mu = \alpha(y_{t-1} - \mu) + u_t$$

(14)

De este modo, se aprecia que las observaciones fluctúan alrededor de la media, es decir μ. Cabe mencionar que las correlaciones tienden hacia cero exponencialmente, es decir, entre más alejadas se
encuentren las observaciones en el tiempo, menor influencia tendrán si el proceso es estacionario. Adicionalmente el parámetro \(\alpha \) está relacionado con la memoria de la serie, es decir, entre más cercano a cero, la memoria será más corta; mientras que a medida que incrementa, la memoria es mayor y consecuentemente, la dependencia respecto al pasado es mayor (Gujarati et al, 2009).

Proceso de medias móviles

El proceso de promedios móviles es una combinación lineal de error de ruido blanco para ilustrarlo mejor, se considera el siguiente modelo:

\[
y_t = c + u_t + \beta_1 u_{t-1}
\]

(15)

En este modelo, \(y \) en el periodo \(t \) es igual a una constante, \(c \), más un promedio móvil de los términos de error pasado y presente. De este modo se dice que \(y \) sigue un proceso de promedios móviles de primer orden MA(1).

Vector Autoregresivo

Los modelos del tipo vector autoregresivo (VAR) son utilizados cuando se pretende caracterizar las interacciones simultáneas entre un grupo de variables. Un VAR es un modelo de ecuaciones simultáneas formado por un sistema de ecuaciones de forma reducida\(^1\), es decir que no se identifica el modelo estructural o la verdadera relación entre las variables, y sin restringir\(^2\). Asimismo, el conjunto de variables explicativas de cada ecuación está constituido por un bloque de rezagos de cada una de las variables endógenas del modelo, así como de posibles variables exógenas (Novales, 2014).

En este tipo de modelos se pueden incluir también como variables explicativas, variables de naturaleza determinística, por ejemplo: tendencia temporal, variable dummy estacional, variable dummy de tipo impulso.

La importancia de este tipo de modelos radica en que, al no imponer ninguna restricción sobre la versión estructural del modelo, no se incurre en los errores de especificación que dichas restricciones pudieran

\(^1\) Los valores contemporáneos de las variables del modelo no aparecen como variables explicativas en ninguna de las ecuaciones.

\(^2\) Que sean ecuaciones no restringidas significa que aparece en cada una de ellas el mismo grupo de variables explicativas.
causar al ejercicio, aunque no se pueden identificar las relaciones estructurales sino una mezcla de estas representadas en la forma reducida.

Los modelos VAR son una extensión a los modelos AR presentados anteriormente. Su diferencia es que, en vez de tratar a una sola variable, ahora se considera un vector de variables. Los modelos VAR no restringidos están en forma reducida, y por ello carecen de interpretación sin referencia a una estructura teórica económica. De este modo, conforme Becketti S. (2013), se asume que Y_t es un vector de variables de dimensión $n\times 1$, cuyo comportamiento dinámico es definido por un modelo estructural finito:

$$AY_t = \gamma + \sum_{k=1}^{p} B_k Y_{t-k} + C u_t \quad (16)$$

Donde γ es un vector de constantes, A, B y C son matrices $n\times n$ de coeficientes y u_t es un vector $n\times 1$ de errores estructurales que siguen un proceso tipo ruido blanco con una matriz de covarianzas Σ. La forma reducida de Y_t puede ser modelada de la siguiente forma:

$$Y_t = \delta + \sum_{k=1}^{p} \alpha_k Y_{t-k} + e_t \quad (17)$$

Donde, $\delta = A^{-1}\gamma$, $\alpha_k = A^{-1}B_k$ y $e_t = A^{-1}Cu_t$. e_t es un proceso de ruido blanco, con una matriz covarianza no singular Ω. Para pasar de la forma reducida al modelo estructural, un conjunto de restricciones de identificación tiene que ser impuesto. Se asume que la matriz de covarianza para u_t (Σ), es diagonal; mientras que A presenta valores “1” en su diagonal principal, pero en sus demás componentes no está restringido. Lo cual implica que cada miembro de Y_t está asignado su propia ecuación estructural que asegura que se de una interpretación económica a los shocks.

Los coeficientes de las matrices α_i y Ω pueden ser estimados mediante Mínimos Cuadrados Ordinarios (OLS por sus siglas en inglés) aplicada a la forma reducida (ecuación (17)). Una vez que el modelo está estimado e identificado, se pueden establecer funciones de impulso respuesta. Un impulso respuesta, da la respuesta de una variable, en función de un impulso (shock) de otra variable en el sistema. Se asume que e_t para todas, excepto una variable, es igual a 0 y para la variable de relevancia se asumen que es igual a 1. Dadas las relaciones encontradas en la forma reducida, se encuentra como el shock de e_t afecta a la totalidad de variables endógenas.
Los modelos VAR presentan ciertas limitaciones. La mayor limitación es que tiene que ser estimado para sistemas de bajo orden. Todos los efectos de las variables omitidas estaría en los residuales, lo cual podría provocar mayores distorsiones en los impulsos respuestas reduciendo su uso para interpretaciones estructurales, a pesar de que podría seguir siendo útil para predicciones.

Modelo ECM

El concepto de cointegración permite capturar la relación de equilibrio entre dos variables. Esto implica que las variables comparten una tendencia común en el largo plazo, a pesar de que en el corto plazo puedan presentar divergencias. Dos variables pueden estar cointegradas si las dos variables tienen el mismo orden de integración \(I(1) \) y si existe una combinación lineal de ambas que sea \(I(0) \).

De este modo si existen dos variables que cumplan estas condiciones, \(p_{1t} \) y \(p_{2t} \), su relación de cointegración puede presentarse de la siguiente manera:

\[
p_{1t} = \beta p_{2t} + u_t
\]

(18)

Donde \(\beta \) corresponde al parámetro que describe la relación entre dichas variables, y \(u_t \) representa las desviaciones del equilibrio en el corto plazo, las cuales se espera que en el largo plazo desaparezcan y su valor promedio sea igual a 0 (Rapsomanikis et al, 2003; Hendry y Juselius, 2000). Dicha tendencia en el largo plazo, podría suceder de manera inmediata o en varios períodos de tiempo. De este modo, la cointegración supone que las desviaciones del equilibrio en el corto plazo, se compensen, para que el equilibrio en el largo plazo se mantenga. El modelo de Corrección de Errores (ECM, por sus siglas en inglés) representa este ajuste. Además si dos series están cointegradas, el modelo de primeras diferencias está mal especificado y por lo tanto se tiene que incluir este término de corrección de error.

\[
\Delta p_{1t} = \theta_1 + \alpha (p_{1t-1} - \beta p_{2t-1}) + \sum_{i=1}^{k} \theta_{2i} \Delta p_{1t-i} + \sum_{j=1}^{p} \theta_{3j} \Delta p_{2t-j} + \varepsilon_t
\]

(19)

Donde \(\Delta p_{1t} \) corresponde a las diferencias del precio \(p_{1t} \) con respecto a su valor en el período anterior, \(\theta_1 \) es un valor constante. \((p_{1t-1} - \beta p_{2t-1})\) corresponde al término de corrección de error, es decir, cuánto se distanciaron las variables de su relación de equilibrio en el período anterior, \(\alpha \) representa el porcentaje en el cual la variable se ajusta en el período actual, como respuesta a la diferencia con respecto al equilibrio de largo plazo.
De este modo los parámetros de interés en la ecuación (19), son \(\beta \) (que describe la relación del largo plazo) y \(\alpha \) que representa la velocidad de ajuste a este equilibrio. La ecuación previamente mencionada, puede ser resuelta mediante el método de OLS.

La representación de la corrección de error también provee un marco para probar la asimetría y el ajuste no lineal para un equilibrio a largo plazo. Granger y Lee en 1989, propusieron un ECM asimétrico (AECM) en donde la velocidad de ajuste de la variable endógena depende en si la desviación del equilibrio a largo plazo es positivo o negativo. Así se especifica el AECM:

\[
\Delta p_{1t} = \theta_1 + \alpha_1^+ (p_{1t-1} - \beta p_{2t-1})^+ + \alpha_1^- (p_{1t-1} - \beta p_{2t-1})^- \\
+ \sum_{i=1}^k \theta_{2i} \Delta p_{1t-i} + \sum_{i=1}^p \theta_{3i} \Delta p_{1t-i} + \varepsilon_t
\]

Los errores o divergencias de este equilibrio están descompuestas en 2 partes, \(\alpha_1^+ (p_{1t-1} - \beta p_{2t-1})^+ \) y \(\alpha_1^- (p_{1t-1} - \beta p_{2t-1})^- \) reflejando el desequilibrio positivo y negativo respectivamente. Dentro de este contexto, la asimetría ocurre en el evento cuando las divergencias positivas y negativas del equilibrio de largo plazo entre \(p_{1t} \) y \(p_{2t} \) resulta en cambios en \(p_{1t} \) que tiene diferente magnitud. De este modo, la transmisión asimétrica implica que \(\alpha_1^+ \) no es igual a \(\alpha_1^- \). La hipótesis nula de simetría versus la hipótesis alternativa que el ajuste es asimétrico se prueba imponiendo la restricción a la siguiente igualdad \(\alpha_1^+ = \alpha_1^- \).

Modelo VECM

Los modelos VEC son una extensión de ECM, que permite a \(p_{1t} \) y \(p_{2t} \) evolucionar conjuntamente sobre el tiempo como un sistema de ecuaciones. En el caso de que los precios de dos mercados espacialmente separados, \(p_{1t} \) y \(p_{2t} \), estén cointegrados, la representación del Vector de Corrección de Error (VECM) sigue la siguiente forma:

\[
\begin{pmatrix}
\Delta p_{1t} \\
\Delta p_{2t}
\end{pmatrix} =
\begin{pmatrix}
u_{1t} \\
u_{2t}
\end{pmatrix} +
\begin{pmatrix}
\alpha_1^+ \\
\alpha_2^-
\end{pmatrix}
(p_{1t-1} - \beta p_{2t-1})^+ + A_2 \left(\frac{\Delta p_{1t-1}}{\Delta p_{2t-1}} \right) + \cdots + A_k \left(\frac{\Delta p_{1t-k}}{\Delta p_{2t-k}} \right) + \varepsilon_t
\]

En donde \(\nu_{1t} \) y \(\nu_{2t} \) son iid con media 0 y una varianza finita constante, mientras que el operador \(\Delta \) denota que las variables I(1) han sido diferenciadas en función de alcanzar la estacionariedad.
La inclusión de los niveles de las variables \(p_{1t} \) y \(p_{2t} \) junto a sus términos diferenciados \(\Delta p_{1t} \) y \(\Delta p_{2t} \) es fundamental para el concepto de ECM. Los parámetros contenidos en las matrices \(A_2 \ldots A_K \), miden los efectos a corto plazo, mientras que \(\beta \) es una matriz de parámetros de cointegración y caracteriza la relación de equilibrio a largo plazo entre los dos precios. Los niveles de las variables entran en el ECM combinados como una sola entidad \((p_{1t-1} - \beta p_{2t-1})\) que refleja los errores o cualquier divergencia de su equilibrio.

El vector \((\alpha_1 \alpha_2) \) contiene parámetros, usualmente \(0 < |\alpha_i| < 1, i = 1, 2 \), comúnmente llamado coeficiente de corrección de error, que mide el grado de correcciones de los errores que el mercado inicia ajustando \(p_{1t} \) y \(p_{2t} \) para restaurar la relación de equilibrio a largo plazo. En este contexto, los ajustes de corto plazo son dirigidos, y con consonancia con, la relación de equilibrio a largo plazo, permitiendo evaluar la velocidad de ajuste que forma la relación entre los dos precios. Para estimar los coeficientes se emplea el método de Máxima Verosimilitud el cual se utiliza cuando el modelo tiene una naturaleza no lineal, a diferencia de la estimación por OLS la cual se emplea en modelos lineales (Wooldrige, 2010).

En el contexto de la integración de mercado y los estudios de transmisión de precio, el ECM, así como sus aplicaciones discutidas anteriormente, son quizás las herramientas más útiles, ya que proveen una imagen estilizada de la relación entre dos precios (Brooks et al, 2010). El modelo provee una estructura en la cual gradual, en vez de instantáneamente la transmisión de precios puede ser probada, por lo cual tomar en consideración las discontinuidades en el comercio y otros factores puede impedir la integración de mercados a través del tiempo. Cabe mencionar, que la proximidad del coeficiente de corrección de error a -1, puede ser usado para evaluar el grado en el cual las políticas, costos de transacción y otras distorsiones provocan que se demore un ajuste completo al equilibrio de largo plazo.

Otra implicación importante de la cointegración y la representación de corrección de error es que la cointegración entre dos variables implica la existencia de causalidad, en el sentido de Granger, entre ellos en al menos una dirección (Granger, 1988). La cointegración por sí sola no puede ser utiliza para hacer inferencia sobre la dirección de la causalidad entre las variables, y por lo tanto los test de causalidad son necesarios. En 1969, Granger propuso una definición empírica de causalidad basada solo en su contenido de proyección: si \(x_t \) causa \(y_t \) entonces \(y_{t+1} \) es una mejor proyección si la información de \(x_t \) es utilizada, dado que habrá una menor varianza del error de proyección. Esta definición ha generado controversia en la literatura ya que realmente indica precedencia, en lugar de causalidad instantánea. Sin embargo, si dos mercados están cointegrados, el precio en un mercado, \(p_1 \), habría de encontrarse causalidad en el precio del otro mercado, \(p_2 \), o viceversa. De este modo, la causalidad Granger provee evidencia adicional sobre la dirección de la transmisión de precio entre dos series.

Es importante mencionar, que a pesar de que la cointegración entre dos series de precios implican la causalidad Granger en al menos una dirección, el opuesto no es necesariamente verdad. En este caso, como se mostró anteriormente en la discusión sobre cointegración, la falta de cointegración entre dos
series de precios con tendencia, puede indicar que la integración de mercado está ausente, como otros factores como costos de transacción determinan los movimientos de una de las series. Sin embargo, la causalidad de Granger podría existir, indicando que, a pesar de que las dos series de precio se distancian debido a otros factores como costos de transacción no estacionarios, algunas señales de precios están pasando a través de un mercado al otro. Por otra parte, la falta de causalidad Granger puede no implicar una ausencia de transmisión, como señales de precio puede ser transmitidas instantáneamente bajo circunstancias especiales. De todos modos, dadas las dinámicas inherentes de los mercados, en la literatura se considera este hecho como poco probable.

Test de cointegración

Engle y Granger (1987)

Se considera la siguiente ecuación:

\[
p_{1t} = \beta p_{2t} + u_t \tag{22}
\]

Si \(u_t \) es no estacionaria, entonces \(p_{1t} - \beta p_{2t} \) no es una relación de cointegración. Engle y Granger sugieren estimar por MCO y aplicar pruebas de raíz unitaria, así como ADF y Philips-Perron \(Z_t \) o \(Z_p \) para el residuo estimado \(\hat{u}_t \), con el objetivo de probar la hipótesis nula de no cointegración. Esta aproximación presentada por Engle y Granger es un método de una sola ecuación para probar la cointegración, en donde la relación de cointegración tiene que ser normalizada con respecto a una de las dos variables.

Se considera un Vector Autoregresivo (VAR) de dos variables \(p_{1t} \) y \(p_{2t} \). Un VAR expresa un vector de variables como una suma lineal de un set de rezagos de sí mismo. Un caso simple de un VAR entre dos variables es:

\[
\begin{pmatrix}
P_{1t} \\
P_{2t}
\end{pmatrix}
= \begin{pmatrix}
u_1 \\ u_2
\end{pmatrix} + \begin{pmatrix}
a_{11} & a_{12} \\ a_{21} & a_{22}
\end{pmatrix}
\begin{pmatrix}
P_{1t-1} \\
P_{2t-1}
\end{pmatrix}
+ \begin{pmatrix}
u_{1t} \\ v_{2t}
\end{pmatrix} \quad \tag{23}
\]

Un aspecto de la cointegración puede ser dirigido viendo al VAR, pero extendiéndolo para que contenga un segundo rezago. Un ejemplo de un VAR(2) sería:
\[
\begin{pmatrix}
 p_{1t} \\
 p_{2t}
\end{pmatrix} =
\begin{pmatrix}
 u_1 \\
 u_2
\end{pmatrix} + A_1 \begin{pmatrix}
 p_{1t-1} \\
 p_{2t-1}
\end{pmatrix} + A_2 \begin{pmatrix}
 p_{1t-2} \\
 p_{2t-2}
\end{pmatrix} + \begin{pmatrix}
 v_{1t} \\
 v_{2t}
\end{pmatrix}
\tag{24}
\]

Este tiene la representación de un Modelo de Corrección de Errores (VECM por sus siglas en inglés):

\[
\begin{pmatrix}
 \Delta p_{1t} \\
 \Delta p_{2t}
\end{pmatrix} =
\begin{pmatrix}
 u_1 \\
 u_2
\end{pmatrix} + (A_1 + A_2 - I) \begin{pmatrix}
 p_{1t-1} \\
 p_{2t-1}
\end{pmatrix} + \begin{pmatrix}
 v_{1t} \\
 v_{2t}
\end{pmatrix}
\tag{25}
\]

El rango de la matriz \((A_1 + A_2 - I)\) es igual al número de vectores cointegración, si el rango de \((A_1 + A_2 - I)\) es 2, entonces ambas variables pueden ser mostradas como estacionarias. Si el rango de \((A_1 + A_2 - I)\) es 0 entonces las series no están cointegradas, mientras que si el rango de \((A_1 + A_2 - I)\) es 1, entonces las variables están cointegradas.

Por lo tanto, en el caso de dos variables, la cointegración puede ser probada midiendo la significancia de las características de la raíz o valores propios de \((A_1 + A_2 - I)\). Si las variables no están cointegradas las raíces características \(\lambda_1, \lambda_2\) son igual a 0. De manera similar, si el rango de \((A_1 + A_2 - I)\) es igual a 1, \(0 < \lambda_1 < 1\) y \(\lambda_2\) es igual a 0. Johansen (1995) derivó la distribución de las dos pruebas estadísticas de la hipótesis nula de no cointegración que hacen referencia a la traza y al máximo valor propio. El primer test estadístico, prueba la hipótesis nula de que el número de parámetros cointegrados independientes es menor o igual 2. Mientras que el segundo, prueba la hipótesis de que el número de parámetros cointegración es 1 en contra de la hipótesis alternativa de 2 parámetros de cointegración.

\[
\lambda_{traza} = -T \sum_{i=1}^{2} \ln(1 - \hat{\lambda}_i)
\tag{26}
\]

\[
\lambda_{max} = -T\ln(1 - \hat{\lambda}_2)
\tag{27}
\]
Capítulo 1: Caracterización del mercado de arroz y maíz.

Los productos elegidos para realizar la presente disertación comparten características que los hacen atractivos desde el punto de vista investigativo. En primer lugar, estos productos agrícolas son considerados como alimentos de primera necesidad y son consumidos mundialmente. Es por ello, que las variaciones en sus precios tienen afectaciones directas sobre la seguridad alimentaria. De hecho, en el año 2008, en donde mostraron sus niveles de precios más altos, la inseguridad alimentaria en el mundo incrementó, primordialmente en países en vías de desarrollo lo que dio lugar a llamadas para emprender acciones internacionales que inviertan la tendencia de incremento en los precios (FAO, 2008). En este sentido, entre los años 2007 y 2008 el Programa Mundial de Alimentos (PMA), tuvo dificultades para satisfacer los mayores costos de adquisición de alimentos para su distribución (FAO, 2008). En segundo lugar, son productos considerados commodities, es decir productos homogéneos, lo que facilita la comparación entre distintos países y mercados.

El arroz es considerado el cultivo más importante del mundo. Ello se debe a que más del 40% de la población mundial depende de dicho cultivo para el 80% de su dieta; y proporciona el 20% del consumo de calorías per cápita en todo el mundo (Benavides et al 2005).

Por su parte, el maíz presenta el más alto potencial para la producción de carbohidratos por unidad de superficie por día. Es el primer cereal en rendimiento de grano por hectárea y después del trigo, es el segundo en producción total. Este cultivo visto como alimento humano, para animales o como materia prima para productos industriales, representa un cultivo con relevancia significativa en la economía a nivel mundial (Paiwal et al, 2001).

Adicionalmente, en el contexto nacional estos productos son de gran importancia económica, social y nutricional. Es por ello, que los gobiernos de turno durante el período de estudio, han implementado políticas enfocadas a incentivar la producción de estos cultivos, así como su productividad y protección.

En cuanto al panorama internacional, se consideran estos productos debido al fuerte incremento que experimentaron los precios de dichos productos durante el 2007 y 2008. Adicional a ello, a partir del segundo semestre del año 2008 los productos agrícolas, entre ellos el arroz y el maíz, presentaron una disminución en sus precios (Hernandez et al, 2009). Esto desde el punto de vista de la disertación, brindará la oportunidad de medir la simetría de transmisión de precios, en caso de que este proceso exista.

El presente capítulo presentará la información más relevante sobre la producción y el comercio del arroz y maíz duro a nivel internacional y doméstico. De esta forma se situará al Ecuador en contexto internacional identificando si ejerce un rol predominante y por ende puede ser considerado un asignador.
de precios en los mercados internacionales o simplemente un tomador de los mismos. Esta primera aproximación consiste en un preámbulo del análisis de indicadores comerciales (Coeficiente de apertura económica, Coeficiente de orientación de exportaciones y Coeficiente de penetración de importaciones o de dependencia) de Ecuador en los productos que están siendo tratados, con el objetivo de identificar la exposición del mercado doméstico al mercado internacional. De este modo, se tendrán indicios de qué tan factible es la integración entre los mercados internacionales y domésticos en los productos elegidos.

Adicionalmente, se presentará la evolución de los precios internacionales y nacionales identificando de manera gráfica si los precios nacionales siguen una tendencia similar a la de los precios internacionales. Finalmente, como se mencionó en el marco teórico, las barreras comerciales representan obstáculos para la integración de mercados y por ende para la transmisión de precios. En este sentido, se analizarán algunas políticas comerciales que el Ecuador ha implementado en el período 2000-2014 y de este modo se podrá esclarecer el por qué de ciertas conclusiones obtenidas a partir del análisis de los indicadores comerciales y de la evolución de precios.

Cabe mencionar, que si bien en la revisión teórica y empírica que versa sobre la integración de mercados y la transmisión de precios se identificó como un elemento primordial en el entendimiento de la no transmisión de precios a las estructuras de mercado con presencia de control y abuso de poder de mercado, ya sea por parte de los productores, intermediarios, mayoristas o consumidores, la presente disertación no aborda esta problemática. Esto se debe a la no disponibilidad de la información en fuentes de acceso públicas, y debido a que la aproximación de esta investigación es un primer acercamiento a la problemática general que se limita al análisis de transmisión de precios.

Mercado de arroz

El cultivo de arroz (Oryza sativa L.) se inició hace más de 6500 años y se desarrolló de manera paralela en países de Asia oriental como China y Tailandia; para luego extenderse hacia Camboya, Vietnam e India. Actualmente el arroz se cultiva en más de 110 países a nivel mundial. Este cultivo es con frecuencia la principal fuente de empleo, ingresos y nutrición en muchas regiones del mundo que se caracterizan por tener bajos niveles de ingreso y por ser alimentariamente inseguros (FAO, 2004). Adicionalmente, las exportaciones de arroz constituyen una importante fuente de ingresos y divisas para varios países, principalmente para los países de Asia del este.

El arroz proporciona el 20% del suministro de energía alimentaria del mundo, además de ser una fuente de vitamina B1, B2 y B3 (FAO, 2004). El arroz tiene una gran diversidad genética, alrededor del mundo se cultiva un extenso número de variedades. (FAO, 2004). Es importante mencionar que existe una corriente de investigación que se enfoca en mejorar el nivel de nutrición de las poblaciones, mediante el mejoramiento de cultivos de primera necesidad, como es el caso del arroz. En este sentido, los avances
tecnológicos, han permitido incrementar el valor nutritivo del arroz, por medio de la modificación de su código genético (FAO, 2004).

Producción, área cosechada y rendimiento

La producción mundial presenta una marcada tendencia al alza a partir del año 2000, en donde se registró un total 599 millones de toneladas métricas. Para el año 2013\(^3\) se registró un total de 741 millones de toneladas métricas, lo que representó un incremento del 23.7% con respecto al primer año de estudio (Ver Panel a de Ilustración 4). Por su parte, Ecuador presenta una similar tendencia al alza en cuanto a la producción de este cultivo. Es importante mencionar, que en el periodo de estudio se observan importantes variaciones (picos de producción), siendo el año 2004 en donde se registró la mayor producción del cultivo (Ver Panel b de Ilustración 4). En este sentido se observa un incremento en la producción del 21.61% en el año 2013\(^4\) con respecto al año 2000.

Ilustración 4. Evolución de la Producción de arroz (Millones Tm)

![Diagrama de Producción de Arroz](image)

Fuente: FAO
Elaboración: Drichelmo Tamayo

La producción mundial se encuentra altamente concentrada en el continente asiático, puesto que en promedio entre el año 2000 y 2013, ha aportado con el 90.67% de la producción mundial, seguido de América con 5.3%. Esta alta concentración de producción en Asia puede deberse a diversos factores: proporción grande de su frontera agrícola, alto rendimiento de producción, o características culturales alimenticias propias de su población. Adicionalmente, este hecho puede otorgar a los principales productores de arroz ventajas en cuanto a la negociación del precio del cultivo. Por lo tanto, no es de extrañarse que el precio de referencia mundial del arroz se establezca según el precio en países del sudeste asiático. Por ejemplo, el Fondo Monetario Internacional utiliza como precio de referencia al

\(^3\) Último dato disponible
\(^4\) Último dato disponible
precio de Tailandia; y el Banco Mundial utiliza como referencia al precio de Tailandia y Vietnam, donde no solo se tienen altos niveles de producción, sino también de exportación.

Para el año 2013, se identifica que 9 de los 10 principales países productores de arroz pertenecen al continente asiático. En primer lugar se encuentra a China, que aporta con el 27.7% de la producción para dicho año, seguido de India (21%) e Indonesia (9.6%) (Ver Ilustración 5). Entre estos países concentran el 86% de la producción de arroz mundial, es decir alrededor de 637 millones de Tm. Por su parte Ecuador ocupa el puesto 31 en este ranking, y para el año 2013 aporta con apenas el 0.2% de la producción mundial de arroz. En este sentido, Ecuador no juega un papel fundamental en los mercados internacionales.

Ilustración 5. Principales países productores de Arroz – 2013 (%)

La producción de arroz en Ecuador, principalmente se concentra en las provincias de la costa, específicamente en Guayas, Manabí y Los Ríos. Sin embargo, tanto en la Sierra como en la Amazonía, existe producción del cultivo, aunque de manera marginal. En el siguiente mapa se puede observar la producción de arroz en Ecuador, según las provincias productoras del mismo en el año 2013. De este modo se puede identificar a los suelos cercanos al río Guayas como los más propicios para la producción del cultivo.

Fuente: FAO
Elaboración: Drichelmo Tamayo
En cuanto al área cosechada a nivel mundial, esta variable no ha presentado mayores variaciones durante el período de estudio. Es así, que entre el año 2000 y 2013 se ha registrado una tasa de variación promedio anual de 0.54% a nivel mundial. Es importante mencionar que el continente asiático también concentra la mayor cantidad de área cultivada de arroz.

Por otro lado, en Ecuador, el arroz es el cultivo más extenso, puesto que ocupa más de la tercera parte de la superficie de productos transitorios del país. La mayor área sembrada de arroz en el país está en la región costa (INEC, 2009). Con respecto al área cosechada, no se aprecia una importante variación durante los años 2000 y 2013. Es así, que se ha registrado una tasa de variación anual promedio de 1.73% en el periodo. En contraste al promedio mundial, Ecuador ha empleado más áreas para la producción de este cultivo de manera relativa, en comparación a los demás países del mundo.

Los 10 principales países con la mayor extensión de superficie cosechada concentran el 83.9% del total mundial. En primer lugar se ubica India con el 26.6%, seguido de China (18.5%) e Indonesia (8.4%). Ecuador ocupa el puesto 30 en este ranking y representa a penas del 0.24% de la superficie cosechada de arroz para el año 2013.
El rendimiento en la producción de un cultivo se define como la razón entre la producción y el área cosechada del mismo en un periodo dado, representando de este modo un indicador de competitividad en la producción agrícola. Su fórmula de cálculo es la siguiente:

\[
Rendimento_i = \frac{Producción_i}{Área Cosechada_i}
\]

Se debe destacar, que a nivel mundial a pesar de que el área cosechada no ha presentado variaciones significativas, se observa un notable incremento en la productividad de arroz. En el año 2000 se observó un rendimiento de 3.89 Tm/Ha el cual incrementó en 15.4% al año 2013, en donde registró un rendimiento de 4.49 Tm/Ha, lo cual implicó una tasa de crecimiento anual promedio del rendimiento de 1.1%.

Es importante mencionar, que Asia, a pesar de ser la región con mayor producción de arroz y de emplear la mayor extensión de terreno para la cosecha del mismo, presenta niveles bajos de rendimiento. Por su parte, los continentes de Oceania y Europa, son los que mejor aprovechan su recurso tierra. El mayor rendimiento en estas regiones puede ser causado por la mejora en las técnicas y prácticas de siembra y cosecha, implementación de tecnología tanto para riego como para la prevención de plagas, así como la utilización de semillas de mejor calidad.
Por su parte, en Ecuador se observa que el rendimiento del cultivo se ha incrementado a través de los años del período de estudio. En la Ilustración 8, que hace referencia a la evolución del rendimiento de arroz medido en Tm/Ha en Ecuador y el mundo, se puede observar que existen años en los cuales el Ecuador ha presentado rendimientos mayores al promedio mundial como es el caso de los años 2004, 2006, 2007 y 2011. Por otra parte, es importante destacar la marcada caída que se observa en los años 2012 y 2013, lo que indica que en esos años el rendimiento de arroz en Ecuador fue muy inferior al promedio mundial, a pesar que en el año 2013 se observa una leve disminución del rendimiento del cultivo en el mundo.

Ilustración 8. Evolución del rendimiento de Arroz (Tm/Ha) en Ecuador y el Mundo

Fuente: FAO
Elaboración: Drichelmo Tamayo

Comercio Internacional

Para el desarrollo de la presente subsección es importante mencionar que el comercio como tal, puede ser medido tanto por su volumen como por su valor. Para los fines de la presente disertación se medirá el comercio en función de su valor.

Adicionalmente, dado que los flujos de exportaciones e importaciones mundiales son los mismos, a pesar de que no son los mismos exactamente por cambios en el reporte entre exportador e importador, se analizará únicamente el flujo de exportaciones mundiales así como la distribución, con el objetivo de evitar ser redundante en el análisis de la información.
Exportaciones

Las exportaciones de arroz han incrementado considerablemente a partir del año 2000. El panel a de la Ilustración 9, muestra la evolución de las exportaciones de este producto a nivel mundial; sobre todo se debe destacar que entre el año 2000 y 2013, aumentaron en cuatro veces las exportaciones mundiales.

Por otra parte en el panel b, que muestra la evolución de las exportaciones de arroz en Ecuador, se puede identificar un pico de exportación del producto en el año 2006 y 2007. Cabe mencionar que las exportaciones de arroz en Ecuador son poco representativas frente al total, es así que para el año 2000 representó el 0.06%, mientras que para el año 2013 representó el 0.12%. Es importante mencionar que para los año 2006 y 2007 su representatividad frente al total de exportaciones fue el más alto registrado, 0.44% y 0.35% respectivamente, puesto que existió un incremento en las exportaciones del producto. No obstante Ecuador no puede ser considerado un país netamente exportador, puesto que términos absolutos sus exportaciones son pequeñas, las mismas que bordean los 20 millones de dólares.

Ilustración 9. Evolución de las exportaciones de arroz

Fuente: COMTRADE
Elaboración: Drichelmo Tamayo

Los 3 principales exportadores de arroz en el año 2013 (Ver Ilustración 10), aportan con el 61.79% de las exportaciones de arroz en el mundo. Por su parte, Ecuador que ocupa el puesto 28 en este ranking aporta con el 0.13% de las exportaciones mundiales.

5 La información para el año 2014 presentada por el COMTRADE sigue siendo recopilada y actualizada, por lo que estos valores son provisionales y no fueron considerados para la disertación.
Es importante mencionar que la descripción de los flujos de comercio de este producto a nivel mundial requiere que las variables sean analizadas en función de la etapa de producción en la que se encuentra el producto, es decir: a) arroz en cáscara, b) arroz descascarillado, c) arroz elaborado y d) arroz quebrado. En este sentido para el año 2013, el total de exportaciones de arroz a nivel mundial estuvo compuesto de la siguiente manera:

Ilustración 11. Composición de exportaciones de arroz - 2013

Fuente: COMTRADE
Elaboración: Drichelmo Tamayo
En la Ilustración 11, se aprecia que a nivel mundial el arroz semiblanqueado o blanqueado es el más exportado para el año 2013, con una proporción del total de arroz a nivel mundial de 85.3%, seguido del arroz partido (6.3%), arroz en cáscara (4.2%) y arroz descascarillado (4.2%). Del mismo modo, las exportaciones de arroz en Ecuador están constituidos principalmente por arroz semiblanqueado o blanqueado, puesto que para el año 2013 representó el 99.7%. El restante 0.3% corresponde a las otras subpartidas arancelarias.

Cabe destacar que la estructura de las exportaciones de arroz no ha variado para el período de estudio, el arroz semiblanqueado o blanqueado es la subpartida con mayor valor de exportaciones tanto a nivel mundial como en Ecuador (Ver Anexo 3 y Anexo 4).

El principal destino de las exportaciones de arroz ecuatoriano entre el período 2000 – 2013 ha sido Colombia, seguido de Venezuela, a pesar de que solo se registra 3 años de exportación: 2009, 2010 y 2011. La siguiente ilustración presenta a los principales destinos de las exportaciones de arroz. Es importante mencionar que el arroz semiblanqueado o blanqueado es la subpartida que presenta el mayor peso de las exportaciones de arroz de Ecuador.

Ilustración 12. Destino de exportaciones de arroz de Ecuador

<table>
<thead>
<tr>
<th>Año</th>
<th>Alemania</th>
<th>Chile</th>
<th>Colombia</th>
<th>Cuba</th>
<th>España</th>
<th>Estados Unidos</th>
<th>Francia</th>
<th>Haití</th>
<th>Italia</th>
<th>México</th>
<th>Panamá</th>
<th>Perú</th>
<th>Reino Unido</th>
<th>Sudafrica, Rep. De</th>
<th>Taiwán (Formosa)</th>
<th>Venezuela</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td></td>
</tr>
<tr>
<td>2009</td>
<td></td>
</tr>
<tr>
<td>2010</td>
<td></td>
</tr>
<tr>
<td>2011</td>
<td></td>
</tr>
<tr>
<td>2012</td>
<td></td>
</tr>
<tr>
<td>2013</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: Banco Central del Ecuador

Elaboración: Drichelmo Tamayo
Importaciones

Como se mencionó al inicio de la presente subsección, el flujo de importaciones debe ser muy similar al flujo de exportaciones al igual que la composición de dichas importaciones, es por ello que analizarlos se estaría siendo redundante con la información. No obstante, lo que si tiene relevancia para la presente disertación es ubicar quienes son los principales importadores del cultivo y qué rol cumple Ecuador dentro del panorama mundial.

De este modo, en el siguiente gráfico se muestra los principales importadores de arroz en el año 2013. En donde destaca que los 10 principales importadores del cultivo, en conjunto importan el 40.21% de las importaciones mundiales. Por su parte, Ecuador ocupa el lugar 147 de este ranking y representa el 0.002% de las importaciones mundiales de arroz.

![Gráfico de importaciones de arroz 2013](image)

Fuente: COMTRADE
Elaboración: Drichelmo Tamayo

Como se evidenció en el gráfico anterior, Ecuador en el año 2013 no fue un actor importante en cuanto a las importaciones mundiales, ello no ha sido distinto en los años anteriores, puesto que las importaciones de arroz por parte de Ecuador han sido menores a los 5 millones USD, a excepción del año 2012 en donde se registró un pico de alrededor de 18 millones USD. De este modo, Ecuador a lo largo de los años 2000 y 2013 demuestra que no es un importador neto del producto, lo cual puede ser causado por medidas para arancelarias que han buscado favorecer la producción local del cultivo, en la siguiente subsección del presente capítulo se explicarán más detalles sobre el tema.
En el Anexo 5 y Anexo 6, se describen como están compuestas las importaciones de arroz en el mundo y Ecuador, respectivamente. Como se mencionó anteriormente, la composición de importaciones mundiales es similar en estructura a las exportaciones mundiales. Por su parte, Ecuador no tiene una estructura definida puesto que para ciertos años, el arroz semiblanqueado o blanqueado es a la subpartida con mayor valor de importaciones y para otros el arroz en cáscara.

Mercado de maíz duro

Existen discrepancias acerca del origen del maíz (Zea mays), sin embargo se considera que los agricultores empezaron a cultivar las primeras plantas hace 7000 o 10000 años. La evidencia más antigua de este cultivo, como alimento humano, proviene de México con mazorcas de alrededor 5000 años de antigüedad (Paliwal et al, 2001).

Existe una gran variedad en cuanto a color, textura, composición y apariencia del maíz. Este cultivo puede ser clasificado en función de su constitución y grano, color de grano, ambiente en el cual es cultivado, madurez y uso (Paliwal et al, 2001). Los tipos más importante de maíz son el duro, dentado, reventado, dulce, harinoso, ceroso y tunicado. Paliwal en su trabajo titulado como “El maíz en los trópicos”, expone que en términos económicos, los tipos de maíz cultivados más importantes caen dentro de la categoría de maíz duro, dentado y harinoso.

Una de las características más importantes del maíz duro es que germina de mejor manera en relación a otros tipos de maíz, sobre todo en suelos húmedos y fríos, además de tener una madurez temprana y ser
menos propenso a sufrir daños de insectos, mohos o por el almacenamiento. Cabe destacar, que este tipo de maíz es el preferido para el consumo humano.

El maíz desde el punto de vista nutricional, posee un mejor contenido en cuanto a grasas, hierro y fibra en comparación al arroz y trigo, sin embargo contiene un menor contenido proteico. Además, presenta el más alto potencial para la producción de carbohidratos por unidad de superficie por día. Es el primer cereal en rendimiento de grano por hectárea y después del trigo, es el segundo en producción total. Este cultivo visto como alimento humano, para animales o como materia prima para productos industriales, representa un cultivo con relevancia significativa en la economía a nivel mundial (Paiwal et al, 2001).

En Ecuador se produce principalmente maíz duro choclo, maíz duro seco, maíz suave choclo y maíz suave seco. De ellos el maíz duro seco es el más comercializado puesto que sirve como materia prima para balanceados. Es por ello que se utiliza este tipo de maíz para realizar la comparación con los mercados internacionales.

Producción, área cosechada y rendimiento

La producción mundial presenta una marcada tendencia al alza a partir del año 2000, en donde se registró un total 592 millones de toneladas métricas. Para el año 2013 se registró un total de 1018 millones de toneladas métricas, lo que representó un incremento del 71.8% con respecto al primer año de estudio o una tasa anual promedio de 4.3% (Ver Ilustración 15). Por su parte, en Ecuador se nota una tendencia similar a la observada a nivel mundial, puesto que entre el año 2000 y 2013 se ha incrementado la producción en un 159%, ello se debe sobre todo al incremento que ocurre entre el año 2011 y 2012 del 42.8% y el incremento entre el 2012 y 2013 del 18.1%.

Ilustración 15. Evolución de la Producción de maíz (Millones Tm)

Fuente: FAO (Panel a)/ESPAC – serie reconstruida para el año 2000 y 2001 (Panel b)

Elaboración: Drichelmo Tamayo

6 Último dato disponible
La producción mundial se encuentra altamente concentrada en el continente de América, puesto que en promedio entre el año 2000 y 2013, ha aportado con el 53.23% de la producción mundial, seguido de Asia con 28.27%. Para el año 2013, se identifican a 5 países de América entre los 10 principales productores de maíz. En primer lugar, se encuentra a Estados Unidos, que aporta con el 34.7% de la producción para dicho año, seguido de China (21.5%) y Brasil (7.4%) (Ver Ilustración 16). Ecuador ocupa el puesto 51 en este ranking, y para el año 2013 aporta con apenas el 0.2% de la producción mundial de maíz, es así que Ecuador no puede ser considerado como un agente importante en los mercados mundiales del producto.

Es importante mencionar, que al igual que en el caso de maíz, el mayor productor del cultivo es a quien se lo toma como referencia para determinar el precio internacional. Es así que se utiliza como precio internacional de referencia para este cultivo, al precio que registra Estados Unidos, específicamente el precio internacional del maíz amarillo (No.2) del Golfo de Lousiana (Export).

Ilustración 16. Principales países productores de Maíz – 2013 (%)

![Ilustración de los principales países productores de maíz en 2013](image)

Fuente: FAO
Elaboración: Drichelmo Tamayo

La producción de maíz duro seco en Ecuador, principalmente se concentra en las provincias de la costa. Sin embargo, tanto en la Sierra como en la Amazonía, existe producción del cultivo. En el siguiente mapa se puede observar la producción de maíz en Ecuador, según las provincias productoras del mismo en el año 2013.
Como se mencionó anteriormente Ecuador produce principalmente 4 “tipos” de maíz: maíz duro choclo, maíz duro seco (maíz que se utiliza para la elaboración de balanceados), maíz suave choclo y maíz suave seco (granos tales como mote, morocho, etc.). Siendo el maíz duro seco, el producto con mayor peso en la producción del cultivo, puesto que para el período de estudio representa más del 80% de la producción de maíz en Ecuador.

Al observar la variable relacionada al área cosechada, se aprecia a diferencia del caso del arroz, un notable incremento entre el año 2000 y 2013, puesto que pasa de alrededor de 137 millones de Ha en el año 2000 a más de 185 millones de Ha para el año 2013, presentando un incremento del 35.12%. Es importante mencionar que el continente americano, es el que emplea la mayor extensión de superficie para la cosecha de este cultivo. En Ecuador también se registra un incremento en cuanto al área cosechada, sin embargo este aumento es menor al que se observa a nivel mundial en alrededor de 10 puntos porcentuales.

Fuente: Encuesta de Superficie y Producción Agropecuaria Continua – ESPAC 2013
Elaboración: Drichelmo Tamayo

7 Dato del III Censo Nacional Agropecuario. A partir del año 2002, el Instituto Nacional de Estadísticas y Censos (INEC) realiza la Encuesta de Superficie y Producción Agropecuaria con una periodicidad anual. El valor que se observa en el año 2001 es estimado por el autor, debido a la no disponibilidad de este dato de manera oficial.
Los 10 principales países con la mayor extensión de superficie cosechada concentran el 68.9% del total mundial. En primer lugar se ubica China con el 19.6%, seguido de Estados Unidos (19.2%) y Brasil (8.3%). Ecuador ocupa el puesto 54 en este ranking y representa a penas del 0.20% de la superficie cosechada de arroz para el año 2013 a nivel mundial. Es importante mencionar, que los tres principales productores de maíz también son los tres principales países con la mayor superficie empleada para la cosecha del cultivo, aunque se ubican en distinto orden.

De este modo se puede identificar, que Estados Unidos siendo el principal productor de maíz para el año 2013 y no el país con la mayor superficie cosechada, tiene una mayor competitividad sobre todo frente a China. Puesto que, Estados Unidos emplea apenas 0.4 puntos porcentuales menos de territorio para la cosecha de maíz que China, y sin embargo aporta con 13.2 puntos porcentuales más que China. Ello refleja una mayor competitividad de Estados Unidos frente China en este producto, lo cual se debe sobre todo a mejores factores productivos: semillas, maquinaria y técnicas agrícolas.

Ilustración 18. Principales países con la mayor superficie cosechada de maíz – 2013 (%)

Fuente: FAO
Elaboración: Drichelmo Tamayo

Es importante mencionar que tanto a nivel mundial como nacional, se ha incrementado considerablemente el rendimiento del maíz. A nivel mundial, se observa un notable incremento del rendimiento entre los años 2000 y 2011, sin embargo, a partir del año 2012 se aprecia una disminución en esta variable debido sobre todo a una leve disminución de la producción y un incremento en la superficie cosechada. El continente de América se destaca junto con Oceanía y Europa, por presentar los mayores rendimientos del cultivo. Por su parte, Asia al igual que en el caso del arroz, a pesar de ser el continente que emplea la mayor extensión de terreno para la cosecha del cultivo, presenta niveles bajos de rendimiento.
En Ecuador se observa un incremento continuo en el rendimiento del cultivo, lo que se debe sobre todo al incremento de la producción. Es así, que para el año 2000 el rendimiento del maíz fue de 2.01 Tm/Ha, mientras que para el año 2013 fue de 4.42, con un incremento del 120%.

A continuación, en la Ilustración 19 se puede observar la evolución del rendimiento de maíz tanto en Ecuador como a nivel mundial. Cabe destacar que el rendimiento del cultivo es mayor a nivel mundial, sin embargo, el Ecuador ha reducido esta brecha para el año 2013.

Ilustración 19. Evolución del rendimiento de Maíz (Tm/Ha) en Ecuador y el Mundo

Fuente: FAO
Elaboración: Drichelmo Tamayo

Comercio Internacional

Al igual que el análisis del comercio para el caso del arroz, que fue desarrollado a partir del valor del comercio, el desarrollo la presente subsección seguirá esta misma lógica con el objetivo de mantener una sola metodología que facilite la comparabilidad. Además, como fue mencionado anteriormente, ciertos análisis solo serán realizados para las exportaciones del cultivo, evitando así duplicar la información.

Exportaciones

De manera general se aprecia que a nivel mundial, las exportaciones de maíz se han incrementado considerablemente, como se aprecia en el panel a de la Ilustración 20. Este hecho contrasta con lo suscitado en el mismo período de estudio para el caso particular de Ecuador, puesto que las exportaciones del cultivo presentan una tendencia a la baja (Ver panel b Ilustración 20). Sin embargo, es importante
mencionar que tanto a nivel mundial como en Ecuador, entre el año 2008 y 2010, existe un pico de exportaciones, lo cual pudo deberse a los altos precios internacionales que se registraron para este commodity en particular. Se abordará este tema posteriormente.

Al igual que en el arroz, el peso que tiene el maíz sobre el total de exportaciones de Ecuador es sumamente bajo, y muestra una tendencia decreciente. Es así que para el año 2000 y 2001, su peso relativo era del 0.19% y 0.22%, respectivamente, mientras que para el año 2013 su peso relativo es del 0.001%, prácticamente nulo.

Ilustración 20. Evolución de las exportaciones de maíz

Fuente: COMTRADE
Elaboración: Drichelmo Tamayo

En la siguiente ilustración se aprecian a los principales exportadores de maíz para el año. Entre ellos aportan 85.7% del total de las exportaciones mundiales. Es importante mencionar que tanto Estados Unidos y Brasil, también forman parte de los principales productores del cultivo; lo que implica que su producción les es suficiente para suplir además de su demanda interna, gran parte de la demanda mundial. Por otra parte China, país que aparece entre los mayores productores de maíz, no aparece en este ranking, lo cual indica que la mayor parte de su producción se destina al consumo doméstico. Por otra parte, Ecuador no figura entre los principales exportadores, puesto que ocupa el puesto 85 para el año 2013, con un aporte prácticamente nulo en el mercado mundial.
Cabe mencionar, que se comercian a nivel internacional dos categorías de maíz, el primero hace referencia al maíz para siembra y el segundo al maíz duro. Siendo este último, el que representa el mayor flujo comercial a nivel mundial, alrededor del 91% en promedio en cuanto a exportaciones mundiales. Esta estructura de exportaciones se ha mantenido constante, sobre el 90% para el período 2000-2013.

El Ecuador, según datos del Banco Central, únicamente exporta Maíz duro Amarillo. El principal destino de las exportaciones de maíz ecuatoriano para el período 2000-2013 ha sido Colombia, seguido de Venezuela, país que importa producción de maíz únicamente en el año 2009 (Ver Ilustración 22).
Como se mencionó anteriormente, no se analizará la evolución de las importaciones mundiales y la composición de las mismas, puesto que estos son espejos de la evolución de exportaciones mundiales y la composición de dichas exportaciones, respectivamente. Sin embargo, identificar los principales importadores mundiales y el rol de Ecuador en el contexto mundial es de gran utilidad para la presente disertación.

En la siguiente ilustración se identifican los 10 principales importadores de maíz, que en conjunto concentran el 53.9% de las importaciones mundiales del cultivo. Esta lista está encabezada por Japón (13.1%), República de Corea (7.4%) y México (5.7%). Por su parte Ecuador ocupa el lugar 51 de este ranking y representa apenas el 0.2% de las importaciones mundiales de arroz. De este modo Ecuador no figura como un actor de gran relevancia en los mercados mundiales.
En cuanto a la evolución de importaciones de maíz en Ecuador, se aprecia un incremento entre los años 2000 y 2010, sin embargo del año 2011 en adelante, existe una disminución de las importaciones del cultivo, lo cual puede deberse a medidas para arancelarias que buscaron alentar y fortalecer a la producción nacional del cultivo, en las siguientes secciones del presente capítulo se explicarán más detalles sobre el tema.

Fuente: COMTRADE
Elaboración: Drichelmo Tamayo
La estructura de las importaciones del maíz mantiene una estructura semejante a la mencionada anteriormente en las exportaciones. Es así que en promedio entre el año 2000 y 2013 el maíz duro, ha representado el 89% de las importaciones totales del maíz (Ver Anexo 9); del mismo modo, en Ecuador esta estructura es bastante similar, puesto que para el mismo periodo, se aprecia que esta subpartida en promedio representa aproximadamente el 93% de las importaciones (Ver Anexo 10).

Una vez analizada la información más relevante sobre la producción y el comercio del arroz y maíz duro a nivel internacional y doméstico, se destaca a Ecuador como un actor poco relevante en el contexto internacional, tanto en producción como en exportaciones e importaciones. Es por ello, que Ecuador debe ser considerado como un tomador de los precios fijados en los mercados internacionales. De este modo se da paso a la siguiente sección en la cual se realizará un análisis de los indicadores comerciales de apertura económica tanto a nivel total de la economía ecuatoriana como a nivel agrícola y específicamente para los productos analizados: arroz y maíz. Este análisis permitirá identificar la exposición del mercado doméstico al mercado internacional. De este modo, se tendrán indicios de que tan factible es la integración entre los mercados internacionales y domésticos en los productos elegidos.

Indicadores comerciales

Una vez descrita la situación histórica de los flujos comerciales del arroz y maíz (duro) tanto a nivel mundial como en Ecuador, es importante observar la evolución de indicadores comerciales que expliquen la apertura económica que presenta Ecuador en estos mercados. La importancia de este análisis radica en que permite conocer qué tan expuesto al mercado internacional se encuentran los mercados domésticos. Ello permitirá identificar a priori, si una integración de mercado entre el nacional y el externo es factible.

En primer lugar, al observar el coeficiente de apertura comercial (CA) para el total de la economía, que relaciona al comercio exterior con el conjunto de la economía; se aprecia que entre el año 2000 y 2013 se ha incrementado en 9 puntos, siendo el periodo 2005-2008 el que presenta el mayor coeficiente de apertura económica. Ello se debe a que el crecimiento tanto de exportaciones como de importaciones es mayor en relación al crecimiento del Producto Interno Bruto (Ver Anexo 11).

La forma de cálculo del coeficiente de apertura económica es el siguiente (Durán, J. et al. 2008):

\[
CA_t = \frac{X_t + M_t}{PIB_t}
\]

(29)

Dónde:

\(CA_t\) = Coeficiente de apertura económica en el tiempo \(t\)

\(X_t\) = Exportaciones totales en el tiempo \(t\)

\(M_t\) = Importaciones totales en el tiempo \(t\)

\(PIB_t\) = Producto Interno Bruto en el tiempo \(t\)
Una aplicación de este indicador, permite medir el desempeño agrícola en relación con el valor agregado de un determinado sector. Su forma de cálculo es igual al coeficiente de apertura económica, sin embargo, en función de la disponibilidad de información, se realizará el análisis para el período 2007 – 2013.

El coeficiente de apertura del sector agrícola presenta una tendencia a la baja, así como el coeficiente de apertura económica de la economía para los años 2007-2013 (Ver Anexo 12 e Ilustración 25). Este hecho puede deberse a que políticas tanto comerciales como agrícolas, han desfavorecido al comercio exterior en el sector agrícola como en su generalidad. Por su parte, se aprecia que el arroz presenta un CA cercano a 0, denotando que la producción nacional se destina casi exclusivamente al consumo interno, al mismo tiempo que las importaciones de arroz son limitadas. Por otra parte, el maíz duro presenta un CA que oscila alrededor del CA total del sector agrícola, con una fuerte disminución para los años 2011, 2012 y 2013.

Ilustración 25. Coeficiente de Apertura Económica

Fuente: BCE
Elaboración: Drichelmo Tamayo

Un indicador similar al coeficiente de apertura económica es el coeficiente de orientación de exportaciones, que muestra la participación relativa de las exportaciones dentro de la productividad nacional, así como la tendencia de la competitividad comercial del país en términos de su capacidad exportadora (Durán et al, 2008).

Al observar el coeficiente de orientación de exportaciones para el período 2000 – 2013, existe una disminución de 3 puntos. Sin embargo, este coeficiente ha permanecido relativamente estable entre 2000 y 2008 donde empezó a reducirse (Ver Anexo 11 y Anexo 12).
Este indicador se construye de la siguiente forma (Durán, J. et al. 2008):

\[COE_t = \frac{X_t}{PIB_t} \]

Dónde:

- \(COE_t \) = Coeficiente de orientación de exportaciones en el tiempo \(t \)
- \(X_t \) = Exportaciones totales en el tiempo \(t \)
- \(PIB_t \) = Producto Interno Bruto en el tiempo \(t \)

Una aplicación de este indicador, permite medir la participación relativa de las exportaciones agropecuarias dentro de la producción. Su forma de cálculo es igual al coeficiente de orientación de exportaciones para el total de la economía. Sin embargo, en función de la disponibilidad de información, se realizará el análisis para el período 2007-2013.

El COE en el sector agrícola presenta una tendencia a la baja, así como el coeficiente de orientación de exportaciones total para los años 2007-2013 (Ver Anexo 11 y Anexo 12). Sin embargo la participación relativa de las exportaciones agrícola en función de la producción del sector, es mayor a la registrada en el total de la economía. En la siguiente ilustración, se aprecia que el COE en el sector agrícola es aproximadamente 20 puntos mayor al total de la economía, para el periodo 2007-2013.

\[Ilustración \ 26. \ Coeficiente \ de \ Orientación \ de \ Exportaciones \]

\[0.60 \]
\[0.50 \]
\[0.40 \]
\[0.30 \]
\[0.20 \]

2000 2004 2008 2013
Año

Fuente: BCE
Elaboración: Drichelmo Tamayo

Cabe mencionar que tanto el arroz como maíz duro presentan un COE cercano a 0 entre los años 2007-2013. Sin embargo, los dos productos presentan un leve incremento de este coeficiente para el año 2009,
en el cual, como se explicó anteriormente, hubo un incremento en la exportación de los productos; sobre todo de maíz duro (Ver Anexo 13 y Anexo 14).

Así como el análisis desde el enfoque de las exportaciones, se puede llevar a cabo el análisis bajo un enfoque de importaciones, que permite medir la proporción del mercado doméstico que se abastece con importaciones (Durán et al, 2008).

El coeficiente de penetración de importaciones en el período 2000-2013, presenta una tendencia al alza. Este coeficiente se ha incrementado en 12 puntos porcentuales para el período previamente mencionado, es así que para el año 2013 aproximadamente el 30% del mercado doméstico se abastece con importaciones (Ver Anexo 11 e Ilustración 25).

La forma de cálculo del coeficiente de penetración de importaciones es equivalente al coeficiente de orientación de exportaciones de la siguiente manera (Durán, J. et al. 2008):

\[CPI_t = \frac{M_t}{PIB_t} \]

Dónde:

\[CPI_t = \text{Coeficiente de penetración de importaciones en el tiempo } t \]

\[M_t = \text{Importaciones totales en el tiempo } t \]

\[PIB_t = \text{Producto Interno Bruto en el tiempo } t \]

Al igual que con los anteriores indicadores, se empleará este indicador para el caso de las importaciones agrícolas, para con ello medir la proporción del mercado agrícola doméstico, que se abastece con importaciones del sector.

De este modo se aprecia que el sector agrícola, tiene una apertura en cuanto a las importaciones, menor al de la economía en su conjunto. Es así, que el coeficiente de penetración de importaciones (CPI) en el sector agrícola durante el período 2007-2013 se ha mantenido alrededor del 10%, mientras que el coeficiente del total de la economía se ha mantenido alrededor del 30% para el mismo período (Ver Anexo 11 y Anexo 12).

Por su parte, se aprecia que el CPI de arroz es prácticamente nulo, confirmado que el consumo doméstico se abastece exclusivamente de la producción nacional. Por otra parte, el CPI del maíz duro es mayor al del total del sector agrícola, lo que implica que un gran porcentaje del mercado local se abastece gracias a la importación de este producto. Cabe mencionar que a partir del año 2011, este coeficiente
decae para el maíz duro, años en los cuales la producción local del cultivo se incrementa considerablemente.

Ilustración 27. Coeficiente de Penetración de Importaciones

Fuente: BCE
Elaboración: Drichelmo Tamayo

En la presente subsección se pueden sacar ciertas conclusiones. De manera general los valores de CA denotan que la producción nacional de arroz se destina casi exclusivamente al consumo interno, lo que se corrobora al analizar el COE y CPI del producto. Por su parte, en el caso del maíz duro, para ciertos años presenta valores de CA mayores al del sector agrícola en su conjunto. Sin embargo, para los años 2011, 2012 y 2013 presenta una fuerte disminución debido sobre todo a la disminución de las importaciones, lo que se refleja al observar el CPI para aquellos años.

De este modo, se identifica que casi la totalidad de la demanda doméstica de arroz es suplida por la oferta nacional, y que tanto las exportaciones como las importaciones del cultivo se dan de manera esporádica. En cuanto al maíz, la oferta interna no alcanza a suplir a la demanda interna, por lo que se observa un alto índice de dependencia a las importaciones, sin embargo, a partir del año 2011 esta dependencia cae, lo que coincide con un incremento en la producción local del cultivo. Es así que dados estos primeros resultados, se esperaría que el maíz duro, al estar expuesto en mayor medida al comercio internacional, presente mayor transmisión de precios desde el mercado internacional al mercado doméstico en comparación al arroz.
Precios nacionales e internacionales

A continuación, se presentará los datos de las series mensuales de los precios nacionales y de los precios de referencia mundial para el arroz y maíz duro. Es importante mencionar, que el cultivo puede ser analizado a distintos niveles de comercialización es decir a nivel productor, mayorista o consumidor. La presente disertación se enfocará únicamente en analizar la transmisión de precios de los mercados internacionales al nacional a nivel productor y mayorista.

En primer lugar, como es de esperar, los precios a nivel mayorista son mayores a los precios a nivel productor tanto para el arroz como maíz en Ecuador. Ello se debe, a que el precio a nivel mayorista tiene incorporados costos de transacción además del margen comercial de los intermediarios. No obstante, se aprecia que la diferencia entre el precio mayorista y productor es mayor para el arroz en comparación al maíz, en promedio la diferencia entre estos precios para el arroz es de 428.76 USD/Tm mientras que para el maíz la diferencia es de apenas 55.70 USD/Tm.

En la siguiente tabla, se muestran los principales descriptivos de las series de precios que se disponen para el arroz y maíz duro en Ecuador. Es de gran importancia identificar que el arroz tanto a nivel productor como mayorista tiene un rango mayor en comparación al maíz. Adicionalmente, cabe destacar que, en el año 2007, se dio la mayor variación de precios para el arroz y maíz tanto a nivel productor como mayorista, puesto que en promedio los precios tuvieron una variación del 3.3% a nivel productor y 2.3% a nivel mayorista para el arroz y del 1% a nivel productor y mayorista para el maíz. Este incremento en el año 2007 coincide con el incremento de precio que experimentaron varios productos agrícolas, incluidos el arroz y maíz, como puede ser evidenciado en la Ilustración 28 e Ilustración 29.

<table>
<thead>
<tr>
<th>Precio arroz productor</th>
<th>Enero 2000 - Diciembre 2014</th>
<th>242.15</th>
<th>89.85</th>
<th>82.05</th>
<th>417.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precio arroz mayorista</td>
<td>Enero 2000 - Diciembre 2014</td>
<td>670.91</td>
<td>199.64</td>
<td>277.33</td>
<td>1003.75</td>
</tr>
<tr>
<td>Precio maíz productor</td>
<td>Enero 2006 - Diciembre 2014</td>
<td>280.92</td>
<td>59.66</td>
<td>143.00</td>
<td>477.50</td>
</tr>
<tr>
<td>Precio maíz mayorista</td>
<td>Enero 2000 - Diciembre 2014</td>
<td>281.20</td>
<td>87.26</td>
<td>147.13</td>
<td>477.50</td>
</tr>
</tbody>
</table>

Fuente: SINAGAP
Elaboración: Drichelmo Tamayo

En cuanto al panorama internacional, se eligieron como precios de referencia internacional de arroz a nivel productor: el precio FOB de Tailandia y Uruguay, y a nivel mayorista el precio de Estados Unidos. Estos precios referencia fueron elegidos en función de la disponibilidad de información y de estudios e investigaciones previas que tomaron como referencia a los precios previamente mencionados (Hernández, et al. 2009; Minot, N. 2010; Istiqomah et al. 2005). Por su parte para el maíz, se utilizarán como precios de referencia internacional al precio FOB de EE.UU. y Argentina (Giogetti et al. 2007; Alemu et al. 2006;
Sarris et al, 2005; Abdulai, 2000), los cuales serán contrastados tanto con el precio a nivel productor como mayorista de Ecuador.

De manera general, se observa un fuerte incremento en los precios internacionales, tanto productor como mayorista, en el año 2008. El incremento nominal se evidenció en varios productos agrícolas, sin embargo, la tasa de incremento varió considerablemente en función de los productos, específicamente los precios de productos básicos como los cereales, semillas oleaginosas y productos lácteos aumentaron en mayor proporción que los precios de productos tropicales (café, cacao, algodón o caucho). En parte el incremento pronunciado de precios experimentado en el año 2008 se debe a la depreciación del dólar, moneda en la cual generalmente se expresan los precios internacionales. Por otra parte, el aumento de la demanda de ciertos productos agrícolas como materia prima para la producción de biocombustibles, especialmente el maíz para la producción de etanol; el incremento de los precios del petróleo que tuvieron repercusiones directas sobre los costos de producción y precios agrícolas; y condiciones meteorológicas desfavorables corresponden a la explicación del incremento de precios (FAO, 2009).

Los precios internacionales de arroz, previo al año 2008 presentaban una tendencia al alza, sin embargo, no habían alcanzado niveles de precios tan altos como los observados en el año 2008. Entre enero 2006 y el primer trimestre del año 2008 los precios internacionales de arroz se triplicaron. Posterior al segundo semestre del 2008, se produjo una disminución significativa en los precios, no obstante, los precios se mantuvieron en niveles similares o superiores a los observados antes del año 2008. Adicionalmente, a partir del año 2013 se evidencia una disminución de los precios internacionales de EE.UU. y Tailandia, mientras que el precio FOB de Uruguay se mantuvo estable desde aquel año.

En cuanto a los precios a nivel productor y mayorista de Ecuador, se observa que si bien presentan una tendencia al alza entre el primer y último año de estudio, no reflejan aumentos o disminuciones tan pronunciados como los observados a nivel internacional. Esto puede ser causado por políticas comerciales, que en cierta medida protejan al mercado nacional de este tipo de volatilidades en el mercado externo, sobre este tema se hablará en la última subsección del presente capítulo.
Con respecto a los precios internacionales de maíz, se aprecia un incremento pronunciado en el año 2008, lo cual principalmente se debe a la demanda del producto como materia prima para la producción de biocombustibles, como se mencionó anteriormente. A diferencia del arroz, los precios del maíz, después del año 2008, no vuelven a ser similares a los precios registrados en años anteriores. Cabe mencionar que al igual que los precios internacionales del arroz, a partir del año 2013 se registra una tendencia a la baja en precios.

Por su parte, los precios nacionales de maíz presentan una tendencia al alza en el período de estudio. Cabe mencionar que tanto el precio a nivel productor como mayorista es mayor a los precios internacionales de referencia. Adicionalmente, las fluctuaciones en los precios nacionales son mucho más acentuadas en comparación a las fluctuaciones de los precios de arroz, además de que siguen una tendencia muy similar a la de los precios internacionales.
En la presente subsección se presentó la evolución de los precios internacionales y nacionales tanto del arroz como del maíz duro. Se identificó, que si bien los precios internacionales y domésticos muestran tanto para el caso del arroz y maíz duro una tendencia a la alta entre el año 2000 y 2014, los precios nacionales del arroz no siguen necesariamente una dinámica de movimiento similar a los precios internacionales. No obstante, los precios domésticos del maíz duro siguen una dinámica de precios más similar, al menos en un análisis gráfico, al de los precios internacionales.

De este modo, como se mencionó al inicio del presente capítulo, se analizarán algunas políticas comerciales que el Ecuador ha implementado en el período 2000-2014 y se podrá esclarecer el por qué de la poca apertura agrícola al comercio internacional, lo que a su vez permitirá responder por qué los precios nacionales, tanto a nivel productor como mayorista del arroz y maíz duro, no siguen de manera muy cercana a las variaciones de los precios internacionales, sobre todo para el caso del arroz.
Políticas comerciales y agrícolas en el período 2000 – 2014

Si bien el objetivo de la presente disertación no se enfoca en analizar políticas comerciales o agropecuarias como tales, es importante señalar ciertas políticas cuya aplicación tienen una afectación directa en los precios nacionales de arroz y maíz. Específicamente, se hablará sobre el sistema andino de franja de precios, precios de sustentación, la política de absorción de producción nacional y los planes de mejora competitiva. Si bien estas políticas no son las únicas que se han llevado a cabo en Ecuador durante el periodo de estudio, sí son las más representativas en el proceso de fijación de precios a nivel nacional.

Además las políticas comerciales no solo influyen en la formación de precios agrícolas sino también que imponen barreras al comercio. Respecto a ello, en el marco teórico de la presente disertación se expuso que las barreras comerciales, arancelarias y para-arancelarias, imponen restricciones al comercio y por ende representan obstáculos para la integración de los mercados y dificultan la transmisión de precios. En este sentido es fundamental para el desarrollo de la presente disertación exponer las políticas previamente mencionadas, puesto que permitirán identificar los posibles limitantes a la transmisión de precios desde el mercado internacional al mercado doméstico,

El Sistema Andino de Franja de Precios (SAFP), que entró en vigencia en febrero de 1995, es un mecanismo cuyo objetivo es estabilizar el costo de importación de un grupo especial de productos agropecuarios, caracterizados por una marcada inestabilidad en sus precios internacionales (Decisión 371 – Comunidad Andina, 1994). Este mecanismo de estabilización opera de la siguiente manera: aumentando el arancel ad-valorem cuando el precio internacional está por debajo del nivel de piso y disminuyendo dicho arancel hasta cero, cuando dicho precio está por encima del techo.

La determinación de precios piso y techo es realizada de la siguiente forma: se utilizan las últimas observaciones de los últimos 60 meses hasta el último mes de octubre, las cotizaciones observadas hacen referencia a los precios internacionales de bolsa o FOB (El mercado de referencia para el arroz es FOB Bangkok, cotizaciones semanales, mientras que el mercado de referencia para el maíz amarillo es la bolsa de Chicago-Precios FOB Golfo, cotizaciones diarias de cierre) y son convertidos a dólares actuales utilizando el índice de precios al consumidor urbano de los Estados Unidos con base en el último octubre. Posterior a ello se realiza la conversión a precios CIF, que son los fletes correspondientes al producto marcador y seguros del 0.5% hasta puerto andino. Finalmente se realiza un promedio aritmético de precios CIF en dólares constantes. Adicionalmente se considera un factor de ajuste de la desviación típica 0.50 para la franja de arroz y -0.25 para la franja de maíz amarillo. De este modo el precio piso se conforma como el promedio de precios históricos CIF menos el factor de ajuste por la desviación típica, mientras que el precio techo se construye como la suma entre el precio piso más una desviación típica.
Con respecto los precios de sustentación (o precios mínimos de garantía), que corresponden al mecanismo regulador de los precios de un producto de origen agrícola, pecuario, acuícola, pesquero, hidrobiológico o agroindustrial, para uso alimentario; definido por el ente regulador de la política sectorial; para productos en que sus mercados tengan una característica de oligopsonios (Artículo 62 Proyecto de ley orgánica de comercialización y abastecimiento alimentario, 2012); son utilizados para garantizar un precio a los productores de mercados oligopsonícos, capaz de cubrir los costos de producción y una rentabilidad moderada que le garantice un ingreso con el que pueda adquirir la canasta del buen vivir. Desde abril de 2013, se ha impuesto el precio de sustentación de maíz. Este precio es impuesto por el MAGAP, que cumple las funciones de ente regulador de la política agrícola.

Además, es importante mencionar que, a partir de 1978, conforme al Acuerdo Interministerial N° 067, se establecieron los mecanismos y condiciones para la absorción de la producción nacional, los cuales pueden aplicarse a cualquier producto considerado como sensible. De esta forma, en 2004 el Ministerio de Agricultura y Ganadería emitió el acuerdo N°347 con el cual, las importaciones de maíz, soja, torta de soja y arroz están sujetas al requisito de absorción de la producción nacional. Con ello se pretende garantizar la absorción total de la cosecha nacional de los productos mencionados anteriormente.

Adicionalmente, el Ecuador está habilitado para administrar los contingentes arancelarios, y estos son asignados a los importadores en función de su consumo histórico. Un contingente arancelario es un volumen definido de importación de productos agropecuarios que gozan de un trato arancelario especial. Además en el Acuerdo Interministerial N° 100 se establece que las importaciones “dentro de contingente” deben realizarse en un período específico de tiempo, conocido como “periodo contingencial”, para evitar que las importaciones se realicen en el mismo periodo de cosecha nacional (OMC, 2005).

Esta política de absorción garantiza la absorción de la cosecha nacional, puesto que previo a solicitar un cupo de importación de los productos como el maíz y arroz, los importadores deben presentar una factura en donde conste tanto la cantidad comprada como el precio al cual adquirieron el producto nacional. No obstante entre los años 2006-2010 no se emplearon estos instrumentos debido al alza de precios mundiales (OMC, 2011).

Cabe mencionar que el MAGAP, ha puesto en marcha El Plan de Mejora Competitiva (PMC) de maíz. En el año 2011, se suscribió el Convenio Interministerial MAGAP-Ministerio de Industrias y Productividad (MIPRO), para ejecutar el PMC de maíz, cuyo objetivo estratégico es alcanzar el autoabastecimiento hasta el año 2015, mediante el incremento de la productividad, modernización de la comercialización, aumento de la infraestructura de almacenamiento, ampliación del acceso al financiamiento y el fortalecimiento de la asociatividad.

Todos los objetivos planteados en el PMC de maíz, tienen una incidencia en la formación de precios del cultivo en Ecuador, sobre todo se rescata el objetivo que hace referencia al incremento en productividad
(Convenio Interministerial 11-121 MAGAP-MIPRO, 2011), que a su vez se traduce en mayores ingresos para el agricultor y en mayor disponibilidad de materia prima nacional para el procesador industrial. Este último aspecto puede verse reflejado en los datos presentados anteriormente, sobretodo en la reducción de importaciones y el gran incremento de la producción y rendimiento de maíz a partir del año 2011. Adicionalmente, cabe destacar que el objetivo que corresponde al aumento de infraestructura de acopio, secado y almacenamiento, es determinante en la comercialización de la cosecha de maíz duro, puesto que su disponibilidad incide en la compra y venta prematura del producto, incidiendo en la formación de precio.

Al observar las políticas previamente descritas, se esclarecen ciertos hallazgos de las anteriores secciones. En primer lugar, las importaciones tanto de arroz como maíz son bajas, puesto que estos productos están sujetos a políticas de absorción, que obligan a los comerciantes, a comprar en primer lugar la producción nacional del cultivo, para luego otorgarles un determinado cupo de importación.

En cuanto a los precios nacionales, se aprecia que tanto el SAFP que actúa como un mecanismo que regula las fluctuaciones de precios en el mercado internacional, permitiendo reducir la incertidumbre y dependencia alimentaria externa, además de facilitar la programación de inversiones de los productores; como los precios de sustentación interna, han permitido contener las fluctuaciones de los precios internacionales, tal como se observó en la Ilustración 28 e Ilustración 29, el fuerte incremento en precios que ocurrió en el año 2008 no se ve reflejado en los precios nacionales. No obstante cabe mencionar que los precios de maíz duro, tanto productor como mayorista siguen una tendencia más cercana a la de los precios internacionales en comparación al arroz.

Este último hecho se debe a que como se identificó en la tercera sección del presente capítulo, la oferta interna de maíz duro no alcanza a suplir a la demanda interna, por lo que se observa un alto índice de dependencia a las importaciones. Es así que dados estos primeros resultados, se esperaría que el maíz duro, al estar expuesto en mayor medida al comercio internacional, presente mayor transmisión de precios desde el mercado internacional al mercado doméstico en comparación al arroz.

Con esta información, se procede a dar paso al siguiente capítulo de la disertación, en donde se emplearán técnicas econométricas para identificar si existe cointegración de mercados de arroz y maíz duro con sus pares internacionales, de ser así, se identificará la transmisión de precios y se determinará si esta es simétrica o no. De este modo, se podrá comprobar de manera empírica lo establecido por la Ley de un Solo Precio, que como se mencionó en el marco teórico, establece que los precios entre dos mercados integrados separados espacialmente, tenderán a converger sus precios.
Capítulo 2: Análisis de integración de mercado.

En la presente sección mediante métodos econométricos se encontrará si existe causalidad en el sentido de Granger desde el precio internacional al nacional, con el objetivo de identificar si el movimiento de la serie de los precios internacionales tiene algún efecto sobre los precios nacionales. Posteriormente se identificará si los precios internacionales y nacionales están cointegrados, y de estarlo se procederá a estimar su relación a largo plazo, la velocidad de ajuste a su equilibrio y finalmente si la trasmisión de precios es simétrica o no. El análisis de simetría intenta responder la pregunta de si los incrementos en los precios internacionales se reflejen en los precios nacionales del mismo modo que los hacen las disminuciones. Bajo estos lineamientos, se podrá comprobar de manera empírica si rige la Ley de un Solo Precio entre los mercados nacionales e internacionales de arroz y maíz.

Uno de los supuestos fundamentales para los ejercicios empíricos en series de tiempo es la estacionariedad entre las variables. En este sentido, el paso preliminar a la estimación de ecuación de cointegración, es la identificación del nivel de integración de las series (a qué nivel de diferenciación la serie es estacionaria), lo cual puede ser probado mediante pruebas de raíz unitaria.

Bajo esta lógica, al investigar la transmisión de precios entre el mercado A y B, se prueba el nivel de integración y según el resultado existen tres posibles opciones: (i) A y B son estacionarias, por lo que la metodología de cointegración es inapropiada, y se debe aplicar métodos al nivel; (ii) A es estacionaria pero B no es, es decir las variables tienen distintos órdenes de integración, entonces no se puede analizar la transmisión de precios con ninguna metodología, puesto que de hacerlo se incurrirá en regresiones espurias con resultados sesgados; (iii) A y B no son estacionarias al nivel, pero sí en su primera diferencia, por lo que los métodos de cointegración son los óptimos para realizar el análisis. En la presente sección únicamente se analizará las relaciones de precios que cumplen esta última característica, es decir que son no estacionarias a nivel pero sí lo son en su primera diferencia.

Es importante mencionar que se considerarán los precios internacionales FOB del arroz de Estados Unidos, Uruguay y Tailandia. Por su parte, para el maíz se considerarán los precios internacionales FOB de Argentina y Estados Unidos. Las series de precios de Estados Unidos y Tailandia son elegidos debido a que son los precios de referencia mundiales, mientras que los precios de Argentina y Uruguay son elegidos puesto que son los precios de referencia para América del Sur. Cabe mencionar que con el fin de identificar si existe presión externa por parte de Colombia y Perú también se analizará si existe tal presión para el caso del arroz utilizando el precio a nivel mayorista. Por su parte, para el Ecuador se utilizarán los precios tanto a nivel mayorista como productor para el arroz y maíz. Se utilizan series de tiempo con una frecuencia mensual y el periodo temporal de información difiere entre las series en función de la disponibilidad de la información (Ver Anexo 15).
Los datos utilizados en la presente sección fueron transformados a logaritmos, puesto que esta transformación permite mitigar las fluctuaciones de las series individuales, incrementando la posibilidad de estacionariedad una vez que se han diferenciado a las series (Hamilton, 1994). Por otra parte, esta transformación permitirá interpretar los resultados en términos de cambios porcentuales, lo cual facilita el análisis las estimaciones que serán planteadas.

Características de las series

El análisis de series de tiempo se basa en el supuesto de estacionariedad de las series; es por ello que a continuación se realizará un análisis para cada serie, utilizando la prueba de Dickey-Fuller Aumentada. Para las series a nivel se presentará los resultados incluyendo una intersección, tendencia y 6 rezagos; mientras que para las primeras diferencias se presentará el test incluyendo intersección, drift y 6 rezagos.

\[H_0 \text{ serie presenta raíz unitaria (no es estacionaria)} \]
\[H_1 \text{ serie no presenta raíz unitaria (es estacionaria)} \]

Tabla 2. Resultados prueba Dickey Fuller (p-valor) series Ecuador

<table>
<thead>
<tr>
<th></th>
<th>Serie Precio Arroz (Mayorista) Ecuador</th>
<th>Serie Precio Arroz (Productor) Ecuador</th>
<th>Serie Precio Maíz (Mayorista) Ecuador</th>
<th>Serie Precio Maíz (Productor) Ecuador</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Nivel</td>
<td>Primera diferencia</td>
<td>Nivel</td>
<td>Primera diferencia</td>
</tr>
<tr>
<td>Sin rezago</td>
<td>0.0191</td>
<td>0.0000</td>
<td>0.0263</td>
<td>0.0000</td>
</tr>
<tr>
<td>Rezago: 1</td>
<td>0.0652</td>
<td>0.0000</td>
<td>0.0248</td>
<td>0.0000</td>
</tr>
<tr>
<td>Rezago: 2</td>
<td>0.2660</td>
<td>0.0000</td>
<td>0.0343</td>
<td>0.0000</td>
</tr>
<tr>
<td>Rezago: 3</td>
<td>0.1615</td>
<td>0.0000</td>
<td>0.0349</td>
<td>0.0000</td>
</tr>
<tr>
<td>Rezago: 4</td>
<td>0.1273</td>
<td>0.0000</td>
<td>0.0367</td>
<td>0.0000</td>
</tr>
<tr>
<td>Rezago: 5</td>
<td>0.3917</td>
<td>0.0000</td>
<td>0.0659</td>
<td>0.0000</td>
</tr>
<tr>
<td>Rezago: 6</td>
<td>0.3738</td>
<td>0.0000</td>
<td>0.0607</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Número de obs. 180 180 180 108

Fuente: SINAGAP.

Elaboración: Drichelmo Tamayo

Los resultados de la prueba Dickey Fuller indican que las series de precios nacionales tanto a nivel mayorista como productor del arroz no son estacionarias a nivel, mientras que si lo son en su primera diferencia al 1% de significancia. Del mismo modo, se aprecia que la serie de precio de maíz a nivel productor no es estacionaria a nivel, pero si en su primera diferencia; no obstante, la serie de precios nacionales de maíz a nivel mayorista es estacionaria a nivel, por lo que tiene que ser descartada del análisis con el fin de no incurrir en problemas de regresión espuria. Ello se debe a que los análisis en
series de tiempo, para que no presenten coeficientes sesgados, deben realizarse con pares de serie que estén integradas en el mismo orden. En cuanto a los precios internacionales de referencia, se observa que todos ellos no son estacionarios a nivel, pero si en sus primeras diferencias (Ver Anexo 16).

Una vez identificado a que las series tienen un orden de integración igual a uno, se escogieron tres estrategias de estimación coherentes con series de tiempo. El primero es un modelo de Vectores Autoregresivos (VAR), el segundo es un modelo de Corrección de Errores (ECM) y el tercero es un modelo de Vectores con Corrección de Errores (VECM). A continuación se presentarán las estimaciones de los modelos mencionados tanto para el caso del arroz como del maíz.

Estimación modelo VAR

Un paso previo a la estimación del modelo VAR es la identificación del número óptimo de rezagos que deben ser incluidos, es decir se debe estimar un modelo para cada valor de rezagos propuesto y utilizar el que presente el menor nivel de pérdida de información. Para ello se utilizan los estimadores del Error Final de Predicción de Akaike (FPE por sus siglas en inglés), Criterio de Información Akaike (AIC por sus siglas en inglés), Criterio de Información de Hannan Quinn (HQIC por sus siglas en inglés) y el Criterio de Información Schwartz-Bayesiano. Por otra parte se presenta también el logaritmo de la verosimilitud (LL) y la prueba del ratio de la verosimilitud (LR). Estos son sensibles a la cantidad total de rezagos incluidos en las pruebas. El LR tiene como hipótesis nula que todos los coeficientes del modelo VAR con un rezago menos al presentado son estadísticamente insignificantes, por lo que su rechazo es deseable.

En la literatura no se ha llegado a un consenso respecto que indicador es el más robusto para seleccionar el nivel óptimo de rezagos (Lutkepohl, 2005; Khim et al, 2004), por lo que en la presente disertación se elegirá al número de rezagos óptimo en función al estadístico LR. Las pruebas serán generadas con un máximo de 12 rezagos.

En la siguiente tabla, se presenta el resumen del número óptimo de rezagos recomendados según los estimadores previamente mencionados. En el Anexo 17, se presentan los resultados completos para la selección de los rezagos.
Tabla 3. Selección de rezagos para la estimación del modelo VAR.

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Variables*</th>
<th>Número de rezagos</th>
<th>Número de observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo 1</td>
<td>Precio arroz nivel productor Ecuador - Precio FOB Tailandia</td>
<td>12</td>
<td>167</td>
</tr>
<tr>
<td>Modelo 2</td>
<td>Precio arroz nivel productor Ecuador - Precio FOB Uruguay</td>
<td>12</td>
<td>95</td>
</tr>
<tr>
<td>Modelo 3</td>
<td>Precio arroz nivel mayorista Ecuador - Precio FOB EE.UU.</td>
<td>1</td>
<td>167</td>
</tr>
<tr>
<td>Modelo 4</td>
<td>Precio arroz nivel mayorista Ecuador - Precio mayorista Perú</td>
<td>10</td>
<td>119</td>
</tr>
<tr>
<td>Modelo 5</td>
<td>Precio arroz nivel mayorista Ecuador - Precio minorista Colombia</td>
<td>3</td>
<td>167</td>
</tr>
<tr>
<td>Modelo 6</td>
<td>Precio maíz nivel productor Ecuador - Precio FOB EE.UU.</td>
<td>10</td>
<td>95</td>
</tr>
<tr>
<td>Modelo 7</td>
<td>Precio maíz nivel productor Ecuador - Precio FOB Argentina</td>
<td>10</td>
<td>95</td>
</tr>
</tbody>
</table>

* Las variables corresponden a las primeras diferencias.

Fuente: FMI, FAO, SINAGAP.

Elaboración: Drichelmo Tamayo

Al tomar en cuenta los criterios acá presentados en conjunto, se decide probar el modelo con el número de rezagos descritos. Tras continuar con las pruebas sobre el término de error y de estabilidad del modelo se encontró que la cantidad de rezagos falla varias pruebas en los modelos planteados. Por lo tanto se utiliza como regla de decisión para la selección de rezagos, aquel número de rezagos que permita obtener resultados favorables en la prueba sobre el término de error, estabilidad y causalidad de Granger. De este modo los modelos terminan siendo especificados con 12 rezagos. Cabe destacar que a pesar de tomar esta regla de decisión, no se obtuvieron resultados favorables en la prueba de causalidad de Granger para los modelos 1, 2, 3 y 4, puesto que los resultados indican que la causalidad es dada desde el mercado nacional al internacional y no viceversa.

De este modo se puede identificar de manera general para los 7 modelos planteados la siguiente ecuación:

\[Y_t = \delta + \sum_{k=1}^{12} \alpha_k Y_{t-k} + e_t \]

(32)

Usualmente los coeficientes de un modelo VAR no suelen ser interpretados, sin embargo se presentará un resumen del R cuadrado y la prueba Ji-Cuadrado de cada modelo (los resultados de los coeficientes serán presentados en los anexos). Por otra parte, es de interés analizar las funciones impulso respuesta (FIR). Se puede comprender a una FIR como la reacción de un sistema dinámico a algún cambio externo. Para este caso en específico, se considerará como impulso a un cambio en los precios internacionales para identificar una respuesta en los precios nacionales. Adicionalmente, se presentarán los resultados de la prueba de causalidad de Granger.

La siguiente tabla muestra los resultados de los modelos VAR reducidos para las variables consideradas. De manera general, en todos los modelos se observan valores R² menores al 50%. Sin embargo, los
modelos que involucran al precio a nivel productor y mayorista de arroz, presentan valores R^2 menores en comparación a los modelos que involucran al precio de maíz a nivel productor, lo que denota que existe una mejor explicación por parte de los precios internacionales a los precios nacionales de maíz. En cuanto a la prueba Ji-cuadrado, se observa que su hipótesis nula es rechazada para la mayoría de los modelos en los cuales la variable dependiente corresponde a los precios nacionales, aceptándose que en conjunto las variables explicativas tienen una asociación significativa sobre los precios nacionales analizados. Únicamente el primer modelo no presenta evidencia de asociación entre el precio nacional y las variables explicativas incluidas.

Tabla 4. Resumen estimación modelos VAR reducidos.

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Variable dependiente*</th>
<th>Variable independiente*</th>
<th>R^2</th>
<th>$p>\text{chi}^2$</th>
<th>Número de observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo 1</td>
<td>Precio Arroz a nivel Productor</td>
<td>Precio Internacional Tailandia</td>
<td>0.16</td>
<td>0.1227</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>Precio Internacional Tailandia</td>
<td>Precio Arroz a nivel Productor</td>
<td>0.42</td>
<td>0.0000</td>
<td>167</td>
</tr>
<tr>
<td>Modelo 2</td>
<td>Precio Arroz a nivel Productor</td>
<td>Precio Internacional Uruguay</td>
<td>0.30</td>
<td>0.0153</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Precio Internacional Uruguay</td>
<td>Precio Arroz a nivel Productor</td>
<td>0.49</td>
<td>0.0000</td>
<td>95</td>
</tr>
<tr>
<td>Modelo 3</td>
<td>Precio Arroz a nivel Mayorista</td>
<td>Precio Internacional EE.UU.</td>
<td>0.20</td>
<td>0.0119</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>Precio Arroz a nivel Mayorista</td>
<td>Precio Internacional EE.UU.</td>
<td>0.40</td>
<td>0.0000</td>
<td>167</td>
</tr>
<tr>
<td>Modelo 4</td>
<td>Precio Arroz a nivel Mayorista</td>
<td>Precio Internacional Perú</td>
<td>0.26</td>
<td>0.0134</td>
<td>119</td>
</tr>
<tr>
<td></td>
<td>Precio Internacional Perú</td>
<td>Precio Arroz a nivel Mayorista</td>
<td>0.36</td>
<td>0.0000</td>
<td>119</td>
</tr>
<tr>
<td>Modelo 5</td>
<td>Precio Arroz a nivel Mayorista</td>
<td>Precio Internacional Colombia</td>
<td>0.22</td>
<td>0.0041</td>
<td>167</td>
</tr>
<tr>
<td></td>
<td>Precio Internacional Colombia</td>
<td>Precio Arroz a nivel Mayorista</td>
<td>0.33</td>
<td>0.0000</td>
<td>167</td>
</tr>
<tr>
<td>Modelo 6</td>
<td>Precio Maíz a nivel Productor</td>
<td>Precio Internacional EE.UU.</td>
<td>0.37</td>
<td>0.0002</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Precio Internacional EE.UU.</td>
<td>Precio Maíz a nivel Productor</td>
<td>0.25</td>
<td>0.1542</td>
<td>95</td>
</tr>
<tr>
<td>Modelo 7</td>
<td>Precio Maíz a nivel Productor</td>
<td>Precio Internacional Argentina</td>
<td>0.41</td>
<td>0.0000</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Precio Internacional Argentina</td>
<td>Precio Maíz a nivel Productor</td>
<td>0.17</td>
<td>0.7291</td>
<td>95</td>
</tr>
</tbody>
</table>

* Las variables corresponden a las primeras diferencias.

Fuente: FMI, FAO, SINAGAP.

Elaboración: Drichelmo Tamayo

Una de las características deseables de los vectores autoregresivos es que no exista autocorrelación en los errores de los modelos, es decir el vector de errores sigan un proceso tipo ruido blanco. Para ello se efectúa la prueba de Pormanteau de ruido blanco. Sus resultados pueden observarse en la

Tabla 5, en donde se aprecia que para todos los modelos estimados la autocorrelación fue extraída satisfactoriamente de los errores, por lo que se concluye que las estimaciones no sufren sesgo por esta vía. Cabe mencionar que en la prueba de Portmanteau, la hipótesis nula asume la no existencia de autocorrelación serial en los residuos y que los mismos son por lo tanto ruido blanco.
<table>
<thead>
<tr>
<th>Modelo</th>
<th>Estadístico (Q)</th>
<th>Portmanteau</th>
<th>p>chi2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo 1</td>
<td>50.645</td>
<td>0.121 **</td>
<td></td>
</tr>
<tr>
<td>Modelo 2</td>
<td>25.618</td>
<td>0.962 **</td>
<td></td>
</tr>
<tr>
<td>Modelo 3</td>
<td>38.817</td>
<td>0.523 **</td>
<td></td>
</tr>
<tr>
<td>Modelo 4</td>
<td>12.465</td>
<td>1.000 **</td>
<td></td>
</tr>
<tr>
<td>Modelo 5</td>
<td>58.578</td>
<td>0.029 *</td>
<td></td>
</tr>
<tr>
<td>Modelo 6</td>
<td>22.154</td>
<td>0.990 **</td>
<td></td>
</tr>
<tr>
<td>Modelo 7</td>
<td>24.794</td>
<td>0.972 **</td>
<td></td>
</tr>
</tbody>
</table>

*Significativo al 1%.
**Significativo al 5%.

Fuente: FMI, FAO, SINAGAP.
Elaboración: Drichelmo Tamayo

Por otra parte también es importante realizar pruebas sobre la estabilidad de los valores propios, lo que demostraría la existencia de un modelo estacionario en conjunto. Cuando un modelo VAR no supera esta prueba no se puede afirmar la estacionariedad conjunta del modelo y se puede argumentar que una variable de respuesta reaccionará tras algún tiempo de forma divergente frente a un choque de las variables incluidas en el modelo. Características irreales e indeseables en un modelo. Además la presencia de no estabilidad del modelo es condición suficiente para asegurar que el modelo es no estacionario, lo que significa que el proceso autoregresivo seleccionado no es suficiente para solucionar potenciales problemas de correlación serial. Estas dos condiciones: no estacionariedad y falta de estabilidad, son fuertes indicadores que el modelo VAR propuesto no permite caracterizar correctamente las variables utilizadas (Becketti, 2013). Razones por las que se puede considerar el uso de otro tipo de modelo para identificar la relación entre las variables.

Como se puede apreciar en los siguientes gráficos todas las raíces de la matriz de compañía se encuentran dentro del círculo unitario, prueba suficiente de la estabilidad del modelo (Hamilton, 1994).
Una vez comprobado que los modelos fueron bien especificados, se estiman las pruebas de causalidad de Granger que son pruebas de significancia conjunta de los rezagos propuestos en el modelo VAR con cada una de las variables del modelo. No obstante, el uso de la palabra causalidad es una exageración del alcance de la prueba, ya que esta afirmación debe ser acompañada por un modelo teórico (Becketti, 2013).

Fuente: FMI, FAO, SINAGAP.
Elaboración: Drichelmo Tamayo
Es importante mencionar que para el objetivo de la presente disertación las relaciones de precios de mayor interés son aquellas en donde la variable dependiente corresponde a los precios nacionales y la variable independiente corresponde a los precios internacionales. Ello se debe, a que Ecuador no es un importante actor en los mercados mundiales y se esperaría que la transmisión de precios ocurra desde los mercados internacionales al nacional. Es así, que mediante la prueba de causalidad de Granger se confirma que en los modelos 5, 6 y 7 existe una relación significativa entre los precios internacionales y aquellos domésticos.

Tabla 6. Prueba de causalidad Granger.

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Variable dependiente</th>
<th>Variable independiente</th>
<th>(J_i)-cuadrado</th>
<th>GL</th>
<th>p-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo 1</td>
<td>Precio Arroz a nivel Productor</td>
<td>Precio Internacional Tailandia</td>
<td>5.67</td>
<td>12</td>
<td>0.932</td>
</tr>
<tr>
<td>Modelo 2</td>
<td>Precio Arroz a nivel Productor</td>
<td>Precio Internacional Uruguay</td>
<td>14.90</td>
<td>12</td>
<td>0.247</td>
</tr>
<tr>
<td>Modelo 3</td>
<td>Precio Arroz a nivel Mayorista</td>
<td>Precio Internacional EE.UU.</td>
<td>15.37</td>
<td>12</td>
<td>0.222</td>
</tr>
<tr>
<td>Modelo 4</td>
<td>Precio Arroz a nivel Mayorista</td>
<td>Precio Internacional Perú</td>
<td>15.22</td>
<td>12</td>
<td>0.229</td>
</tr>
<tr>
<td>Modelo 5</td>
<td>Precio Arroz a nivel Mayorista</td>
<td>Precio Internacional Colombia</td>
<td>18.83</td>
<td>12</td>
<td>0.093**</td>
</tr>
<tr>
<td>Modelo 6</td>
<td>Precio Maíz a nivel Productor</td>
<td>Precio Internacional EE.UU.</td>
<td>24.27</td>
<td>12</td>
<td>0.019*</td>
</tr>
<tr>
<td>Modelo 7</td>
<td>Precio Maíz a nivel Productor</td>
<td>Precio Internacional Argentina</td>
<td>32.08</td>
<td>12</td>
<td>0.001*</td>
</tr>
</tbody>
</table>

Las variables corresponden a las primeras diferencias.

*Significativo al 5%.

**Significativo al 10%.

Fuente: FMI, FAO, SINAGAP.

Elaboración: Drichelmo Tamayo

Posteriormente es de interés analizar las Funciones Impulso-Respuesta (FIR). Una FIR se refiere al resultado de un sistema dinámico sobre una variable de una breve señal de entrada, denominada impulso. También se puede comprender a una FIR como la reacción de un sistema dinámico a algún cambio externo (Lu & Xin, 2010). Para la presente disertación se consideran como variables de respuesta a los precios nacionales y como variables de impulso a los precios internacionales, para cada uno de los modelos planteados. En las siguientes ilustraciones se presentará las Funciones Impulso-Respuesta únicamente para aquellos modelos que pasaron la prueba de causalidad de Granger, puesto que los modelos que no pasaron esta prueba tendrán una FIR igual a 0.

En la Ilustración 31 se puede observar que la FIR es estadísticamente igual a 0 para los 15 meses analizados, con excepción del segundo mes, en donde se encuentra que un aumento en 1% en el precio de arroz de Colombia representa un aumento de 0.1% en el precio a nivel mayorista en Ecuador.

En la Ilustración 32 que hace referencia a la relación existente entre el precio internacional de EE.UU. y el precio al productor de maíz en Ecuador, se aprecia que la FIR no es estadísticamente diferente de 0, denotando que no existe una FIR para este modelo a pesar de tener resultados favorables en la prueba de Granger. En la Ilustración 33, se observa un efecto similar al mencionado anteriormente para la relación entre el precio del maíz de Argentina y el precio productor del maíz en Ecuador.
La presente subsección permitió identificar cual es la dinámica de la causalidad de precios en el sentido de Granger entre los precios nacionales e internacionales analizados. De este análisis se puede identificar que el arroz no presenta un relación causal (en el sentido Granger) con los precios internacionales, pero si con el precio a nivel minorista de Colombia, lo cual indica que existe una presión de precios por parte de la frontera norte del Ecuador. Por su parte, para el caso del maíz duro, se observa que el mercado nacional presente una relación causal en el sentido Granger con los precios internacionales en la dirección esperada, es decir, desde el mercado internacional al nacional. Este resultado está en consonancia con lo identificado en el anterior capítulo al identificar, que el grado de apertura económica del mercado del maíz duro está en mayor exposición al mercado internacional en comparación al arroz.

A continuación se llevará a cabo el análisis propiamente de integración de mercados. En primer lugar, se deberán emplear pruebas de cointegración, las mismas que determinarán si dos pares de precios analizados (nacional e internacional para el mercado de arroz y maíz) están cointegrados, de estarlo se empleará la metodología VEC, para determinar la relación de equilibrio de largo plazo y la velocidad de ajuste frente a un desequilibrio.
Estimación modelo VEC

En la presente sección se utiliza el modelo VEC para examinar las relaciones entre el precio internacional de arroz y maíz con el precio doméstico de Ecuador. Los modelos VEC son apropiados si se cumplen dos condiciones: 1) Cada variable es no estacionaria e integrada de orden uno. 2) Las variables están cointegradas, lo que significa que existe una combinación lineal de las variables que es estacionaria.

Para cada par de precios domésticos e internacionales, el análisis consiste de tres etapas. En primer lugar, se debe identificar si las variables de precios son de orden 1 de integración. Este procedimiento ya fue realizado previo a la estimación de modelos VAR, y se constató que si son series integradas de orden 1. En segundo lugar, se utiliza el test de Johansen para determinar si las dos series están cointegradas, o en términos prácticos, si existe una relación de precios a largo plazo entre los precios locales e internacionales. En tercer lugar, y de ser el caso que el test de Johansen indique que las variables están cointegradas, se estimará el modelo VEC. Este modelo puede ser escrito de la siguiente manera:

$$\Delta y_t = \alpha (\beta y_{t-p} + \mu + \rho t) + \sum_{i=1}^{p-1} \Gamma_i \Delta y_{t-i} + \gamma + \tau t + \epsilon_t$$

(33)

Para la estimación de este modelo, Johansen define 5 posibles casos de estimación:

En el primer caso, se puede especificar un modelo que no incluya tendencia o constante $\tau = 0, \rho = 0, \gamma = 0$ y $\mu = 0$. Cuando no existe tendencia o constante, la ecuación de cointegración están restringidas para ser estacionarias con media cero. También, después de ajustar por los efectos de los rezagos de las variables endógenas, los datos diferenciados son modelados para tener media cero. Los indicadores estacionales no son permitidos en esta especificación.

Ilustración 34. VEC cointegrado sin constante y sin tendencia.

En el segundo caso, se especifica un modelo con constante restringida en donde no existe una tendencia lineal o cuadrática en los datos no diferenciados $\tau = 0, \rho = 0$ y $\gamma = 0$. Un coeficiente μ diferente de 0
permite a las ecuaciones de cointegración a ser estacionarias alrededor de una media diferente de cero, lo que provee solo interceptos para los datos diferenciados. Los indicadores estacionales no son permitidos.

Ilustración 35. VEC cointegrado con constante restringida.

Fuente: Brooks et al (2010)

En el tercer caso, se define un modelo con una constante no restringida \(\tau = 0 \) y \(\rho = 0 \). Esto permite a una tendencia lineal en los datos no diferenciados y en las ecuaciones de cointegración que son estacionarios con una media diferente de cero.

Ilustración 36. VEC cointegrado con constante no restringida.

Fuente: Brooks et al (2010)

En el cuarto caso, se define un modelo de tendencia restringida que excluye tendencias lineales en los datos diferenciados, pero permite tendencias lineales en las ecuaciones de cointegración \(\tau = 0 \). Una tendencia lineal en la ecuación de cointegración implica que la ecuación de cointegración tiene tendencia estacionaria.
En el último caso definido por Johansen, se define un modelo con tendencia no restringida que permite una tendencia lineal en las ecuaciones de cointegración y una tendencia cuadrática en los datos no diferenciados. Una tendencia lineal en las ecuaciones de cointegración implica que las ecuaciones de cointegración son asumidas para tener tendencia estacionaria.

El primer caso no es relevante para el trabajo empírico. El caso dos es apropiado para datos sin tendencia I(1) tales como las tasas de interés y tasas de cambio. El tercer caso es apropiado para datos con tendencia como precios de activos y agregados macroeconómicos. El caso 4 también es apropiado para tendencias I(1). Finalmente el caso 5 es apropiado para datos I(1) con una tendencia cuadrática, como por ejemplo datos de precios nominales durante un período de tiempo con inflación extrema (Brooks et al 2010).

Dado que los datos que se ocupan para la presente sección, se apegan a las características del segundo caso definido por Johansen, se empleará tanto para la prueba de cointegración como para la estimación del modelo VEC un modelo con constante restringida.
A continuación, se presentan la prueba de cointegración, incluyendo una constante restringida y el número de rezagos utilizado para la estimación del modelo VAR. Con ello se determinará cuantas ecuaciones de cointegración existen en cada modelo planteado. Para este objetivo se utilizan dos estadísticos: la Trazas y el Valor propio máximo de cada modelo. Como se mencionó previamente, en el marco metodológico de la presente disertación, el primer test estadístico, prueba la hipótesis nula de que el número de parámetros cointegrados independientes es menor o igual 2; mientras que el segundo, prueba la hipótesis de que el número de parámetros cointegración es 1 en contra de la hipótesis alternativa de 2 parámetros de cointegración

Los resultados presentados en la Tabla 7 indican que en los modelos 1, 3 y 5 no existen ecuaciones de cointegración, es decir que no tienen una relación de equilibrio en el largo plazo. No obstante, para los demás modelos sí se puede identificar una relación de cointegración.

<table>
<thead>
<tr>
<th>Modelo</th>
<th>#Número de ecuaciones de cointegración</th>
<th>Trazas</th>
<th>Eigen valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo 1</td>
<td>0</td>
<td>12.2731*</td>
<td>0.0556</td>
</tr>
<tr>
<td>Modelo 1</td>
<td>1</td>
<td>2.0297</td>
<td>0.0113</td>
</tr>
<tr>
<td>Modelo 2</td>
<td>0</td>
<td>21.4668</td>
<td>0.1347</td>
</tr>
<tr>
<td>Modelo 2</td>
<td>1</td>
<td>6.5663*</td>
<td>0.0618</td>
</tr>
<tr>
<td>Modelo 3</td>
<td>0</td>
<td>16.0147*</td>
<td>0.0683</td>
</tr>
<tr>
<td>Modelo 3</td>
<td>1</td>
<td>3.7690</td>
<td>0.0216</td>
</tr>
<tr>
<td>Modelo 4</td>
<td>0</td>
<td>22.3149</td>
<td>0.1427</td>
</tr>
<tr>
<td>Modelo 4</td>
<td>1</td>
<td>2.1378*</td>
<td>0.0162</td>
</tr>
<tr>
<td>Modelo 5</td>
<td>0</td>
<td>5.1283*</td>
<td>0.0203</td>
</tr>
<tr>
<td>Modelo 5</td>
<td>1</td>
<td>1.6441</td>
<td>0.0096</td>
</tr>
<tr>
<td>Modelo 6</td>
<td>0</td>
<td>25.2657</td>
<td>0.1623</td>
</tr>
<tr>
<td>Modelo 6</td>
<td>1</td>
<td>7.1983*</td>
<td>0.0681</td>
</tr>
<tr>
<td>Modelo 7</td>
<td>0</td>
<td>31.5207</td>
<td>0.2086</td>
</tr>
<tr>
<td>Modelo 7</td>
<td>1</td>
<td>7.6632*</td>
<td>0.0724</td>
</tr>
</tbody>
</table>

*Significativo al 5%.

Fuente: FMI, FAO, SINAGAP.

Elaboración: Drichelmo Tamayo

Una vez identificado el número de ecuaciones de cointegración para cada modelo planteado, se procede a realizar la estimación utilizando la metodología VEC. La estimación por esta vía permite obtener 3 tipos de parámetros de interés: Los parámetros en las ecuaciones de cointegración (β), los coeficientes de ajuste (α) y los coeficientes de corto plazo. De estos los coeficiente β y α son los de mayor importancia para la presente investigación. La segunda y tercera columna de la Tabla 8, corresponden a los coeficientes de ajuste de los precios nacionales e internacionales, respectivamente.
El coeficiente de ajuste \(\alpha \), mide el grado de corrección de las desviaciones del equilibrio de largo plazo entre un par de precios. La velocidad con la que el mercado vuelve a su equilibrio depende de la proximidad de \(\alpha \) a la unidad.

En el modelo 2, se encuentra que el coeficiente de ajuste es significativo para el precio internacional y no para el nacional, lo que estaría indicando, que en el modelo VEC, el precio nacional es exógeno, identificando una relación causal en el sentido de Granger que va desde Ecuador a al mercado de Uruguay. Esto va en contra de la lógica, puesto que como se demostró en el primer capítulo, Ecuador no es un actor importante en los mercados mundiales de Arroz. Este hecho puede ser causado por diversos motivos. En primer lugar, se puede identificar que las medidas comerciales restrictivas que protegen al Ecuador de la volatilidad de precios externos provoquen un comportamiento de precios tal que desobedezca a la dinámica de precios internacionales (Uruguay).

En el modelo 4, que relaciona al mercado doméstico de arroz de Ecuador y el mercado de Perú, se encuentra que el coeficiente de ajuste del precio doméstico es estadísticamente significativo, lo que sugiere que el precio de arroz de Perú influye al precio de arroz de Ecuador. Este hecho guarda mayor coherencia puesto que Perú y Ecuador son países vecinos y por lo tanto presentan presiones en los precios de sus productos originados en sus fronteras. Los resultados indican que en el período 2004-2014, en promedio el 5% de la divergencia del precio doméstico del equilibrio a largo plazo con el precio de Perú es corregido cada mes. Cabe destacar, que Ecuador es un mercado restringido con prohibiciones en su comercio, sin embargo, mediante mecanismos no formales, se crea una transmisión de precios desde el mercado peruano.

Considerando el modelo 6 para el maíz, en el período 2006-2014, en promedio el 33% de la divergencia del precio doméstico de su hipotético equilibrio a largo plazo con el precio internacional de EE.UU. es corregido cada mes. En complemento, la dinámica de corto plazo indica que los cambios en los precios de maíz de EE.UU. no son transmitidos en el corto plazo al mercado de Ecuador. El ajuste lento indica que al precio internacional le puede tomar un tiempo para pasar a través del mercado doméstico, aunque existe la posibilidad de una respuesta asimétrica donde los incrementos del precio internacional son más rápidamente transmitidos en comparación a las reducciones. La no significancia del coeficiente de ajuste del precio internacional indica que en el modelo VEC el precio internacional es exógeno débilmente, identificando una relación causal, en el sentido Granger, que va desde el EE.UU. al mercado ecuatoriano, como era de esperarse dado que Ecuador no juega un rol importante en el mercado internacional de maíz.

Un panorama similar al mencionado anteriormente se puede evidenciar en el período 2006-2014, entre el precio nacional de maíz y el precio internacional de EE.UU., puesto que se identifica que el 44% de la divergencia del precio doméstico de su hipotético equilibrio a largo plazo con el precio internacional de EE.UU. es corregido cada mes. Adicionalmente, no se evidencia una transmisión en el corto plazo entre el
mercado de Argentina y el de Ecuador. Por su parte, se ratifica lo evidenciado anteriormente en la estimación del modelo VAR, puesto que existe una relación causal, en el sentido de Granger, que va del mercado de Argentina al ecuatoriano.

Por su parte, en la cuarta columna se puede observar a la relación de equilibrio a largo plazo de cada uno de los modelos planteados, los mismos que se conforman del valor del coeficiente β multiplicado por el precio internacional (arroz o maíz, según la especificación del modelo) adicionando el valor de la constante que resulta de la estimación de este coeficiente a través del modelo VEC. Cabe mencionar que los coeficientes β son significativos al 5% y tienen un signo positivo. El hecho que los signos de β sean positivos implica que, ante un incremento en el precio internacional, el precio nacional también aumentará.

Dado que las estimaciones fueron realizadas en términos de logaritmos, se puede interpretar al coeficiente β como la elasticidad de ajuste en el largo plazo. Es así que, para el segundo modelo, el coeficiente β implica que el cambio en 1% del precio internacional en Uruguay implica un incremento en el precio doméstico de arroz a nivel productor del 3.45%. El cuarto modelo, indica que el cambio de 1% en el precio de Perú representa un cambio de 0.99% en el precio a nivel mayorista en Ecuador.

Por su parte en los modelos que involucran al precio de maíz doméstico a nivel productor, se observa que un cambio de 1% en el precio internacional de EE.UU. está asociado a un cambio en el precio nacional de 0.56%, mientras que el cambio de 1% en el precio internacional de Argentina representa un cambio en el precio nacional del 0.64%.

Los resultados sugieren que la transmisión de precios es más fuerte entre los precios internacionales y los precios al mayorista que con los precios al productor para el caso del arroz.

\textit{Tabla 8. Resultados estimación VEC.}

<table>
<thead>
<tr>
<th># Modelo</th>
<th>Alpha</th>
<th>Beta</th>
<th>Número de observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Precio nacional</td>
<td>Precio internacional</td>
<td>Ecuación de equilibrio a largo plazo</td>
</tr>
<tr>
<td>Modelo 2</td>
<td>0.03</td>
<td>0.03*</td>
<td>Precio nacional = 3.45* x Precio internacional – 16.29</td>
</tr>
<tr>
<td>Modelo 4</td>
<td>-0.05*</td>
<td>0.01</td>
<td>Precio nacional = 0.99* x Precio internacional + 0.44</td>
</tr>
<tr>
<td>Modelo 6</td>
<td>-0.33*</td>
<td>0.02</td>
<td>Precio nacional = 0.56* x Precio internacional + 2.63</td>
</tr>
<tr>
<td>Modelo 7</td>
<td>-0.44*</td>
<td>0.03</td>
<td>Precio nacional = 0.64* x Precio internacional + 2.21</td>
</tr>
</tbody>
</table>

*Significativo al 5%.

\textbf{Fuente:} FMI, FAO, SINAGAP.

\textbf{Elaboración:} Drichelmo Tamayo
Al igual que en el modelo VAR, se requiere comprobar que en los modelos no exista autocorrelación serial en los errores de los modelos, es decir que son ruido blanco. Para ello se efectúa la misma prueba utilizada anteriormente, y sus resultados son presentados a continuación. Es importante mencionar que en los modelos planteados presente modelo se acepta la hipótesis nula aceptándose que los errores son ruido blanco y no presentan autocorrelación serial.

Tabla 9. Prueba sobre el término de error de modelos VEC.

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Estadístico (Q) Portmanteau</th>
<th>p>chi2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo 2</td>
<td>27.669</td>
<td>0.930*</td>
</tr>
<tr>
<td>Modelo 4</td>
<td>50.699</td>
<td>0.120*</td>
</tr>
<tr>
<td>Modelo 6</td>
<td>37.372</td>
<td>0.589*</td>
</tr>
<tr>
<td>Modelo 7</td>
<td>41.465</td>
<td>0.407*</td>
</tr>
</tbody>
</table>

*Significativos al 5%

Fuente: FMI, FAO, SINAGAP.

Elaboración: Drichelmo Tamayo

Por otra parte, también es importante realizar pruebas sobre la estabilidad de los valores propios, lo que demostraría la existencia de un modelo estacionario en conjunto, lo que indica el modelo es suficiente para solucionar potenciales problemas de correlación serial.

De este modo, al observar en la siguiente ilustración, se concluye que en los modelos planteados todas las raíces de la matriz de compañía se encuentran dentro del círculo unitario, lo que indica que los modelos son estables.
Los resultados obtenidos en la presente subsección indican que el mercado de arroz de Ecuador se encuentra integrado con el mercado de Uruguay, pero que la transmisión de precios ocurre desde Ecuador hacia Uruguay. Como se determinó en el capítulo anterior, Ecuador no es un actor predominante en los mercados mundiales, por lo que este hecho no es creíble y puede suscitarse porque las medidas comerciales restrictivas que protegen al Ecuador de la volatilidad de precios externos provocan un comportamiento de precios tal que desobedezca a la dinámica de precios internacionales (Uruguay).

Por otra parte, se identifica una integración entre el mercado de Perú con el mercado doméstico de arroz de Ecuador, y se encuentra que la velocidad de ajuste es bajo. Este hecho identifica que existe una presión externa de precios por parte de la frontera sur del Ecuador. Es importante mencionar que si bien, en la prueba de causalidad de Granger, se demostró que existe causalidad desde el mercado de Colombia al de Ecuador, aplicando un modelo VEC, el mercado de Ecuador y Colombia de arroz no están cointegrados. Se debe recordar que la causalidad en el sentido de Granger es una condición necesaria pero no suficiente para determinar cointegración.
Por otra parte, cuando se analizan los precios del maíz duro, se encuentra que el Ecuador está cointegrado con los mercados de EE.UU. y Argentina, con velocidades de ajuste bajas pero sin embargo más altas que los encontrados para el caso del arroz. De este modo se confirma lo hallado en el análisis de los indicadores comerciales realizado en el primer capítulo de la presente disertación, en donde se identificó una mayor apertura comercial en el mercado de maíz.

A continuación se da paso a la estimación de los modelos planteados utilizando la metodología ECM, que permitirá corroborar los resultados encontrados mediante la implementación del modelo VEC y que dará la posibilidad de probar la asimetría de transmisión de precios posteriormente.

Estimación modelo ECM asumiendo simetría en la transmisión de precios

La estimación del modelo VEC permiten capturar la relación a largo plazo entre dos variables si cumplen con las dos condiciones mencionadas en previo a la estimación de los modelos VEC. Por su parte, la metodología ECM o la representación de la corrección de error, provee un marco para probar la asimetría y el ajuste no lineal para un equilibrio a largo plazo. De este modo es posible vincular análisis respecto a la simetría de la transmisión de precios para los modelos que tuvieron resultados favorables en el test de cointegración de Johansen.

El modelo ECM a ser estimado puede ser escrito de la siguiente manera:

\[
\Delta p_{1t} = \theta_0 + \alpha(\theta_1 + p_{1t-1} - \beta p_{2t-1}) + \sum_{i=1}^{k} \theta_{2i}\Delta p_{1t-i} + \sum_{j=1}^{p} \theta_{3j}\Delta p_{2t-j} + \epsilon_t
\] \hspace{1cm} (34)

\[
\Delta p_{1t} = \theta_0 + \alpha\theta_1 + \alpha p_{1t-1} - \alpha\beta p_{2t-1} + \sum_{i=1}^{k} \theta_{2i}\Delta p_{1t-i} + \sum_{j=1}^{p} \theta_{3j}\Delta p_{2t-j} + \epsilon_t
\] \hspace{1cm} (35)

Esta última ecuación es estimada como un modelo ARIMA, puesto que no existe un procedimiento propio para la estimación de los modelos ECM. En esta especificación la variable dependiente es la diferencia del precio nacional \(\Delta p_{1t}\) y las variables independientes son el rezago del precio nacional a nivel, rezago del precio internacional a nivel y los rezagos de las diferencias de los precios. Con esta estimación del modelo, no se halla el coeficiente \(\beta\) directamente, puesto que el coeficiente que resulta de la estimación es en realidad \(\alpha\beta\), es por ello que para obtener el resultado del coeficiente \(\beta\), se divide el coeficiente del rezago del precio internacional a nivel para el rezago del precio nacional a nivel y se estima su varianza mediante el método delta. No obstante, la estimación de este modelo no permite identificar a la constante que viene incluida en la relación a largo plazo, puesto que la constante que se obtiene es en realidad \(\theta_0 + \alpha\theta_1\) y no \(\theta_1\).
Cabe mencionar que al especificarse un modelo ARIMA para la estimación de los modelos ECM, se eligió en primera instancia el número óptimo de rezagos para el término autoregresivo revisando la función de autocorrelación total (AC) y parcial (PAC). Además, se tomó como regla de decisión el número óptimo de rezagos que permitan obtener modelos bien especificados, es decir, que sus errores se comporten como ruido blanco.

A continuación, se presentan los resultados de los modelos ECM asumiendo que existe una transmisión simétrica entre los precios internacionales y nacionales.

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Alpha</th>
<th>Beta</th>
<th>Número de observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo 2</td>
<td>-0.09**</td>
<td>0.59</td>
<td>107</td>
</tr>
<tr>
<td>Modelo 4</td>
<td>-0.05*</td>
<td>1.04*</td>
<td>131</td>
</tr>
<tr>
<td>Modelo 6</td>
<td>-0.24*</td>
<td>0.55*</td>
<td>107</td>
</tr>
<tr>
<td>Modelo 7</td>
<td>-0.27*</td>
<td>0.65*</td>
<td>107</td>
</tr>
</tbody>
</table>

*Significativo al 1%.
**Significativo al 5%.

Fuente: FMI, FAO, SINAGAP.
Elaboración: Drichelmo Tamayo

En primer lugar, se observa que los coeficientes β son significativos y positivos (con excepción del Modelo 2 que relaciona al mercado a nivel productor de Ecuador con el mercado de Uruguay), lo que indica que ante un incremento en el precio internacional, el precio nacional también aumentará. Al igual que en la interpretación de la estimación por VEC, al tener series transformadas en logaritmos, el coeficiente β puede ser interpretado como la elasticidad de ajuste en el largo plazo.

En el segundo modelo, que también relaciona al precio doméstico de arroz con el precio internacional de Uruguay, se aprecia una elasticidad de ajuste en el largo plazo semejante al del primer modelo, 0.59%. El cuarto modelo, indica que un cambio en 1% en el precio de Perú representa un incremento en 1.04% en el precio de arroz en Ecuador.

Por su parte en los modelos que involucran al precio de maíz doméstico a nivel productor, se observa que un cambio de 1% en el precio internacional de EE.UU. representa un cambio en el precio nacional de 0.55%, mientras que el cambio de 1% en el precio internacional de Argentina representa un cambio en el precio nacional del 0.65%.
El siguiente coeficiente de interés, α, que representa la velocidad de ajuste del precio doméstico a una desviación del equilibrio de largo plazo y mientras más cercano a -1 sea, mayor velocidad en la transmisión de precios; mientras que un coeficiente igual a -1 implica una transmisión inmediata. Además, para alcanzar el equilibrio α tiene que tener signo negativo, puesto que de lo contrario, un desvío positivo en el equilibrio resultaría en un cambio positivo en el precio, incrementando la diferencia. Finalmente, este coeficiente tiene que ser significativamente diferente de cero, para que la relación sea robusta.

Los resultados sugieren que la transmisión de precios es más fuerte entre los precios internacionales y los precios domésticos al mayorista que con los precios al productor para el caso del arroz. Por otra parte, se aprecia que la transmisión de precios entre el mercado internacional y el precio a nivel productor nacional es similar para el arroz y maíz. Esto puede ser causado por que ambos mercados tienen varias restricciones en su comercio, lo que impone barreras y dificulta la transmisión de precios desde el mercado internacional al nacional.

En los modelos planteados, se observa que todos los α son significativos y se encuentran entre -0.05 y -0.09 para el caso del arroz y -0.24 y -0.27 para el maíz. Este hallazgo indica que la velocidad de transmisión de precios es mayor al analizar el maíz a nivel productor en comparación al arroz, tanto a nivel productor como mayorista. No obstante, cabe recalcar que las velocidades de ajuste son bajas, lo que confirma que las políticas comerciales y agropecuarias que aplica el Ecuador, son efectivas en el sentido de no exponer al mercado nacional a las fluctuaciones externas de precios.

Adicionalmente es pertinente analizar que los errores de los modelos estimados sean ruido blanco y por ende no presenten autocorrelación serial. Para ello, al aplicar la prueba de Portmanteau, cuya hipótesis nula es que los errores son ruido blanco. No se rechaza la hipótesis nula como se aprecia en la tercera columna de la Tabla 11.

Tabla 11. Prueba sobre el término de error de modelos ECM.

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Estadístico (Q) Portmanteau</th>
<th>p>chi2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo 2</td>
<td>30.989</td>
<td>0.846*</td>
</tr>
<tr>
<td>Modelo 4</td>
<td>27.911</td>
<td>0.925*</td>
</tr>
<tr>
<td>Modelo 6</td>
<td>35.930</td>
<td>0.654*</td>
</tr>
<tr>
<td>Modelo 7</td>
<td>37.789</td>
<td>0.570*</td>
</tr>
</tbody>
</table>

*Significativo al 5%

Fuente: FMI, FAO, SINAGAP.

Elaboración: Drichelmo Tamayo
Una vez realizada la estimación empleando el modelo ECM, que obtiene resultados semejantes a los obtenidos mediante la metodología del modelo VEC, se procede a dar paso a la estimación del modelo AECM en donde se asume que existe asimetría. De este modo, se podrá responder a la tercera pregunta de investigación planteada en la presente disertación.

Estimación modelo ECM asumiendo asimetría en la transmisión de precios

El modelo ECM con asimetría, es equivalente al modelo ECM donde se asume simetría, en donde los errores o divergencias de este equilibrio están descompuestos en 2 partes, \(\alpha_1^+(p_{1t-1} - \beta p_{2t-1})^+ \) y \(\alpha_1^-(p_{1t-1} - \beta p_{2t-1})^- \) reflejando el desequilibrio positivo y negativo respectivamente. El desequilibrio es positivo cuando la diferencia del precio es positiva y negativa cuando la diferencia es negativa. Es así que la asimetría implica que \(\alpha_1^+ \) no es igual a \(\alpha_1^- \). Para la implementación econométrica se crean dos series, la primera serie se conforma de los valores cuyo cambio de precio es positivo y otra donde el cambio de precios es negativo. De esta forma la primera serie mencionada es bautizada como “+” y la segunda como “-”.

\[
\Delta p_{1t} = \theta_1 + \alpha_1^+(p_{1t-1} - \beta p_{2t-1})^+ + \alpha_1^-(p_{1t-1} - \beta p_{2t-1})^- + \sum_{i=1}^{\kappa} \theta_{2i} \Delta p_{1t-i} + \sum_{i=1}^{\rho} \theta_{3i} \Delta p_{1t-i} + \varepsilon_t \tag{36}
\]

Los coeficientes de interés del presente modelo son \(\alpha_1^+ \) y \(\alpha_1^- \), pero sobre todo se debe evaluar si estos son estadísticamente diferentes o no, para determinar si la transmisión de precios es simétrica o asimétrica. Para ello además de rechazar el test de igualdad \(\alpha^+ = \alpha^- \), es necesario que tanto \(\alpha^+ \) como \(\alpha^- \) sean estadísticamente significativos para poder concluir que existe evidencia de asimetría en la transmisión de precios.

| Tabla 12. Resultados estimación ECM asumiendo asimetría. |
|-----------------|-----------------|-----------------|-----------------|
| Modelo | \(\alpha^+ \) | \(\alpha^- \) | \(\alpha^+ = \alpha^- \) (p-valor) | Número de observaciones |
| Modelo 2 | -0.137* | -0.012 | 0.104 | 106 |
| Modelo 4 | -0.030* | -0.065* | 0.102 | 130 |
| Modelo 6 | -0.326* | -0.210** | 0.194 | 106 |
| Modelo 7 | -0.324* | -0.129 | 0.008 | 106 |

*Significativo al 5%
**Significativo al 10%

Fuente: FMI, FAO, SINAGAP.

Elaboración: Drichelmo Tamayo
Además de rechazar el test de igualdad $\alpha^+ = \alpha^-$, es necesario que α^+ y α^- sean estadísticamente significativos para decir que existe evidencia de asimetría en la transmisión de precios. En ninguno de los modelos planteados se cumplen estas dos condiciones, lo que implica que la transmisión de precios no es asimétrica para los mercados analizados, Von Cramon-Taubadel (1998), indica que, si existe simetría en el largo plazo, pero no en el corto, una estimación con datos de baja frecuencia refleja lo primero, pero no lo segundo. Es decir que, para demostrar asimetría, se debe utilizar una frecuencia de datos más grande que el tiempo necesario para que las transacciones se hagan entre los diversos actores de la cadena, lo cual no necesariamente es verdad cuando se trabaja con datos mensuales.

Es así que von Cramon-Taubadel, explica que el hecho que la simetría no pueda ser rechazada, puede reflejar más bien una frecuencia demasiado baja que una ausencia real de asimetría. Sin embargo, dado que los datos utilizados en el análisis son mensuales, las transacciones entre los actores de la cadena deberían ser más rápidas que un mes para que la teoría de von Cramon-Taubadel pueda explicar la ausencia de asimetría. Esta hipótesis puede no estar en concordancia con las relaciones estudiadas en la presente disertación, entre el mercado internacional y el mercado agrícola de Ecuador, puesto que la falta de infraestructura, como una red de carreteras, hace las transacciones más complicadas y por ende una capacidad de respuesta más lenta.

Cabe mencionar que en los modelos 2 y 7, uno de los coeficientes (α^+ o α^-) no es significativo. Según von Cramon-Taubadel (1998), esto significa que los dos precios no pueden ser cointegrados, pues si, α^+ es significativo, pero α^- no, el ajuste no se llega a dar cuando hay desviaciones negativas de equilibrio. Así que los resultados de estas ecuaciones reflejan que la evidencia de cointegración no es muy fuerte.

Adicionalmente se comprobó que los términos de error que resultan de las estimaciones presentadas anteriormente se comporten como ruido blanco, utilizando la prueba de Portmanteau, los resultados son presentados a continuación.

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Estadístico (Q)</th>
<th>$p>\chi^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modelo 2</td>
<td>28.909</td>
<td>0.903</td>
</tr>
<tr>
<td>Modelo 4</td>
<td>39.304</td>
<td>0.501</td>
</tr>
<tr>
<td>Modelo 6</td>
<td>40.679</td>
<td>0.440</td>
</tr>
<tr>
<td>Modelo 7</td>
<td>37.652</td>
<td>0.576</td>
</tr>
</tbody>
</table>

Fuente: FMI, FAO, SINAGAP.
Elaboración: Drichelmo Tamayo
Conclusiones

El objetivo de la presente disertación fue identificar como se transmiten los precios en los productos agrícolas: arroz y maíz, desde los mercados internacionales hacia el mercado nacional y de este modo comprobar la Ley de un Solo Precio. Para ello se estimaron diferentes modelos econométricos que permitieron identificar en primer lugar si existe causalidad entre los precios internacional y nacional y su dirección. Posterior a ello, se realizaron pruebas para identificar si las series de datos están cointegradas y de estarlo, se estimaron las relaciones a largo plazo y la velocidad de ajuste.

El mercado de Ecuador tanto en arroz como maíz no es significativo a nivel mundial puesto que aporta con el 0.2% de la producción mundial, en cada producto. Cabe destacar que las brechas de rendimiento (Tm/Ha) se han reducido en comparación con el promedio mundial tanto para el arroz como maíz, lo que implica un fortalecimiento de las capacidades internas del país tanto en técnicas agrícolas como en infraestructura. Además, se identificó que la demanda doméstica de arroz es suplida por la oferta nacional, y que tanto las exportaciones como las importaciones de cultivo se dan de manera esporádica. En cuanto al maíz, la oferta interna no alcanza a suplir a la demanda interna, por lo que se observa un alto índice de dependencia a las importaciones, sin embargo, a partir del año 2011 esta dependencia cae, lo que coincide con un incremento en la producción del cultivo.

Además se identifica que los mercados de arroz y maíz en Ecuador, son bastante restrictivos puesto que las políticas comerciales y agrícolas analizada en la presente disertación: el sistema andino de franja de precios, precios de sustentación, la política de absorción de producción nacional y los planes de mejora competitiva, han protegido a los productores de las fluctuaciones de precios externas, estableciendo escenarios más estables a los productores para llevar a cabo nuevas inversiones, además de asegurar la venta de sus cultivos.

Se plantearon siete modelos para analizar la transmisión de precios y cuatro distintas formas de estimación (VAR, VEC, ECM y AECM), en todos ellos se consideró como variable dependiente al precio nacional y como independiente al precio internacional. En el primer y segundo modelo se relaciona el precio de arroz nacional a nivel productor con el precio internacional FOB de Tailandia y Uruguay, respectivamente. El tercer, cuarto y quinto modelo relaciona el precio nacional de arroz a nivel mayorista con el precio FOB de EE.UU, el precio a nivel mayorista de Perú y el precio a nivel minorista de Colombia, respectivamente. El sexto y séptimo modelo relaciona al precio nacional de maíz a nivel productor con el precio internacional FOB de EE.UU y Argentina. Cabe mencionar, que no fue posible realizar el análisis para el precio nacional de maíz a nivel mayorista, debido a que su serie de datos es estacionaria a nivel mientras que las demás lo son en su primera diferencia, por ende, las estimaciones con esta serie serían espurias.

La estimación de los modelos con la metodología VAR, permitió identificar que el arroz no presenta una relación causal (en el sentido Granger) con los precios internacionales elegidos para el análisis, pero si con el precio a nivel minorista de Colombia, lo cual indica que existe una presión de precios por parte de
la frontera norte del Ecuador. Por su parte, para el caso del maíz duro, si se observa que el mercado nacional presente una relación causal en el sentido Granger con los precios internacionales en la dirección esperada, es decir, desde el mercado internacional al nacional.

Previo a la estimación de los modelos aplicando la metodología VEC, se realizó el test de cointegración que indicó únicamente los modelos 2, 4, 6 y 7 están cointegrados y por lo que el resto de modelo fueron excluidos del análisis. En el caso del segundo modelo, se identifica una relación causal en el sentido de Granger que va desde Ecuador a al mercado de Uruguay, lo cual puede estar causado porque las políticas comerciales del Ecuador provoquen que la dinámica de los precios de arroz desobedezcan a las dinámicas de precios internacionales.

El cuarto modelo, indica que el cambio de 1% en el precio de Perú está asociado a un cambio de 0.99% en el precio a nivel mayorista en Ecuador. Este fenómeno indica que existe una presión externa de precios por parte de la frontera sur del Ecuador. Es importante mencionar que sí bien, en la prueba de causalidad de Granger, se demostró que existe causalidad desde el mercado de Colombia al de Ecuador, aplicando un modelo VEC, el mercado de Ecuador y Colombia de arroz no están cointegrados. Se debe recordar que la causalidad en el sentido de Granger es una condición necesaria pero no suficiente para determinar cointegración.

Por su parte en los modelos que involucran al precio de maíz doméstico a nivel productor, se observa que un cambio de 1% en el precio internacional de EE.UU. está asociado a un cambio en el precio nacional de 0.56%. Al mismo tiempo, el cambio de 1% en el precio internacional de Argentina representa un cambio en el precio nacional del 0.64%. Adicionalmente, las velocidades de ajuste son mayores a las encontradas para el caso del arroz. De esta forma se corrobora el hecho de que existe una mayor apertura comercial en el mercado de maíz, lo cual se determinó previamente en el análisis de los indicadores de apertura económica.

Al estimarse los modelos con la metodología ECM se encontraron resultados similares a los obtenidos con el modelo VEC, lo cual indica que el planteamiento teórico de los modelos propuestos tiene robustez teórica y metodológica. Los resultados obtenidos por medio de las dos metodologías sugieren que la transmisión de precios es más fuerte entre los precios internacional y al mayorista que con los al productor para el caso del arroz. Por otra parte, se aprecia que la transmisión de precios entre el mercado internacional y el precio a nivel productor nacional es similar para el arroz y maíz. La velocidad de transmisión de precios es mayor al analizar el maíz a nivel productor en comparación al arroz, tanto a nivel productor como mayorista.

Es importante mencionar que las velocidades de ajuste son bajas, lo que indica la efectividad de las políticas comerciales, al no exponer al mercado local a las fluctuaciones de precios internacionales. Sobre todo, debido a SAFP que cumple un rol determinante en la fijación de precios para las importaciones en Ecuador. No obstante, cabe destacar que los países vecinos al Ecuador, Colombia y Perú, al haber firmado
un Tratado de Libre Comercio con Estados Unidos renunciaron al SAFP, por lo que se necesitará identificar y ejecutar medidas sobre las fronteras, para que la producción nacional de arroz y maíz duro no se vean minadas por los bajos costos de estos productos en los mercados de frontera, debido sobre todo a los altos subsidios tanto de producción como de exportación en los mercados internacionales, destacando sobre todo a Estados Unidos para el caso del maíz duro.

Por su parte, al realizar la estimación utilizando la metodología AECM, se identificó que no existen pruebas suficientes para determinar si la transmisión de precios en los modelos planteados no son asimétricos, es decir, no que no se puede concluir que la transmisión de precios es distinta en el mercado ecuatoriano de arroz y maíz frente a incrementos o disminuciones de los precios externos.

En la revisión de literatura se encontraron investigaciones similares a la presente disertación. La más relevante, desarrollada por Hernandez, K. et al en el año 2009, que se realizó para países de América Latina, puede representar un punto de referencia para contrastar los resultados encontrados. En primer lugar, Hernandez, K. et al encuentran que en el caso de arroz, los mercados centroamericanos se encuentran relacionados con el mercado tailandés, situación que se puede explicar por la influencia que este mercado pueda tener sobre el principal socio comercial: EEUU. En Brasil, el mercado de arroz al mayorista y al productor se encuentra integrado con los mercados de Argentina y Uruguay. Esto va en concordancia con el hecho de que las importaciones provienen mayoritariamente de estos dos países. Para el maíz, los dos países centroamericanos, Panamá (productor) y Costa Rica (mayorista), muestran una alta velocidad, y en el primer caso, una mayor elasticidad. Por su parte, los mercados al mayorista de Chile y Brasil se ven integrados con los mercados estadounidense y argentino. Los resultados en su conjunto revelan que Brasil tiene una transmisión de precios mayor en el mercado del arroz. Es también el caso para Chile, en el caso del maíz. Entre los mercados Centroamericanos, ningún país se distingue por una integración particularmente baja o alta.

Estos resultados distan de los presentados debido a diversos motivos, principalmente porque varios de los países analizados tienen mayor apertura comercial en torno a los productos agrícolas analizados (Hernandez, K. et al. 2009) y por ende encuentran relaciones de integración entre mercados en donde existe transmisiones de precio, con velocidades de ajuste a sus respectivos equilibrios de largo plazo relativamente rápidos. Ecuador presenta distintas restricciones comerciales, por lo que en varios de los modelos analizados no fue posible si quiera identificar relaciones de cointegración, y para los que sí fue posible, tanto para el caso del arroz y maíz duro, la transmisión de precios fue baja y con velocidades de ajuste también bajas.

En este sentido es importante recordar que en los ejercicios empíricos no existen resultados concluyentes referente a la transmisión de precios, puesto que los resultados dependen del producto analizado, el país de estudio, la frecuencia de los datos y del método de análisis empleado (Kaabia et al. 2008). No obstante, cabe mencionar que ahora el Ecuador, con los resultados presentados en la presente disertación, cuenta con datos que permiten explorar y desarrollar políticas que permitan desarrollar el fortalecimiento productivo del arroz y maíz duro.
Recomendaciones

Esta investigación ha revelado la situación de la transmisión de precios en los mercados de arroz y maíz. Mediante técnicas econométricas se logró demostrar que los mercados nacionales de estos productos se encuentran cointegrados con los mercados internacionales y que la velocidad de ajuste del precio nacional al internacional es baja. En la presente disertación, se determinó que la velocidad de ajuste es baja debido a las políticas agrícolas y comerciales que imponen barreras comerciales, no obstante, se debe realizar un análisis respecto al poder de mercado, puesto que en la literatura revisada se considera a este factor también como determinante al momento de explicar la velocidad de ajuste baja.

En este sentido, la presente disertación es en gran medida pionera a nivel nacional en la implementación de la metodología de integración de mercados en los mercados agrícolas, y ésta es a su vez es pertinente conforme al desarrollo econométrico que se ha suscitado durante las últimas dos décadas, que principalmente ha buscado identificar de manera empírica relaciones a largo plazo y estudiar transmisiones de precios.

La presente disertación puede verse complementado con un análisis de actores, cadenas de distribución, análisis más profundos de políticas comerciales, y en la aplicación de la metodología desarrollada para estudiar la relación existente entre los distintos niveles de la cadena de arroz y maíz duro en el país. Esto, con el fin de determinar qué nivel de la cadena es el que transmite precios, lo que a su vez permitirá identificar la estructura del mercado vigente en esos mercados, si existe control de mercado por parte del consumidor final, intermediarios o productores.

Asimismo, el análisis de transmisión de precios se vería enriquecido si la frecuencia de datos fuera mayor, quincenal, semanal e incluso diaria. Esto a su vez viene ligado con procesos y regulaciones para un correcto levantamiento de datos. Uno de los mayores limitantes de la presente disertación fue que si bien existían datos referentes a precios nacionales antes del año 2011 no se pudo constatar que los mismos hayan pasado filtros o procesos de validación interna.

Finalmente, al comprobarse la presencia de transmisión de precios en las series de precios internacionales, se advierte que la utilización de los modelos empleados en la presente disertación deben ser acompañados de un modelo teórico que permita obtener conclusiones convincentes, de lo contrario podría presentar resultados incorrectos y por ende llevar a la incorrecta toma de decisiones.
Referencias Bibliográficas

Balcombe, B; Morrison, J. (2002). *Commodity price transmission: a critical review of techniques and an application to selected tropical export commodities*.

Brooks, Chris; Tsolacos, Sotiris (2010). *Real Estate, modeling and forecasting*.

Durán, José; Álvarez, Mariano (2008) *Indicadores de comercio exterior y política comercial: mediciones de posición y dinamismo comercial*, Documento de proyecto, CEPAL.

98

Kaabia, Monia; Gil José (2008). Asimetrías en la transmisión de precios en el sector del tomate en España.

Paliwal, Ripusudan; Granados, Gonzalo; Lafitte, Honor y Violic, Alejandro (2001) *El maíz en los trópicos: Mejoramiento y producción*.

Pippenger, John; Philips, Llad (2007) *Strictly speaking, the law of one price works in commodity markets*, Department of Economics. University of California.

Anexos

<table>
<thead>
<tr>
<th>Año</th>
<th>Producción (Tm - millones)</th>
<th>Área cosechada (Ha - millones)</th>
<th>Rendimiento (Tm/Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>599</td>
<td>154</td>
<td>3.89</td>
</tr>
<tr>
<td>2001</td>
<td>599</td>
<td>152</td>
<td>3.94</td>
</tr>
<tr>
<td>2002</td>
<td>571</td>
<td>148</td>
<td>3.86</td>
</tr>
<tr>
<td>2003</td>
<td>587</td>
<td>149</td>
<td>3.94</td>
</tr>
<tr>
<td>2004</td>
<td>608</td>
<td>151</td>
<td>4.03</td>
</tr>
<tr>
<td>2005</td>
<td>634</td>
<td>155</td>
<td>4.09</td>
</tr>
<tr>
<td>2006</td>
<td>641</td>
<td>156</td>
<td>4.11</td>
</tr>
<tr>
<td>2007</td>
<td>657</td>
<td>155</td>
<td>4.24</td>
</tr>
<tr>
<td>2008</td>
<td>688</td>
<td>160</td>
<td>4.30</td>
</tr>
<tr>
<td>2009</td>
<td>687</td>
<td>158</td>
<td>4.35</td>
</tr>
<tr>
<td>2010</td>
<td>702</td>
<td>161</td>
<td>4.36</td>
</tr>
<tr>
<td>2011</td>
<td>723</td>
<td>162</td>
<td>4.46</td>
</tr>
<tr>
<td>2012</td>
<td>735</td>
<td>163</td>
<td>4.51</td>
</tr>
<tr>
<td>2013</td>
<td>741</td>
<td>165</td>
<td>4.49</td>
</tr>
</tbody>
</table>

Fuente: FAO
Elaboración: Drichelmo Tamayo

<table>
<thead>
<tr>
<th>Año</th>
<th>Producción (Tm)</th>
<th>Área (Ha)</th>
<th>Rendimiento (Tm/Ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>1246630</td>
<td>338652</td>
<td>3.68</td>
</tr>
<tr>
<td>2001</td>
<td>1255990</td>
<td>348886</td>
<td>3.60</td>
</tr>
<tr>
<td>2002</td>
<td>1432811</td>
<td>369798</td>
<td>3.87</td>
</tr>
<tr>
<td>2003</td>
<td>1384715</td>
<td>357564</td>
<td>3.87</td>
</tr>
<tr>
<td>2004</td>
<td>1778380</td>
<td>421548</td>
<td>4.22</td>
</tr>
<tr>
<td>2005</td>
<td>1471084</td>
<td>377300</td>
<td>3.90</td>
</tr>
<tr>
<td>2006</td>
<td>1501238</td>
<td>357558</td>
<td>4.20</td>
</tr>
<tr>
<td>2007</td>
<td>1734135</td>
<td>398151</td>
<td>4.36</td>
</tr>
<tr>
<td>2008</td>
<td>1442052</td>
<td>354841</td>
<td>4.06</td>
</tr>
<tr>
<td>2009</td>
<td>1579406</td>
<td>394813</td>
<td>4.00</td>
</tr>
<tr>
<td>2010</td>
<td>1706193</td>
<td>393137</td>
<td>4.34</td>
</tr>
<tr>
<td>2011</td>
<td>1477941</td>
<td>329957</td>
<td>4.48</td>
</tr>
<tr>
<td>2012</td>
<td>1565535</td>
<td>371170</td>
<td>4.22</td>
</tr>
<tr>
<td>2013</td>
<td>1516045</td>
<td>396770</td>
<td>3.82</td>
</tr>
</tbody>
</table>

Fuente: FAO
Elaboración: Drichelmo Tamayo
Anexo 3. Composición de exportaciones de arroz (Millones USD) - Mundo

<table>
<thead>
<tr>
<th>Año</th>
<th>Arroz en cáscara</th>
<th>Arroz descascarillado</th>
<th>Arroz semiblanqueado o blanqueado</th>
<th>Arroz partido</th>
<th>Arroz (Total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>256</td>
<td>438</td>
<td>4,862</td>
<td>261</td>
<td>5,879</td>
</tr>
<tr>
<td>2001</td>
<td>241</td>
<td>1,308</td>
<td>4,370</td>
<td>294</td>
<td>6,281</td>
</tr>
<tr>
<td>2002</td>
<td>299</td>
<td>399</td>
<td>4,992</td>
<td>324</td>
<td>6,097</td>
</tr>
<tr>
<td>2003</td>
<td>399</td>
<td>450</td>
<td>5,913</td>
<td>364</td>
<td>7,207</td>
</tr>
<tr>
<td>2004</td>
<td>396</td>
<td>532</td>
<td>7,178</td>
<td>514</td>
<td>8,696</td>
</tr>
<tr>
<td>2005</td>
<td>423</td>
<td>451</td>
<td>8,558</td>
<td>615</td>
<td>10,047</td>
</tr>
<tr>
<td>2006</td>
<td>435</td>
<td>514</td>
<td>8,822</td>
<td>626</td>
<td>10,519</td>
</tr>
<tr>
<td>2007</td>
<td>503</td>
<td>682</td>
<td>11,150</td>
<td>860</td>
<td>13,195</td>
</tr>
<tr>
<td>2008</td>
<td>896</td>
<td>935</td>
<td>18,096</td>
<td>1,190</td>
<td>21,116</td>
</tr>
<tr>
<td>2009</td>
<td>794</td>
<td>837</td>
<td>15,570</td>
<td>1,213</td>
<td>18,932</td>
</tr>
<tr>
<td>2010</td>
<td>1,007</td>
<td>896</td>
<td>16,681</td>
<td>1,150</td>
<td>20,256</td>
</tr>
<tr>
<td>2011</td>
<td>808</td>
<td>1,252</td>
<td>19,940</td>
<td>1,398</td>
<td>23,790</td>
</tr>
<tr>
<td>2012</td>
<td>999</td>
<td>1,125</td>
<td>19,600</td>
<td>1,628</td>
<td>23,353</td>
</tr>
<tr>
<td>2013</td>
<td>1,045</td>
<td>1,053</td>
<td>21,427</td>
<td>1,585</td>
<td>25,110</td>
</tr>
</tbody>
</table>

Fuente: BCE
Elaboración: Drichelmo Tamayo

Anexo 4. Composición de exportaciones de arroz (USD) - Ecuador

<table>
<thead>
<tr>
<th>Año</th>
<th>Arroz en cáscara</th>
<th>Arroz descascarillado</th>
<th>Arroz semiblanqueado o blanqueado</th>
<th>Arroz partido</th>
<th>Arroz (Total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>4,873</td>
<td>0</td>
<td>3,243,669</td>
<td>200,358</td>
<td>3,448,900</td>
</tr>
<tr>
<td>2001</td>
<td>54,791</td>
<td>0</td>
<td>26,942,770</td>
<td>744,326</td>
<td>27,741,888</td>
</tr>
<tr>
<td>2002</td>
<td>809</td>
<td>4,860</td>
<td>10,700,811</td>
<td>107,159</td>
<td>10,813,639</td>
</tr>
<tr>
<td>2003</td>
<td>0</td>
<td>16,800</td>
<td>10,465,980</td>
<td>966,184</td>
<td>11,448,964</td>
</tr>
<tr>
<td>2004</td>
<td>3,242</td>
<td>76,596</td>
<td>438,820</td>
<td>50,687</td>
<td>569,345</td>
</tr>
<tr>
<td>2005</td>
<td>0</td>
<td>0</td>
<td>12,408,934</td>
<td>112,823</td>
<td>12,521,757</td>
</tr>
<tr>
<td>2006</td>
<td>0</td>
<td>90</td>
<td>61,164,176</td>
<td>850,017</td>
<td>62,014,280</td>
</tr>
<tr>
<td>2007</td>
<td>1,584</td>
<td>92,664</td>
<td>54,992,872</td>
<td>1,527,848</td>
<td>56,614,968</td>
</tr>
<tr>
<td>2008</td>
<td>25</td>
<td>0</td>
<td>1,986,042</td>
<td>1,986,067</td>
<td>3,972,109</td>
</tr>
<tr>
<td>2009</td>
<td>16,829,822</td>
<td>53,306</td>
<td>3,339,753</td>
<td>22,443</td>
<td>20,245,324</td>
</tr>
<tr>
<td>2010</td>
<td>4,647,862</td>
<td>2,100</td>
<td>8,182,608</td>
<td>23,963</td>
<td>12,856,533</td>
</tr>
<tr>
<td>2011</td>
<td>9,713,272</td>
<td>3,985</td>
<td>19,570,918</td>
<td>25,814</td>
<td>29,313,888</td>
</tr>
<tr>
<td>2012</td>
<td>0</td>
<td>1,230</td>
<td>10,794,546</td>
<td>33,317</td>
<td>10,829,093</td>
</tr>
<tr>
<td>2013</td>
<td>3,780</td>
<td>70,000</td>
<td>32,974,596</td>
<td>17,096</td>
<td>33,065,472</td>
</tr>
</tbody>
</table>

Fuente: BCE
Elaboración: Drichelmo Tamayo
Anexo 5. Composición de importaciones de arroz (Millones USD) - Mundo

<table>
<thead>
<tr>
<th>Año</th>
<th>Arroz en cáscara</th>
<th>Arroz descascarillado</th>
<th>Arroz semiblanqueado o blanqueado</th>
<th>Arroz partido</th>
<th>Arroz (Total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>311</td>
<td>797</td>
<td>4,214</td>
<td>647</td>
<td>6,137</td>
</tr>
<tr>
<td>2001</td>
<td>289</td>
<td>814</td>
<td>3,752</td>
<td>682</td>
<td>5,714</td>
</tr>
<tr>
<td>2002</td>
<td>339</td>
<td>733</td>
<td>4,072</td>
<td>839</td>
<td>6,202</td>
</tr>
<tr>
<td>2003</td>
<td>494</td>
<td>880</td>
<td>4,514</td>
<td>950</td>
<td>7,100</td>
</tr>
<tr>
<td>2004</td>
<td>485</td>
<td>1,027</td>
<td>5,401</td>
<td>962</td>
<td>8,357</td>
</tr>
<tr>
<td>2005</td>
<td>502</td>
<td>921</td>
<td>6,203</td>
<td>1,297</td>
<td>8,943</td>
</tr>
<tr>
<td>2006</td>
<td>702</td>
<td>1,128</td>
<td>6,450</td>
<td>1,143</td>
<td>9,825</td>
</tr>
<tr>
<td>2007</td>
<td>615</td>
<td>1,429</td>
<td>8,971</td>
<td>1,393</td>
<td>12,432</td>
</tr>
<tr>
<td>2008</td>
<td>899</td>
<td>2,019</td>
<td>14,654</td>
<td>1,842</td>
<td>19,445</td>
</tr>
<tr>
<td>2009</td>
<td>912</td>
<td>1,571</td>
<td>11,228</td>
<td>1,621</td>
<td>16,621</td>
</tr>
<tr>
<td>2010</td>
<td>962</td>
<td>1,546</td>
<td>13,106</td>
<td>1,340</td>
<td>18,326</td>
</tr>
<tr>
<td>2011</td>
<td>1,108</td>
<td>1,765</td>
<td>15,024</td>
<td>1,788</td>
<td>20,915</td>
</tr>
<tr>
<td>2012</td>
<td>1,113</td>
<td>1,617</td>
<td>14,166</td>
<td>2,057</td>
<td>19,160</td>
</tr>
<tr>
<td>2013</td>
<td>1,028</td>
<td>1,646</td>
<td>12,633</td>
<td>2,133</td>
<td>17,440</td>
</tr>
</tbody>
</table>

Fuente: COMTRADE
Elaboración: Drichelmo Tamayo

Anexo 6. Composición de importaciones de arroz (USD) - Ecuador

<table>
<thead>
<tr>
<th>Año</th>
<th>Arroz en cáscara</th>
<th>Arroz descascarillado</th>
<th>Arroz semiblanqueado o blanqueado</th>
<th>Arroz partido</th>
<th>Arroz (Total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>1,429,215</td>
<td>710,681</td>
<td>18,299</td>
<td>0</td>
<td>2,158,195</td>
</tr>
<tr>
<td>2001</td>
<td>4,213</td>
<td>108</td>
<td>126,020</td>
<td>20</td>
<td>130,361</td>
</tr>
<tr>
<td>2002</td>
<td>34,842</td>
<td>1,087</td>
<td>17,878</td>
<td>0</td>
<td>53,807</td>
</tr>
<tr>
<td>2003</td>
<td>62,979</td>
<td>27</td>
<td>29,114</td>
<td>0</td>
<td>92,120</td>
</tr>
<tr>
<td>2004</td>
<td>529,473</td>
<td>1,300</td>
<td>35,113</td>
<td>0</td>
<td>565,886</td>
</tr>
<tr>
<td>2005</td>
<td>145,131</td>
<td>0</td>
<td>55,068</td>
<td>0</td>
<td>200,199</td>
</tr>
<tr>
<td>2006</td>
<td>112,619</td>
<td>0</td>
<td>86,765</td>
<td>797</td>
<td>200,181</td>
</tr>
<tr>
<td>2007</td>
<td>39,141</td>
<td>5,629</td>
<td>128,638</td>
<td>0</td>
<td>173,408</td>
</tr>
<tr>
<td>2008</td>
<td>1,980,891</td>
<td>1,486</td>
<td>187,433</td>
<td>0</td>
<td>2,169,810</td>
</tr>
<tr>
<td>2009</td>
<td>277,337</td>
<td>0</td>
<td>185,376</td>
<td>0</td>
<td>462,713</td>
</tr>
<tr>
<td>2010</td>
<td>2,180</td>
<td>0</td>
<td>264,289</td>
<td>0</td>
<td>266,469</td>
</tr>
<tr>
<td>2011</td>
<td>2,545</td>
<td>0</td>
<td>254,681</td>
<td>0</td>
<td>257,226</td>
</tr>
<tr>
<td>2012</td>
<td>208,463</td>
<td>750,260</td>
<td>16,295,017</td>
<td>886,992</td>
<td>18,140,732</td>
</tr>
<tr>
<td>2013</td>
<td>0</td>
<td>0</td>
<td>371,076</td>
<td>0</td>
<td>371,076</td>
</tr>
</tbody>
</table>

Fuente: COMTRADE
Elaboración: Drichelmo Tamayo
Anexo 7. Composición de exportaciones de maíz (Millones USD) - Mundo

<table>
<thead>
<tr>
<th>Año</th>
<th>Maíz para siembra</th>
<th>Maíz duro</th>
<th>Maíz (total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>723</td>
<td>8,039</td>
<td>8,763</td>
</tr>
<tr>
<td>2001</td>
<td>770</td>
<td>8,099</td>
<td>8,869</td>
</tr>
<tr>
<td>2002</td>
<td>845</td>
<td>9,067</td>
<td>9,913</td>
</tr>
<tr>
<td>2003</td>
<td>893</td>
<td>10,152</td>
<td>11,046</td>
</tr>
<tr>
<td>2004</td>
<td>1,290</td>
<td>10,362</td>
<td>11,661</td>
</tr>
<tr>
<td>2005</td>
<td>1,130</td>
<td>10,108</td>
<td>11,238</td>
</tr>
<tr>
<td>2006</td>
<td>1,116</td>
<td>12,066</td>
<td>13,187</td>
</tr>
<tr>
<td>2007</td>
<td>1,410</td>
<td>19,087</td>
<td>20,496</td>
</tr>
<tr>
<td>2008</td>
<td>2,239</td>
<td>24,850</td>
<td>27,089</td>
</tr>
<tr>
<td>2009</td>
<td>2,012</td>
<td>17,763</td>
<td>19,793</td>
</tr>
<tr>
<td>2010</td>
<td>1,965</td>
<td>21,115</td>
<td>23,097</td>
</tr>
<tr>
<td>2011</td>
<td>2,461</td>
<td>31,316</td>
<td>33,805</td>
</tr>
<tr>
<td>2012</td>
<td>2,910</td>
<td>32,686</td>
<td>35,596</td>
</tr>
<tr>
<td>2013</td>
<td>3,490</td>
<td>31,400</td>
<td>34,889</td>
</tr>
</tbody>
</table>

Fuente: COMTRADE
Elaboración: Drichelmo Tamayo

Anexo 8. Composición de exportaciones de maíz (USD) - Ecuador

<table>
<thead>
<tr>
<th>Año</th>
<th>Maíz para siembra</th>
<th>Maíz duro</th>
<th>Maíz (total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>0</td>
<td>10,934,897</td>
<td>10,934,897</td>
</tr>
<tr>
<td>2001</td>
<td>0</td>
<td>12,381,867</td>
<td>12,381,867</td>
</tr>
<tr>
<td>2002</td>
<td>0</td>
<td>8,836,730</td>
<td>8,836,730</td>
</tr>
<tr>
<td>2003</td>
<td>479</td>
<td>8,538,692</td>
<td>8,539,171</td>
</tr>
<tr>
<td>2004</td>
<td>645</td>
<td>5,425,818</td>
<td>5,426,463</td>
</tr>
<tr>
<td>2005</td>
<td>0</td>
<td>4,700,611</td>
<td>4,700,611</td>
</tr>
<tr>
<td>2006</td>
<td>52</td>
<td>5,863,057</td>
<td>5,863,109</td>
</tr>
<tr>
<td>2007</td>
<td>0</td>
<td>2,955,063</td>
<td>2,955,063</td>
</tr>
<tr>
<td>2008</td>
<td>0</td>
<td>4,645,824</td>
<td>4,645,824</td>
</tr>
<tr>
<td>2009</td>
<td>675</td>
<td>12,457,719</td>
<td>12,458,394</td>
</tr>
<tr>
<td>2010</td>
<td>742</td>
<td>1,347,249</td>
<td>1,347,991</td>
</tr>
<tr>
<td>2011</td>
<td>411</td>
<td>1,224,954</td>
<td>1,225,365</td>
</tr>
<tr>
<td>2012</td>
<td>3</td>
<td>871,298</td>
<td>871,301</td>
</tr>
<tr>
<td>2013</td>
<td>0</td>
<td>298,526</td>
<td>298,526</td>
</tr>
</tbody>
</table>

Fuente: COMTRADE
Elaboración: Drichelmo Tamayo
Anexo 9. Composición de importaciones de maíz (Millones USD) - Mundo

<table>
<thead>
<tr>
<th>Año</th>
<th>Maíz para siembra</th>
<th>Maíz duro</th>
<th>Maíz (total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>1,093</td>
<td>8,722</td>
<td>9,824</td>
</tr>
<tr>
<td>2001</td>
<td>1,153</td>
<td>8,811</td>
<td>9,964</td>
</tr>
<tr>
<td>2002</td>
<td>1,264</td>
<td>9,660</td>
<td>10,936</td>
</tr>
<tr>
<td>2003</td>
<td>1,605</td>
<td>10,870</td>
<td>12,487</td>
</tr>
<tr>
<td>2004</td>
<td>1,781</td>
<td>12,589</td>
<td>14,380</td>
</tr>
<tr>
<td>2005</td>
<td>1,859</td>
<td>11,624</td>
<td>13,484</td>
</tr>
<tr>
<td>2006</td>
<td>1,516</td>
<td>13,459</td>
<td>15,024</td>
</tr>
<tr>
<td>2007</td>
<td>2,047</td>
<td>21,662</td>
<td>23,709</td>
</tr>
<tr>
<td>2008</td>
<td>2,729</td>
<td>27,952</td>
<td>30,682</td>
</tr>
<tr>
<td>2009</td>
<td>2,539</td>
<td>18,789</td>
<td>21,330</td>
</tr>
<tr>
<td>2010</td>
<td>3,310</td>
<td>21,854</td>
<td>25,230</td>
</tr>
<tr>
<td>2011</td>
<td>4,177</td>
<td>31,149</td>
<td>35,367</td>
</tr>
<tr>
<td>2012</td>
<td>3,324</td>
<td>32,830</td>
<td>36,071</td>
</tr>
<tr>
<td>2013</td>
<td>4,028</td>
<td>32,304</td>
<td>36,332</td>
</tr>
</tbody>
</table>

Fuente: COMTRADE
Elaboración: Drichelmo Tamayo

Anexo 10. Composición de importaciones de maíz (USD) - Ecuador

<table>
<thead>
<tr>
<th>Año</th>
<th>Maíz para siembra</th>
<th>Maíz duro</th>
<th>Maíz (total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>46,743</td>
<td>18,648,980</td>
<td>18,695,724</td>
</tr>
<tr>
<td>2001</td>
<td>111,001</td>
<td>20,180,346</td>
<td>20,291,347</td>
</tr>
<tr>
<td>2002</td>
<td>95,667</td>
<td>48,366,980</td>
<td>48,462,648</td>
</tr>
<tr>
<td>2003</td>
<td>859,004</td>
<td>45,946,376</td>
<td>46,805,384</td>
</tr>
<tr>
<td>2004</td>
<td>1,271,205</td>
<td>66,561,768</td>
<td>67,832,976</td>
</tr>
<tr>
<td>2005</td>
<td>857,575</td>
<td>57,207,600</td>
<td>58,065,176</td>
</tr>
<tr>
<td>2006</td>
<td>2,624,348</td>
<td>73,297,856</td>
<td>75,922,200</td>
</tr>
<tr>
<td>2007</td>
<td>3,707,307</td>
<td>124,020,520</td>
<td>127,727,824</td>
</tr>
<tr>
<td>2008</td>
<td>8,691,534</td>
<td>92,856,272</td>
<td>101,547,800</td>
</tr>
<tr>
<td>2009</td>
<td>8,600,554</td>
<td>82,144,560</td>
<td>90,745,112</td>
</tr>
<tr>
<td>2010</td>
<td>10,325,782</td>
<td>123,289,696</td>
<td>133,615,480</td>
</tr>
<tr>
<td>2011</td>
<td>11,189,384</td>
<td>172,065,440</td>
<td>183,254,816</td>
</tr>
<tr>
<td>2012</td>
<td>21,286,052</td>
<td>97,417,360</td>
<td>118,703,416</td>
</tr>
<tr>
<td>2013</td>
<td>30,447,620</td>
<td>48,942,944</td>
<td>79,390,560</td>
</tr>
</tbody>
</table>

Fuente: COMTRADE
Elaboración: Drichelmo Tamayo
Anexo 11. Coeficiente de Apertura Económica 2000-2013 (Miles de dólares de 2007)

<table>
<thead>
<tr>
<th>Años</th>
<th>PIB</th>
<th>Importaciones de bienes y servicios</th>
<th>Exportaciones de bienes y servicios</th>
<th>Coef. de apertura económica</th>
<th>Coef. de orientación de exportaciones</th>
<th>Coef. de penetración de importaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000</td>
<td>37726410</td>
<td>7307583</td>
<td>11248430</td>
<td>0.49</td>
<td>0.30</td>
<td>0.19</td>
</tr>
<tr>
<td>2001</td>
<td>39241363</td>
<td>9187268</td>
<td>11069900</td>
<td>0.52</td>
<td>0.28</td>
<td>0.23</td>
</tr>
<tr>
<td>2002</td>
<td>40848994</td>
<td>10934226</td>
<td>11138952</td>
<td>0.54</td>
<td>0.27</td>
<td>0.27</td>
</tr>
<tr>
<td>2003</td>
<td>41961262</td>
<td>10490331</td>
<td>11942090</td>
<td>0.53</td>
<td>0.28</td>
<td>0.25</td>
</tr>
<tr>
<td>2004</td>
<td>45406710</td>
<td>11631354</td>
<td>13993547</td>
<td>0.56</td>
<td>0.31</td>
<td>0.26</td>
</tr>
<tr>
<td>2005</td>
<td>47809319</td>
<td>13305727</td>
<td>15201615</td>
<td>0.60</td>
<td>0.32</td>
<td>0.28</td>
</tr>
<tr>
<td>2006</td>
<td>49914615</td>
<td>14606164</td>
<td>16284882</td>
<td>0.62</td>
<td>0.33</td>
<td>0.29</td>
</tr>
<tr>
<td>2007</td>
<td>51007777</td>
<td>15636623</td>
<td>16287685</td>
<td>0.63</td>
<td>0.32</td>
<td>0.31</td>
</tr>
<tr>
<td>2008</td>
<td>54250408</td>
<td>17894428</td>
<td>16773701</td>
<td>0.64</td>
<td>0.31</td>
<td>0.33</td>
</tr>
<tr>
<td>2009</td>
<td>54557732</td>
<td>16119428</td>
<td>15970518</td>
<td>0.59</td>
<td>0.29</td>
<td>0.30</td>
</tr>
<tr>
<td>2010</td>
<td>56481055</td>
<td>18508988</td>
<td>15932657</td>
<td>0.61</td>
<td>0.28</td>
<td>0.33</td>
</tr>
<tr>
<td>2011</td>
<td>60925064</td>
<td>19183903</td>
<td>16835682</td>
<td>0.59</td>
<td>0.28</td>
<td>0.31</td>
</tr>
<tr>
<td>2012</td>
<td>64105563</td>
<td>19336453</td>
<td>17627622</td>
<td>0.58</td>
<td>0.27</td>
<td>0.30</td>
</tr>
<tr>
<td>2013</td>
<td>67081069</td>
<td>20695289</td>
<td>18041961</td>
<td>0.58</td>
<td>0.27</td>
<td>0.31</td>
</tr>
</tbody>
</table>

Fuente: BCE
Elaboración: Drichelmo Tamayo

Anexo 12. Coeficiente de Apertura en el Sector Agrícola 2007-2013 (Miles de dólares de 2007)

<table>
<thead>
<tr>
<th>Años</th>
<th>VAB</th>
<th>Importaciones de bienes y servicios</th>
<th>Exportaciones de bienes y servicios</th>
<th>Coef. de apertura económica</th>
<th>Coef. de orientación de exportaciones</th>
<th>Coef. de penetración de importaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>4174664</td>
<td>412053</td>
<td>2285752</td>
<td>0.65</td>
<td>0.55</td>
<td>0.10</td>
</tr>
<tr>
<td>2008</td>
<td>4208926</td>
<td>396371</td>
<td>2332712</td>
<td>0.65</td>
<td>0.55</td>
<td>0.09</td>
</tr>
<tr>
<td>2009</td>
<td>4331942</td>
<td>402356</td>
<td>2383861</td>
<td>0.64</td>
<td>0.55</td>
<td>0.09</td>
</tr>
<tr>
<td>2010</td>
<td>4360989</td>
<td>521850</td>
<td>2215948</td>
<td>0.63</td>
<td>0.51</td>
<td>0.12</td>
</tr>
<tr>
<td>2011</td>
<td>4689213</td>
<td>547047</td>
<td>2535567</td>
<td>0.66</td>
<td>0.54</td>
<td>0.12</td>
</tr>
<tr>
<td>2012</td>
<td>4666905</td>
<td>476469</td>
<td>2393836</td>
<td>0.62</td>
<td>0.51</td>
<td>0.10</td>
</tr>
<tr>
<td>2013</td>
<td>4906981</td>
<td>431689</td>
<td>2571832</td>
<td>0.61</td>
<td>0.52</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Fuente: BCE
Elaboración: Drichelmo Tamayo
Anexo 13. Coeficiente de Apertura Arroz 2007-2013 (Miles de dólares de 2007)

<table>
<thead>
<tr>
<th>Años</th>
<th>Producción</th>
<th>Importaciones de bienes y servicios</th>
<th>Exportaciones de bienes y servicios</th>
<th>Coef. de apertura económica</th>
<th>Coef. de orientación de exportaciones</th>
<th>Coef. de penetración de importaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>410798</td>
<td>39</td>
<td>4</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2008</td>
<td>349253</td>
<td>2559</td>
<td>0</td>
<td>0.01</td>
<td>0.00</td>
<td>0.01</td>
</tr>
<tr>
<td>2009</td>
<td>397037</td>
<td>376</td>
<td>12851</td>
<td>0.03</td>
<td>0.03</td>
<td>0.00</td>
</tr>
<tr>
<td>2010</td>
<td>383258</td>
<td>1</td>
<td>3591</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
</tr>
<tr>
<td>2011</td>
<td>331586</td>
<td>1</td>
<td>5934</td>
<td>0.02</td>
<td>0.02</td>
<td>0.00</td>
</tr>
<tr>
<td>2012</td>
<td>340894</td>
<td>8</td>
<td>0</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>2013</td>
<td>322989</td>
<td>0</td>
<td>4</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Fuente: BCE
Elaboración: Drichelmo Tamayo

<table>
<thead>
<tr>
<th>Años</th>
<th>Producción</th>
<th>Importaciones de bienes y servicios</th>
<th>Exportaciones de bienes y servicios</th>
<th>Coef. de apertura económica</th>
<th>Coef. de orientación de exportaciones</th>
<th>Coef. de penetración de importaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>208464</td>
<td>124021</td>
<td>2957</td>
<td>0.61</td>
<td>0.01</td>
<td>0.59</td>
</tr>
<tr>
<td>2008</td>
<td>174401</td>
<td>74668</td>
<td>3543</td>
<td>0.45</td>
<td>0.02</td>
<td>0.43</td>
</tr>
<tr>
<td>2009</td>
<td>165327</td>
<td>81327</td>
<td>7762</td>
<td>0.54</td>
<td>0.05</td>
<td>0.49</td>
</tr>
<tr>
<td>2010</td>
<td>171665</td>
<td>124531</td>
<td>879</td>
<td>0.73</td>
<td>0.01</td>
<td>0.73</td>
</tr>
<tr>
<td>2011</td>
<td>166837</td>
<td>147269</td>
<td>704</td>
<td>0.89</td>
<td>0.00</td>
<td>0.88</td>
</tr>
<tr>
<td>2012</td>
<td>234475</td>
<td>89942</td>
<td>578</td>
<td>0.39</td>
<td>0.00</td>
<td>0.38</td>
</tr>
<tr>
<td>2013</td>
<td>288510</td>
<td>48373</td>
<td>285</td>
<td>0.17</td>
<td>0.00</td>
<td>0.17</td>
</tr>
</tbody>
</table>

Fuente: BCE
Elaboración: Drichelmo Tamayo

Anexo 15. Cantidad de datos y periodos utilizados para cada relación

<table>
<thead>
<tr>
<th>Relación</th>
<th>Productor</th>
<th>Mayorista</th>
<th># Observaciones</th>
<th># Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arroz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecuador</td>
<td>2000m1</td>
<td>2004m1</td>
<td>180</td>
<td>132</td>
</tr>
<tr>
<td>Tailandia</td>
<td>2014m12</td>
<td>2014m12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecuador</td>
<td>2006m1</td>
<td>2000m1</td>
<td>108</td>
<td>180</td>
</tr>
<tr>
<td>Uruguay</td>
<td>2014m12</td>
<td>2014m12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecuador</td>
<td>2005m1</td>
<td>2000m1</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>Perú</td>
<td>2014m12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecuador</td>
<td>2006m1</td>
<td>2000m1</td>
<td>108</td>
<td>180</td>
</tr>
<tr>
<td>Colombia</td>
<td>2014m12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ecuador</td>
<td>2005m1</td>
<td>2000m1</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>EE.UU</td>
<td>2014m12</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Maíz

<table>
<thead>
<tr>
<th>Relación</th>
<th>Productor</th>
<th>Mayorista</th>
<th># Observaciones</th>
<th># Observaciones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ecuador</td>
<td>2006m1</td>
<td>2000m1</td>
<td>108</td>
<td>180</td>
</tr>
<tr>
<td>EE.UU</td>
<td>2014m12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Argentina</td>
<td>2005m1</td>
<td>2000m1</td>
<td>180</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: FMI, FAO, SINAGAP.
Elaboración: Drichelmo Tamayo
<table>
<thead>
<tr>
<th></th>
<th>Precio internacional</th>
<th>Precio internacional</th>
<th>Precio a nivel</th>
<th>Precio a nivel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tailandia (FOB) arroz</td>
<td>EE.UU. (FOB) arroz</td>
<td>mayorista Perú</td>
<td>minorista Colombia</td>
</tr>
<tr>
<td></td>
<td>Nivel Primera</td>
<td>Nivel Primera</td>
<td>Nivel Primera</td>
<td>Nivel Primera</td>
</tr>
<tr>
<td></td>
<td>diferencia</td>
<td>diferencia</td>
<td>diferencia</td>
<td>diferencia</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>a</td>
<td>a</td>
<td>a</td>
</tr>
<tr>
<td>Sin rezago</td>
<td>0.9086</td>
<td>0.0000</td>
<td>0.8717</td>
<td>0.0000</td>
</tr>
<tr>
<td>Rezago: 1</td>
<td>0.3049</td>
<td>0.0000</td>
<td>0.2339</td>
<td>0.0000</td>
</tr>
<tr>
<td>Rezago: 2</td>
<td>0.6562</td>
<td>0.0000</td>
<td>0.1903</td>
<td>0.0000</td>
</tr>
<tr>
<td>Rezago: 3</td>
<td>0.7783</td>
<td>0.0000</td>
<td>0.2451</td>
<td>0.0000</td>
</tr>
<tr>
<td>Rezago: 4</td>
<td>0.7016</td>
<td>0.0000</td>
<td>0.3791</td>
<td>0.0000</td>
</tr>
<tr>
<td>Rezago: 5</td>
<td>0.6973</td>
<td>0.0000</td>
<td>0.3143</td>
<td>0.0000</td>
</tr>
<tr>
<td>Rezago: 6</td>
<td>0.9102</td>
<td>0.0000</td>
<td>0.3266</td>
<td>0.0000</td>
</tr>
<tr>
<td></td>
<td>0.4801</td>
<td>0.0000</td>
<td>0.8489</td>
<td>0.0000</td>
</tr>
<tr>
<td>Rezago: 1</td>
<td>0.3806</td>
<td>0.0000</td>
<td>0.4522</td>
<td>0.0000</td>
</tr>
<tr>
<td>Rezago: 2</td>
<td>0.0857</td>
<td>0.0000</td>
<td>0.3537</td>
<td>0.0000</td>
</tr>
<tr>
<td>Rezago: 3</td>
<td>0.1160</td>
<td>0.0000</td>
<td>0.2452</td>
<td>0.0000</td>
</tr>
<tr>
<td>Rezago: 4</td>
<td>0.1096</td>
<td>0.0000</td>
<td>0.2480</td>
<td>0.0000</td>
</tr>
<tr>
<td>Rezago: 5</td>
<td>0.0906</td>
<td>0.0001</td>
<td>0.5032</td>
<td>0.0000</td>
</tr>
<tr>
<td>Rezago: 6</td>
<td>0.0691</td>
<td>0.0000</td>
<td>0.7015</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Fuente: FMI, FAO, SINAGAP.
Elaboración: Drichelmo Tamayo
Anexo 17. Selección número de rezagos óptimos

<table>
<thead>
<tr>
<th>Series</th>
<th>Rezago</th>
<th>LL</th>
<th>LR</th>
<th>gL</th>
<th>p</th>
<th>FPE</th>
<th>AIC</th>
<th>HQIC</th>
<th>SBIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arroz precio producto Ecuador - Precio FOB Tailandia</td>
<td>0</td>
<td>386.15</td>
<td>0.00</td>
<td>0.0000</td>
<td>0.00</td>
<td>-4.60</td>
<td>-4.59</td>
<td>-4.56</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>413.86</td>
<td>55.42</td>
<td>4</td>
<td>0.0000</td>
<td>0.00</td>
<td>-4.88</td>
<td>-4.83*</td>
<td>-4.77*</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>418.53</td>
<td>9.36</td>
<td>4</td>
<td>0.0530</td>
<td>.000026*</td>
<td>-4.89*</td>
<td>-4.82</td>
<td>-4.71</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>419.32</td>
<td>1.57</td>
<td>4</td>
<td>0.8150</td>
<td>0.00</td>
<td>-4.85</td>
<td>-4.75</td>
<td>-4.59</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>420.93</td>
<td>3.23</td>
<td>4</td>
<td>0.5200</td>
<td>0.00</td>
<td>-4.83</td>
<td>-4.69</td>
<td>-4.49</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>423.54</td>
<td>5.22</td>
<td>4</td>
<td>0.2650</td>
<td>0.00</td>
<td>-4.81</td>
<td>-4.64</td>
<td>-4.40</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>430.16</td>
<td>13.24</td>
<td>4</td>
<td>0.0100</td>
<td>0.00</td>
<td>-4.84</td>
<td>-4.64</td>
<td>-4.35</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>433.63</td>
<td>6.93</td>
<td>4</td>
<td>0.1400</td>
<td>0.00</td>
<td>-4.83</td>
<td>-4.61</td>
<td>-4.27</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>436.31</td>
<td>5.38</td>
<td>4</td>
<td>0.2510</td>
<td>0.00</td>
<td>-4.82</td>
<td>-4.56</td>
<td>-4.18</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>439.80</td>
<td>6.97</td>
<td>4</td>
<td>0.1370</td>
<td>0.00</td>
<td>-4.81</td>
<td>-4.52</td>
<td>-4.10</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>440.45</td>
<td>1.30</td>
<td>4</td>
<td>0.8610</td>
<td>0.00</td>
<td>-4.77</td>
<td>-4.45</td>
<td>-3.99</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>443.21</td>
<td>5.52</td>
<td>4</td>
<td>0.2380</td>
<td>0.00</td>
<td>-4.76</td>
<td>-4.41</td>
<td>-3.90</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>448.25</td>
<td>10.085*</td>
<td>4</td>
<td>0.0390</td>
<td>0.00</td>
<td>-4.77</td>
<td>-4.39</td>
<td>-3.84</td>
</tr>
<tr>
<td>Arroz precio producto Ecuador - Precio FOB Uruguay</td>
<td>0</td>
<td>243.87</td>
<td>0.00</td>
<td>-5.09</td>
<td>-5.07*</td>
<td>-5.03*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>248.09</td>
<td>8.43</td>
<td>4</td>
<td>0.0770</td>
<td>0.00</td>
<td>-5.10</td>
<td>-5.03</td>
<td>-4.94</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>255.39</td>
<td>14.60</td>
<td>4</td>
<td>0.0060</td>
<td>0.00</td>
<td>-5.17</td>
<td>-5.06</td>
<td>-4.90</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>259.87</td>
<td>8.98</td>
<td>4</td>
<td>0.0620</td>
<td>.000019*</td>
<td>-5.17*</td>
<td>-5.02</td>
<td>-4.80</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>262.11</td>
<td>4.46</td>
<td>4</td>
<td>0.3470</td>
<td>0.00</td>
<td>-5.14</td>
<td>-4.94</td>
<td>-4.66</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>266.97</td>
<td>9.73</td>
<td>4</td>
<td>0.0450</td>
<td>0.00</td>
<td>-5.16</td>
<td>-4.92</td>
<td>-4.57</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>268.28</td>
<td>2.62</td>
<td>4</td>
<td>0.6230</td>
<td>0.00</td>
<td>-5.10</td>
<td>-4.82</td>
<td>-4.40</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>270.60</td>
<td>4.64</td>
<td>4</td>
<td>0.3270</td>
<td>0.00</td>
<td>-5.07</td>
<td>-4.74</td>
<td>-4.26</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>275.24</td>
<td>9.28</td>
<td>4</td>
<td>0.0550</td>
<td>0.00</td>
<td>-5.08</td>
<td>-4.71</td>
<td>-4.16</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>280.15</td>
<td>9.83</td>
<td>4</td>
<td>0.0430</td>
<td>0.00</td>
<td>-5.10</td>
<td>-4.69</td>
<td>-4.08</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>283.76</td>
<td>7.21</td>
<td>4</td>
<td>0.1250</td>
<td>0.00</td>
<td>-5.09</td>
<td>-4.63</td>
<td>-3.96</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>285.71</td>
<td>3.91</td>
<td>4</td>
<td>0.4180</td>
<td>0.00</td>
<td>-5.05</td>
<td>-4.55</td>
<td>-3.81</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>292.95</td>
<td>14.467*</td>
<td>4</td>
<td>0.0060</td>
<td>0.00</td>
<td>-5.11</td>
<td>-4.57</td>
<td>-3.77</td>
</tr>
<tr>
<td>Arroz precio mayorista Ecuador - Precio FOB EE.UU.</td>
<td>0</td>
<td>628.28</td>
<td>0.00</td>
<td>-7.50</td>
<td>-7.49</td>
<td>-7.46</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>663.13</td>
<td>69.704*</td>
<td>4</td>
<td>0.0000</td>
<td>0.00</td>
<td>-7.87</td>
<td>-7.82*</td>
<td>-7.75*</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>667.61</td>
<td>8.96</td>
<td>4</td>
<td>0.0620</td>
<td>1.3e-06*</td>
<td>-7.87*</td>
<td>-7.80</td>
<td>-7.69</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>669.49</td>
<td>3.76</td>
<td>4</td>
<td>0.4390</td>
<td>0.00*</td>
<td>-7.85</td>
<td>-7.74</td>
<td>-7.59</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>672.00</td>
<td>5.02</td>
<td>4</td>
<td>0.2850</td>
<td>0.00</td>
<td>-7.83</td>
<td>-7.70</td>
<td>-7.50</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>675.50</td>
<td>6.99</td>
<td>4</td>
<td>0.1360</td>
<td>0.00</td>
<td>-7.83</td>
<td>-7.66</td>
<td>-7.42</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>679.91</td>
<td>8.84</td>
<td>4</td>
<td>0.0650</td>
<td>0.00</td>
<td>-7.83</td>
<td>-7.63</td>
<td>-7.35</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>680.65</td>
<td>1.47</td>
<td>4</td>
<td>0.8310</td>
<td>0.00</td>
<td>-7.79</td>
<td>-7.56</td>
<td>-7.23</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>681.57</td>
<td>1.83</td>
<td>4</td>
<td>0.7670</td>
<td>0.00</td>
<td>-7.76</td>
<td>-7.50</td>
<td>-7.12</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>682.90</td>
<td>2.67</td>
<td>4</td>
<td>0.6150</td>
<td>0.00</td>
<td>-7.72</td>
<td>-7.44</td>
<td>-7.01</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>684.15</td>
<td>2.49</td>
<td>4</td>
<td>0.6460</td>
<td>0.00</td>
<td>-7.69</td>
<td>-7.37</td>
<td>-6.91</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>687.11</td>
<td>5.93</td>
<td>4</td>
<td>0.2040</td>
<td>0.00</td>
<td>-7.68</td>
<td>-7.33</td>
<td>-6.82</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>689.55</td>
<td>4.87</td>
<td>4</td>
<td>0.3010</td>
<td>0.00</td>
<td>-7.66</td>
<td>-7.28</td>
<td>-6.73</td>
</tr>
<tr>
<td>Arroz precio mayorista Ecuador - Precio Perú (mayorista)</td>
<td>0</td>
<td>448.16</td>
<td>0.00</td>
<td>-7.50</td>
<td>-7.48</td>
<td>-7.45*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>456.25</td>
<td>16.17</td>
<td>4</td>
<td>0.0030</td>
<td>0.00</td>
<td>-7.57</td>
<td>-7.51*</td>
<td>-7.43</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>457.66</td>
<td>2.82</td>
<td>4</td>
<td>0.5880</td>
<td>0.00</td>
<td>-7.52</td>
<td>-7.43</td>
<td>-7.29</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>461.00</td>
<td>6.68</td>
<td>4</td>
<td>0.1540</td>
<td>0.00</td>
<td>-7.51</td>
<td>-7.38</td>
<td>-7.19</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>469.04</td>
<td>16.09</td>
<td>4</td>
<td>0.0030</td>
<td>1.8e-06*</td>
<td>-7.58*</td>
<td>-7.41</td>
<td>-7.16</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>469.86</td>
<td>1.64</td>
<td>4</td>
<td>0.8020</td>
<td>0.00</td>
<td>-7.53</td>
<td>-7.32</td>
<td>-7.01</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>473.51</td>
<td>7.29</td>
<td>4</td>
<td>0.1210</td>
<td>0.00</td>
<td>-7.52</td>
<td>-7.27</td>
<td>-6.91</td>
</tr>
<tr>
<td>N°</td>
<td>Precios de mayorista de Ecuador</td>
<td>Precios de mayorista de Colombia (minorista)</td>
<td>Precios FOB EUA</td>
<td>Precios FOB Argentina</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>--------------------------------</td>
<td>--</td>
<td>----------------</td>
<td>---------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>475.80</td>
<td>4.59</td>
<td>0.3320</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>479.36</td>
<td>7.12</td>
<td>0.1300</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>481.38</td>
<td>4.02</td>
<td>0.4030</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>486.12</td>
<td>9.4893*</td>
<td>0.0500</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>489.94</td>
<td>7.64</td>
<td>0.1060</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>492.47</td>
<td>5.06</td>
<td>0.2810</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>675.18</td>
<td></td>
<td>0.00</td>
<td>-8.06</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>694.16</td>
<td>37.96</td>
<td>0.0000</td>
<td>-8.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>702.70</td>
<td>17.07</td>
<td>0.0020</td>
<td>-8.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>707.92</td>
<td>10.437*</td>
<td>0.0340 8.4e-07*</td>
<td>-8.31*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>709.07</td>
<td>2.30</td>
<td>0.6800</td>
<td>-8.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>711.74</td>
<td>5.34</td>
<td>0.2540</td>
<td>-8.26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>714.24</td>
<td>5.01</td>
<td>0.2870</td>
<td>-8.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>716.10</td>
<td>3.71</td>
<td>0.4460</td>
<td>-8.22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>717.48</td>
<td>2.77</td>
<td>0.5980</td>
<td>-8.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>721.60</td>
<td>8.23</td>
<td>0.0840</td>
<td>-8.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>723.74</td>
<td>4.29</td>
<td>0.3680</td>
<td>-8.16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>726.22</td>
<td>4.96</td>
<td>0.2910</td>
<td>-8.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>728.38</td>
<td>4.31</td>
<td>0.3660</td>
<td>-8.12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>218.23</td>
<td></td>
<td>.000036*</td>
<td>-4.55*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>221.68</td>
<td>6.90</td>
<td>0.1410</td>
<td>-4.54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>223.59</td>
<td>3.82</td>
<td>0.4310</td>
<td>-4.50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>224.15</td>
<td>1.12</td>
<td>0.8910</td>
<td>-4.42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>224.85</td>
<td>1.39</td>
<td>0.8450</td>
<td>-4.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>226.58</td>
<td>3.48</td>
<td>0.4810</td>
<td>-4.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>230.47</td>
<td>7.77</td>
<td>0.1000</td>
<td>-4.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>232.76</td>
<td>4.58</td>
<td>0.3330</td>
<td>-4.27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>238.51</td>
<td>11.50</td>
<td>0.0220</td>
<td>-4.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>243.51</td>
<td>10.00</td>
<td>0.0410</td>
<td>-4.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>250.49</td>
<td>13.962*</td>
<td>0.0070</td>
<td>-4.39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>252.52</td>
<td>4.06</td>
<td>0.3980</td>
<td>-4.35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>254.33</td>
<td>3.62</td>
<td>0.4600</td>
<td>-4.30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>215.94</td>
<td></td>
<td>.000038*</td>
<td>-4.50*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>216.45</td>
<td>1.03</td>
<td>0.9060</td>
<td>-4.43</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>217.55</td>
<td>2.20</td>
<td>0.7000</td>
<td>-4.37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>218.71</td>
<td>2.32</td>
<td>0.6780</td>
<td>-4.31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>219.43</td>
<td>1.45</td>
<td>0.8360</td>
<td>-4.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>220.97</td>
<td>3.08</td>
<td>0.5450</td>
<td>-4.19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>226.03</td>
<td>10.11</td>
<td>0.0390</td>
<td>-4.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>227.33</td>
<td>2.60</td>
<td>0.6260</td>
<td>-4.15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>233.29</td>
<td>11.94</td>
<td>0.0180</td>
<td>-4.20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>236.70</td>
<td>6.82</td>
<td>0.1460</td>
<td>-4.18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>244.05</td>
<td>14.697*</td>
<td>0.0050</td>
<td>-4.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>247.51</td>
<td>6.92</td>
<td>0.1400</td>
<td>-4.24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>250.09</td>
<td>5.15</td>
<td>0.2730</td>
<td>-4.21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: FMI, FAO, SINAGAP.

Elaboración: Drichelmo Tamayo
Anexo 18. Estimación VAR Modelo 1.

<table>
<thead>
<tr>
<th>Iera Diferencia Precio Arroz a nivel Productor</th>
<th>Iera Diferencia Precio Internacional Tailandia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iera Diferencia Precio Arroz a nivel Productor</td>
<td>Iera Diferencia Precio Arroz a nivel Productor</td>
</tr>
<tr>
<td>Rezago 1</td>
<td>Coef.</td>
</tr>
<tr>
<td>-</td>
<td>0.081</td>
</tr>
<tr>
<td>Rezago 2</td>
<td>-0.100</td>
</tr>
<tr>
<td>Rezago 3</td>
<td>-0.056</td>
</tr>
<tr>
<td>Rezago 4</td>
<td>-0.022</td>
</tr>
<tr>
<td>Rezago 5</td>
<td>-0.039</td>
</tr>
<tr>
<td>Rezago 6</td>
<td>0.025</td>
</tr>
<tr>
<td>Rezago 7</td>
<td>-0.164</td>
</tr>
<tr>
<td>Rezago 8</td>
<td>0.013</td>
</tr>
<tr>
<td>Rezago 9</td>
<td>-0.055</td>
</tr>
<tr>
<td>Rezago 10</td>
<td>0.050</td>
</tr>
<tr>
<td>Rezago 11</td>
<td>0.150</td>
</tr>
<tr>
<td>Rezago 12</td>
<td>0.228</td>
</tr>
<tr>
<td>Rezago 1</td>
<td>-</td>
</tr>
<tr>
<td>Rezago 2</td>
<td>0.022</td>
</tr>
<tr>
<td>Rezago 3</td>
<td>0.095</td>
</tr>
<tr>
<td>Rezago 4</td>
<td>-0.189</td>
</tr>
<tr>
<td>Rezago 5</td>
<td>-0.005</td>
</tr>
<tr>
<td>Rezago 6</td>
<td>0.152</td>
</tr>
<tr>
<td>Rezago 7</td>
<td>0.050</td>
</tr>
<tr>
<td>Rezago 8</td>
<td>-0.269</td>
</tr>
<tr>
<td>Rezago 9</td>
<td>0.257</td>
</tr>
<tr>
<td>Rezago 10</td>
<td>0.031</td>
</tr>
<tr>
<td>Rezago 11</td>
<td>-0.165</td>
</tr>
<tr>
<td>Rezago 12</td>
<td>0.097</td>
</tr>
<tr>
<td>Constante</td>
<td>0.005</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.10</td>
</tr>
<tr>
<td>R2</td>
<td>0.16</td>
</tr>
<tr>
<td>p>chi2</td>
<td>0.123</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.05</td>
</tr>
<tr>
<td>R2</td>
<td>0.42</td>
</tr>
<tr>
<td>p>chi2</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Fuente: FMI, FAO, SINAGAP.

Elaboración: Drichelmo Tamayo
<table>
<thead>
<tr>
<th>Rezago</th>
<th>Coef.</th>
<th>P valor</th>
<th>Rezago</th>
<th>Coef.</th>
<th>P valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.146</td>
<td>0.135</td>
<td>1</td>
<td>0.293</td>
<td>0.000</td>
</tr>
<tr>
<td>2</td>
<td>-0.179</td>
<td>0.085</td>
<td>2</td>
<td>0.117</td>
<td>0.145</td>
</tr>
<tr>
<td>3</td>
<td>-0.141</td>
<td>0.181</td>
<td>3</td>
<td>-0.028</td>
<td>0.727</td>
</tr>
<tr>
<td>4</td>
<td>-0.080</td>
<td>0.410</td>
<td>4</td>
<td>0.233</td>
<td>0.002</td>
</tr>
<tr>
<td>5</td>
<td>0.064</td>
<td>0.526</td>
<td>5</td>
<td>-0.149</td>
<td>0.055</td>
</tr>
<tr>
<td>6</td>
<td>-0.021</td>
<td>0.836</td>
<td>6</td>
<td>0.219</td>
<td>0.005</td>
</tr>
<tr>
<td>7</td>
<td>-0.010</td>
<td>0.921</td>
<td>7</td>
<td>0.054</td>
<td>0.483</td>
</tr>
<tr>
<td>8</td>
<td>0.070</td>
<td>0.473</td>
<td>8</td>
<td>0.220</td>
<td>0.004</td>
</tr>
<tr>
<td>9</td>
<td>-0.251</td>
<td>0.011</td>
<td>9</td>
<td>0.089</td>
<td>0.246</td>
</tr>
<tr>
<td>10</td>
<td>0.069</td>
<td>0.499</td>
<td>10</td>
<td>0.177</td>
<td>0.025</td>
</tr>
<tr>
<td>11</td>
<td>0.007</td>
<td>0.941</td>
<td>11</td>
<td>0.046</td>
<td>0.550</td>
</tr>
<tr>
<td>12</td>
<td>0.181</td>
<td>0.064</td>
<td>12</td>
<td>0.057</td>
<td>0.455</td>
</tr>
</tbody>
</table>

Iera Diferencia Precio Internacional Uruguay

<table>
<thead>
<tr>
<th>Rezago</th>
<th>Coef.</th>
<th>P valor</th>
<th>Rezago</th>
<th>Coef.</th>
<th>P valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.024</td>
<td>0.854</td>
<td>1</td>
<td>0.234</td>
<td>0.020</td>
</tr>
<tr>
<td>2</td>
<td>0.156</td>
<td>0.240</td>
<td>2</td>
<td>0.185</td>
<td>0.071</td>
</tr>
<tr>
<td>3</td>
<td>0.177</td>
<td>0.187</td>
<td>3</td>
<td>-0.188</td>
<td>0.071</td>
</tr>
<tr>
<td>4</td>
<td>-0.120</td>
<td>0.369</td>
<td>4</td>
<td>-0.050</td>
<td>0.631</td>
</tr>
<tr>
<td>5</td>
<td>-0.067</td>
<td>0.597</td>
<td>5</td>
<td>-0.048</td>
<td>0.630</td>
</tr>
<tr>
<td>6</td>
<td>-0.026</td>
<td>0.832</td>
<td>6</td>
<td>0.068</td>
<td>0.482</td>
</tr>
<tr>
<td>7</td>
<td>0.122</td>
<td>0.321</td>
<td>7</td>
<td>-0.278</td>
<td>0.004</td>
</tr>
<tr>
<td>8</td>
<td>0.084</td>
<td>0.491</td>
<td>8</td>
<td>-0.204</td>
<td>0.032</td>
</tr>
<tr>
<td>9</td>
<td>-0.012</td>
<td>0.924</td>
<td>9</td>
<td>0.084</td>
<td>0.383</td>
</tr>
<tr>
<td>10</td>
<td>0.197</td>
<td>0.107</td>
<td>10</td>
<td>-0.052</td>
<td>0.582</td>
</tr>
<tr>
<td>11</td>
<td>0.114</td>
<td>0.338</td>
<td>11</td>
<td>-0.101</td>
<td>0.274</td>
</tr>
<tr>
<td>12</td>
<td>-0.291</td>
<td>0.010</td>
<td>12</td>
<td>-0.157</td>
<td>0.072</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Constante</th>
<th>Coef.</th>
<th>P valor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.009</td>
<td>0.189</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMSE</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>p>chi2</td>
<td>0.015</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: FMI, FAO, SINAGAP.

Elaboración: Drichelmo Tamayo
Anexo 20. Estimación VAR Modelo 3.

<table>
<thead>
<tr>
<th>Rezago 1</th>
<th>Coef.</th>
<th>P valor</th>
<th>Rezago 1</th>
<th>Coef.</th>
<th>P valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.224</td>
<td>0.004</td>
<td></td>
<td>0.586</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>-0.024</td>
<td>0.767</td>
<td></td>
<td>0.445</td>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>0.080</td>
<td>0.341</td>
<td></td>
<td>0.112</td>
<td>0.474</td>
<td></td>
</tr>
<tr>
<td>0.175</td>
<td>0.034</td>
<td></td>
<td>0.039</td>
<td>0.801</td>
<td></td>
</tr>
<tr>
<td>-0.208</td>
<td>0.014</td>
<td></td>
<td>-0.203</td>
<td>0.195</td>
<td></td>
</tr>
<tr>
<td>-0.034</td>
<td>0.695</td>
<td></td>
<td>0.196</td>
<td>0.220</td>
<td></td>
</tr>
<tr>
<td>0.013</td>
<td>0.876</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.084</td>
<td>0.293</td>
<td></td>
<td>0.152</td>
<td>0.308</td>
<td></td>
</tr>
<tr>
<td>0.129</td>
<td>0.109</td>
<td></td>
<td>-0.051</td>
<td>0.734</td>
<td></td>
</tr>
<tr>
<td>-0.079</td>
<td>0.319</td>
<td></td>
<td>-0.166</td>
<td>0.262</td>
<td></td>
</tr>
<tr>
<td>0.092</td>
<td>0.210</td>
<td></td>
<td>-0.111</td>
<td>0.420</td>
<td></td>
</tr>
<tr>
<td>0.033</td>
<td>0.602</td>
<td></td>
<td>0.056</td>
<td>0.638</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rezago 2</th>
<th>Coef.</th>
<th>P valor</th>
<th>Rezago 2</th>
<th>Coef.</th>
<th>P valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.065</td>
<td>0.145</td>
<td></td>
<td>0.038</td>
<td>0.649</td>
<td></td>
</tr>
<tr>
<td>0.044</td>
<td>0.321</td>
<td></td>
<td>0.021</td>
<td>0.796</td>
<td></td>
</tr>
<tr>
<td>0.017</td>
<td>0.705</td>
<td></td>
<td>-0.113</td>
<td>0.175</td>
<td></td>
</tr>
<tr>
<td>-0.034</td>
<td>0.452</td>
<td></td>
<td>-0.007</td>
<td>0.935</td>
<td></td>
</tr>
<tr>
<td>0.116</td>
<td>0.009</td>
<td></td>
<td>-0.013</td>
<td>0.876</td>
<td></td>
</tr>
<tr>
<td>0.002</td>
<td>0.962</td>
<td></td>
<td>-0.055</td>
<td>0.516</td>
<td></td>
</tr>
<tr>
<td>-0.018</td>
<td>0.678</td>
<td></td>
<td>-0.040</td>
<td>0.627</td>
<td></td>
</tr>
<tr>
<td>-0.007</td>
<td>0.881</td>
<td></td>
<td>-0.003</td>
<td>0.974</td>
<td></td>
</tr>
<tr>
<td>-0.018</td>
<td>0.680</td>
<td></td>
<td>0.002</td>
<td>0.978</td>
<td></td>
</tr>
<tr>
<td>0.081</td>
<td>0.062</td>
<td></td>
<td>-0.038</td>
<td>0.639</td>
<td></td>
</tr>
<tr>
<td>-0.041</td>
<td>0.298</td>
<td></td>
<td>-0.118</td>
<td>0.106</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rezago 12</th>
<th>Coef.</th>
<th>P valor</th>
<th>Rezago 12</th>
<th>Coef.</th>
<th>P valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.002</td>
<td>0.217</td>
<td></td>
<td>-0.001</td>
<td>0.702</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RMSE</th>
<th>Coef.</th>
<th>P valor</th>
<th>RMSE</th>
<th>Coef.</th>
<th>P valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td></td>
<td></td>
<td>0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.20</td>
<td></td>
<td></td>
<td>0.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.012</td>
<td></td>
<td></td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fuente: FMI, FAO, SINAGAP.

Elaboración: Drichelmo Tamayo

<table>
<thead>
<tr>
<th>Coef.</th>
<th>P valor</th>
<th>Coef.</th>
<th>P valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rezago 1</td>
<td>0.139</td>
<td>0.119</td>
<td>Rezago 1</td>
</tr>
<tr>
<td>Rezago 2</td>
<td>-0.030</td>
<td>0.741</td>
<td>Rezago 2</td>
</tr>
<tr>
<td>Rezago 3</td>
<td>-0.034</td>
<td>0.702</td>
<td>Rezago 3</td>
</tr>
<tr>
<td>Rezago 4</td>
<td>0.215</td>
<td>0.017</td>
<td>Rezago 4</td>
</tr>
<tr>
<td>Rezago 5</td>
<td>-0.164</td>
<td>0.074</td>
<td>Rezago 5</td>
</tr>
<tr>
<td>Rezago 6</td>
<td>-0.014</td>
<td>0.877</td>
<td>Rezago 6</td>
</tr>
<tr>
<td>Rezago 7</td>
<td>0.033</td>
<td>0.720</td>
<td>Rezago 7</td>
</tr>
<tr>
<td>Rezago 8</td>
<td>-0.033</td>
<td>0.708</td>
<td>Rezago 8</td>
</tr>
<tr>
<td>Rezago 9</td>
<td>0.165</td>
<td>0.057</td>
<td>Rezago 9</td>
</tr>
<tr>
<td>Rezago 10</td>
<td>-0.052</td>
<td>0.520</td>
<td>Rezago 10</td>
</tr>
<tr>
<td>Rezago 11</td>
<td>0.060</td>
<td>0.464</td>
<td>Rezago 11</td>
</tr>
<tr>
<td>Rezago 12</td>
<td>0.092</td>
<td>0.252</td>
<td>Rezago 12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coef.</th>
<th>P valor</th>
<th>Coef.</th>
<th>P valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rezago 1</td>
<td>0.015</td>
<td>0.644</td>
<td>Rezago 1</td>
</tr>
<tr>
<td>Rezago 2</td>
<td>0.026</td>
<td>0.413</td>
<td>Rezago 2</td>
</tr>
<tr>
<td>Rezago 3</td>
<td>0.068</td>
<td>0.034</td>
<td>Rezago 3</td>
</tr>
<tr>
<td>Rezago 4</td>
<td>0.008</td>
<td>0.810</td>
<td>Rezago 4</td>
</tr>
<tr>
<td>Rezago 5</td>
<td>0.015</td>
<td>0.644</td>
<td>Rezago 5</td>
</tr>
<tr>
<td>Rezago 6</td>
<td>0.012</td>
<td>0.717</td>
<td>Rezago 6</td>
</tr>
<tr>
<td>Rezago 7</td>
<td>0.046</td>
<td>0.138</td>
<td>Rezago 7</td>
</tr>
<tr>
<td>Rezago 8</td>
<td>0.031</td>
<td>0.319</td>
<td>Rezago 8</td>
</tr>
<tr>
<td>Rezago 9</td>
<td>-0.005</td>
<td>0.880</td>
<td>Rezago 9</td>
</tr>
<tr>
<td>Rezago 10</td>
<td>0.011</td>
<td>0.719</td>
<td>Rezago 10</td>
</tr>
<tr>
<td>Rezago 11</td>
<td>-0.005</td>
<td>0.874</td>
<td>Rezago 11</td>
</tr>
<tr>
<td>Rezago 12</td>
<td>0.030</td>
<td>0.292</td>
<td>Rezago 12</td>
</tr>
</tbody>
</table>

Constante	0.002	0.323	Constante	0.004	0.404
RMSE	0.02		RMSE	0.06	
R2	0.26		R2	0.36	
p>chi2	0.013		p>chi2	0.000	

Fuente: FMI, FAO, SINAGAP.

Elaboración: Drichelmo Tamayo
Anexo 22. Estimación VAR Modelo 5.

<table>
<thead>
<tr>
<th>Iera Diferencia Precio Arroz a nivel Mayorista</th>
<th>Iera Diferencia Precio Internacional Colombia</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Iera Diferencia Precio Arroz a nivel Mayorista</td>
</tr>
<tr>
<td></td>
<td>Coef.</td>
</tr>
<tr>
<td>Rezago 1</td>
<td>0.198</td>
</tr>
<tr>
<td>Rezago 2</td>
<td>0.025</td>
</tr>
<tr>
<td>Rezago 3</td>
<td>0.059</td>
</tr>
<tr>
<td>Rezago 4</td>
<td>0.175</td>
</tr>
<tr>
<td>Rezago 5</td>
<td>-0.194</td>
</tr>
<tr>
<td>Rezago 6</td>
<td>-0.103</td>
</tr>
<tr>
<td>Rezago 7</td>
<td>0.103</td>
</tr>
<tr>
<td>Rezago 8</td>
<td>-0.034</td>
</tr>
<tr>
<td>Rezago 9</td>
<td>0.140</td>
</tr>
<tr>
<td>Rezago 10</td>
<td>-0.043</td>
</tr>
<tr>
<td>Rezago 11</td>
<td>0.017</td>
</tr>
<tr>
<td>Rezago 12</td>
<td>0.069</td>
</tr>
<tr>
<td></td>
<td>Coef.</td>
</tr>
<tr>
<td>Rezago 1</td>
<td>0.034</td>
</tr>
<tr>
<td>Rezago 2</td>
<td>0.114</td>
</tr>
<tr>
<td>Rezago 3</td>
<td>-0.035</td>
</tr>
<tr>
<td>Rezago 4</td>
<td>-0.065</td>
</tr>
<tr>
<td>Rezago 5</td>
<td>0.058</td>
</tr>
<tr>
<td>Rezago 6</td>
<td>-0.110</td>
</tr>
<tr>
<td>Rezago 7</td>
<td>0.062</td>
</tr>
<tr>
<td>Rezago 8</td>
<td>0.053</td>
</tr>
<tr>
<td>Rezago 9</td>
<td>-0.033</td>
</tr>
<tr>
<td>Rezago 10</td>
<td>0.098</td>
</tr>
<tr>
<td>Rezago 11</td>
<td>0.003</td>
</tr>
<tr>
<td>Rezago 12</td>
<td>-0.046</td>
</tr>
<tr>
<td></td>
<td>Coef.</td>
</tr>
<tr>
<td>Constante</td>
<td>0.002</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.02</td>
</tr>
<tr>
<td>R2</td>
<td>0.22</td>
</tr>
<tr>
<td>p>chi2</td>
<td>0.004</td>
</tr>
</tbody>
</table>

Fuente: FMI, FAO, SINAGAP.

Elaboración: Drichelmo Tamayo

<table>
<thead>
<tr>
<th>Rezago 1</th>
<th>Coef.</th>
<th>P valor</th>
<th>Rezago 1</th>
<th>Coef.</th>
<th>P valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.288</td>
<td>0.005</td>
<td></td>
<td>0.072</td>
<td>0.486</td>
<td></td>
</tr>
<tr>
<td>-0.339</td>
<td>0.002</td>
<td></td>
<td>0.147</td>
<td>0.171</td>
<td></td>
</tr>
<tr>
<td>-0.316</td>
<td>0.004</td>
<td></td>
<td>-0.023</td>
<td>0.834</td>
<td></td>
</tr>
<tr>
<td>-0.326</td>
<td>0.003</td>
<td></td>
<td>0.038</td>
<td>0.723</td>
<td></td>
</tr>
<tr>
<td>-0.335</td>
<td>0.001</td>
<td></td>
<td>-0.001</td>
<td>0.993</td>
<td></td>
</tr>
<tr>
<td>-0.329</td>
<td>0.001</td>
<td></td>
<td>0.122</td>
<td>0.235</td>
<td></td>
</tr>
<tr>
<td>-0.312</td>
<td>0.002</td>
<td></td>
<td>Rezago 7</td>
<td>-0.117</td>
<td>0.245</td>
</tr>
<tr>
<td>-0.372</td>
<td>0.000</td>
<td></td>
<td>Rezago 8</td>
<td>-0.047</td>
<td>0.642</td>
</tr>
<tr>
<td>-0.415</td>
<td>0.000</td>
<td></td>
<td>Rezago 9</td>
<td>-0.055</td>
<td>0.618</td>
</tr>
<tr>
<td>-0.252</td>
<td>0.028</td>
<td></td>
<td>Rezago 10</td>
<td>0.229</td>
<td>0.045</td>
</tr>
<tr>
<td>-0.102</td>
<td>0.350</td>
<td></td>
<td>Rezago 11</td>
<td>-0.073</td>
<td>0.501</td>
</tr>
<tr>
<td>0.104</td>
<td>0.320</td>
<td></td>
<td>Rezago 12</td>
<td>-0.007</td>
<td>0.945</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rezago 1</th>
<th>Coef.</th>
<th>P valor</th>
<th>Rezago 1</th>
<th>Coef.</th>
<th>P valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.034</td>
<td>0.737</td>
<td></td>
<td>0.241</td>
<td>0.019</td>
<td></td>
</tr>
<tr>
<td>0.185</td>
<td>0.076</td>
<td></td>
<td>0.067</td>
<td>0.519</td>
<td></td>
</tr>
<tr>
<td>0.086</td>
<td>0.406</td>
<td></td>
<td>0.074</td>
<td>0.471</td>
<td></td>
</tr>
<tr>
<td>0.106</td>
<td>0.302</td>
<td></td>
<td>-0.068</td>
<td>0.507</td>
<td></td>
</tr>
<tr>
<td>0.120</td>
<td>0.234</td>
<td></td>
<td>0.048</td>
<td>0.634</td>
<td></td>
</tr>
<tr>
<td>0.143</td>
<td>0.159</td>
<td></td>
<td>-0.183</td>
<td>0.071</td>
<td></td>
</tr>
<tr>
<td>0.114</td>
<td>0.256</td>
<td></td>
<td>0.074</td>
<td>0.458</td>
<td></td>
</tr>
<tr>
<td>0.251</td>
<td>0.013</td>
<td></td>
<td>-0.132</td>
<td>0.187</td>
<td></td>
</tr>
<tr>
<td>0.129</td>
<td>0.217</td>
<td></td>
<td>0.046</td>
<td>0.660</td>
<td></td>
</tr>
<tr>
<td>0.218</td>
<td>0.038</td>
<td></td>
<td>-0.061</td>
<td>0.563</td>
<td></td>
</tr>
<tr>
<td>0.113</td>
<td>0.287</td>
<td></td>
<td>0.160</td>
<td>0.131</td>
<td></td>
</tr>
<tr>
<td>0.011</td>
<td>0.918</td>
<td></td>
<td>-0.149</td>
<td>0.154</td>
<td></td>
</tr>
</tbody>
</table>

| Constante | 0.015 | 0.047 | Constante | 0.001 | 0.941 |

RMSE	0.07		RMSE	0.07	
R2	0.37		R2	0.25	
p>chi2	0.000		p>chi2	0.154	

Fuente: FMI, FAO, SINAGAP.
Elaboración: Drichelmo Tamayo

<table>
<thead>
<tr>
<th>Rezago 1</th>
<th>Coef.</th>
<th>P valor</th>
<th>Rezago 1</th>
<th>Coef.</th>
<th>P valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rezago 1</td>
<td>-0.304</td>
<td>0.003</td>
<td>Rezago 1</td>
<td>-0.026</td>
<td>0.819</td>
</tr>
<tr>
<td>Rezago 2</td>
<td>-0.358</td>
<td>0.001</td>
<td>Rezago 2</td>
<td>0.128</td>
<td>0.266</td>
</tr>
<tr>
<td>Rezago 3</td>
<td>-0.323</td>
<td>0.002</td>
<td>Rezago 3</td>
<td>-0.128</td>
<td>0.263</td>
</tr>
<tr>
<td>Rezago 4</td>
<td>-0.340</td>
<td>0.001</td>
<td>Rezago 4</td>
<td>0.071</td>
<td>0.537</td>
</tr>
<tr>
<td>Rezago 5</td>
<td>-0.349</td>
<td>0.000</td>
<td>Rezago 5</td>
<td>-0.073</td>
<td>0.501</td>
</tr>
<tr>
<td>Rezago 6</td>
<td>-0.334</td>
<td>0.001</td>
<td>Rezago 6</td>
<td>0.118</td>
<td>0.295</td>
</tr>
<tr>
<td>Rezago 7</td>
<td>-0.308</td>
<td>0.001</td>
<td>Rezago 7</td>
<td>-0.038</td>
<td>0.720</td>
</tr>
<tr>
<td>Rezago 8</td>
<td>-0.381</td>
<td>0.000</td>
<td>Rezago 8</td>
<td>-0.076</td>
<td>0.476</td>
</tr>
<tr>
<td>Rezago 9</td>
<td>-0.398</td>
<td>0.000</td>
<td>Rezago 9</td>
<td>-0.073</td>
<td>0.537</td>
</tr>
<tr>
<td>Rezago 10</td>
<td>-0.298</td>
<td>0.006</td>
<td>Rezago 10</td>
<td>0.138</td>
<td>0.255</td>
</tr>
<tr>
<td>Rezago 11</td>
<td>-0.059</td>
<td>0.555</td>
<td>Rezago 11</td>
<td>-0.048</td>
<td>0.664</td>
</tr>
<tr>
<td>Rezago 12</td>
<td>0.112</td>
<td>0.243</td>
<td>Rezago 12</td>
<td>0.033</td>
<td>0.758</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Rezago 1</th>
<th>Coef.</th>
<th>P valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rezago 1</td>
<td>-0.007</td>
<td>0.940</td>
</tr>
<tr>
<td>Rezago 2</td>
<td>0.154</td>
<td>0.096</td>
</tr>
<tr>
<td>Rezago 3</td>
<td>0.156</td>
<td>0.087</td>
</tr>
<tr>
<td>Rezago 4</td>
<td>0.127</td>
<td>0.154</td>
</tr>
<tr>
<td>Rezago 5</td>
<td>0.064</td>
<td>0.464</td>
</tr>
<tr>
<td>Rezago 6</td>
<td>0.272</td>
<td>0.002</td>
</tr>
<tr>
<td>Rezago 7</td>
<td>0.081</td>
<td>0.377</td>
</tr>
<tr>
<td>Rezago 8</td>
<td>0.260</td>
<td>0.004</td>
</tr>
<tr>
<td>Rezago 9</td>
<td>0.165</td>
<td>0.077</td>
</tr>
<tr>
<td>Rezago 10</td>
<td>0.274</td>
<td>0.004</td>
</tr>
<tr>
<td>Rezago 11</td>
<td>0.234</td>
<td>0.013</td>
</tr>
<tr>
<td>Rezago 12</td>
<td>0.068</td>
<td>0.486</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Constante</th>
<th>Coef.</th>
<th>P valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constante</td>
<td>0.012</td>
<td>0.103</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.07</td>
<td></td>
</tr>
<tr>
<td>R2</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>p>chi2</td>
<td>0.000</td>
<td></td>
</tr>
</tbody>
</table>

Fuente: FMI, FAO, SINAGAP.
Elaboración: Drichelmo Tamayo
Anexo 25. Resultados Prueba de Granger extendido.

<table>
<thead>
<tr>
<th>Modelo</th>
<th>Variable dependiente</th>
<th>Variable independiente</th>
<th>J_i-cuadrado</th>
<th>GL</th>
<th>p-valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Precio Arroz a nivel Productor</td>
<td>Precio Internacional Tailandia</td>
<td>5.67</td>
<td>12</td>
<td>0.932</td>
</tr>
<tr>
<td></td>
<td>Precio Internacional Tailandia</td>
<td>Precio Arroz a nivel Productor</td>
<td>21.09</td>
<td>12</td>
<td>0.049</td>
</tr>
<tr>
<td>2</td>
<td>Precio Internacional Uruguay</td>
<td>Precio Arroz a nivel Productor</td>
<td>14.90</td>
<td>12</td>
<td>0.247</td>
</tr>
<tr>
<td></td>
<td>Precio Internacional Uruguay</td>
<td>Precio Arroz a nivel Productor</td>
<td>49.29</td>
<td>12</td>
<td>0.000</td>
</tr>
<tr>
<td>3</td>
<td>Precio Arroz a nivel Mayorista</td>
<td>Precio Internacional EE.UU. Mayorista</td>
<td>15.37</td>
<td>12</td>
<td>0.222</td>
</tr>
<tr>
<td></td>
<td>Precio Internacional EE.UU. Mayorista</td>
<td>Precio Arroz a nivel Productor</td>
<td>39.38</td>
<td>12</td>
<td>0.000</td>
</tr>
<tr>
<td>4</td>
<td>Precio Arroz a nivel Mayorista</td>
<td>Precio Internacional Perú Mayorista</td>
<td>15.22</td>
<td>12</td>
<td>0.229</td>
</tr>
<tr>
<td></td>
<td>Precio Internacional Perú Mayorista</td>
<td>Precio Arroz a nivel Productor</td>
<td>34.36</td>
<td>12</td>
<td>0.001</td>
</tr>
<tr>
<td>5</td>
<td>Precio Arroz a nivel Mayorista</td>
<td>Precio Internacional Colombia Mayorista</td>
<td>18.83</td>
<td>12</td>
<td>0.093</td>
</tr>
<tr>
<td></td>
<td>Precio Internacional Colombia Mayorista</td>
<td>Precio Arroz a nivel Productor</td>
<td>22.66</td>
<td>12</td>
<td>0.031</td>
</tr>
<tr>
<td>6</td>
<td>Precio Arroz a nivel Productor</td>
<td>Precio Internacional EE.UU. Productor</td>
<td>24.27</td>
<td>12</td>
<td>0.019</td>
</tr>
<tr>
<td></td>
<td>Precio Internacional EE.UU. Productor</td>
<td>Precio Arroz a nivel Productor</td>
<td>15.49</td>
<td>12</td>
<td>0.216</td>
</tr>
<tr>
<td>7</td>
<td>Precio Internacional Productor</td>
<td>Precio Arroz a nivel Argentina</td>
<td>32.08</td>
<td>12</td>
<td>0.001</td>
</tr>
<tr>
<td></td>
<td>Precio Internacional Productor</td>
<td>Precio Arroz a nivel Argentina</td>
<td>9.38</td>
<td>12</td>
<td>0.670</td>
</tr>
</tbody>
</table>

Fuente: FMI, FAO, SINAGAP.

Elaboración: Drichelmo Tamayo