PONTIFICIA UNIVERSIDAD CATÓLICA DEL ECUADOR

ESCUELA DE BIOANÁLISIS

CARRERA DE MICROBIOLOGÍA

DISERTACIÓN PREVIA A LA OBTENCIÓN DEL TÍTULO DE MICROBIOLOGA

DETERMINACIÓN DEL ANTAGONISMO in vitro DE Bacillus spp. AISLADO DEL SUELO DE LOS CULTIVOS DE BANANO DE LA REGIÓN COSTA DEL ECUADOR FRENTE AL HONGO FITOPATÓGENO Fusarium oxysporum f. sp. cubense raza tropical 1

VERÓNICA ALEXANDRA SALAS TORRES

DIRECTORA: MTR. JENIFER YÁNEZ ALTUNA

QUITO, 2015
DECLARACIÓN Y AUTORIZACIÓN

Yo, Verónica Alexandra Salas Torres, C.I. 171959358-2, autor del trabajo de graduación intitulado: DETERMINACIÓN DEL ANTAGONISMO in vitro DE Bacillus spp. AISLADO DEL SUELO DE LOS CULTIVOS DE BANANO DE LA REGIÓN COSTA DEL ECUADOR FRENTE AL HONGO FITOPATÓGENO Fusarium oxysporum f. sp. cubense raza tropical 1 previa a la obtención del grado académico de MICROBIÓLOGA en la Escuela de Bioanálisis.

1.- Declaro tener pleno conocimiento de la obligación que tiene la Pontificia Universidad Católica del Ecuador, de conformidad con el artículo 144 de la Ley Orgánica de Educación Superior, de entregar a la SENECYT en formato digital una copia del referido trabajo de graduación para que sea integrado al Sistema Nacional de Información de la Educación Superior del Ecuador para su difusión pública respetando los derechos de autor.

2.- Autorizo a la Pontificia Universidad Católica del Ecuador a difundir a través del sitio web de la Biblioteca de la PUCE el referido trabajo de graduación, respetando las políticas de propiedad intelectual de la Universidad.

Verónica Alexandra Salas Torres

C.I. 171959358-2
DEDICATORIA

A Dios

A mis Abuelitos

A mis papis y hermanos

A mis amigos

A la PUCE
Agradecimientos

En primer lugar a Dios por sus bendiciones diarias, y por permitirme compartir todos mis momentos felices con quienes más amo.

A mis abuelitos Mama Moita y Papito Rodrigo por el apoyo incondicional y por estar presentes en todas las etapas de mi vida.

A mi mami y a mi papi por el amor que me brindan cada día y por siempre querer lo mejor para mí.

A mis hermanos Johannita y Andy por la confianza que me brindan día a día y por compartir conmigo los buenos momentos de mi vida.

A mis amigos por sacarme una sonrisa todos los días y por estar presente en los buenos y malos momentos. A mi amiga Alexa por compartir conmigo grandes experiencias en lo personal y académico.

A mi directora de disertación, Ing. Jeniffer Yánez, por ayudarme en la realización de esta investigación y por la amistad brindada.

A Freddy Magdama y al Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), por concederme el hongo fitopatógeno necesario para la realización de esta disertación.

Al Ing. Sánchez por ayudarme en la parte estadística de esta disertación.

A la Escuela de Bioanálisis y al personal que pertenece a la misma, gracias por apoyarme día tras día.

A todos mis profesores que pertenecen a la carrera de Microbiología por compartirme sus conocimientos día a día.

Con mucho amor

Verónica
ÍNDICE DE CONTENIDOS

ÍNDICE DE FIGURAS ..viii
ÍNDICE DE TABLAS ...x
ÍNDICE DE ANEXOS ..xi
RESUMEN ..xii
ABSTRACT ...xiii

CAPÍTULO I
1. INTRODUCCIÓN ..1
 1.1. Objetivos ..3
 1.1.1. Objetivo General ..3
 1.1.2. Objetivos Específicos ..3

CAPÍTULO II
2. MARCO TEÓRICO ..4
 2.1. La Industria Bananera en el Ecuador ..4
 2.2. La enfermedad del Mal de Panamá ..4
 2.2.1. Agente causal: Fusarium oxysporum ..5
 2.2.1.1. Formas especiales y Razas ...5
 2.2.1.2. Ciclo de vida y dispersión del hongo fitopatógeno ..6
 2.2.2. Síntomas ..7
 2.2.3. Impacto económico ..8
 2.2.4. Manejo de la enfermedad ..8
 2.2.4.1. Fungicidas ..8
 2.2.4.2. Control biológico ..9
 2.3. Antagonismo ...10
 2.3.1. Bacillus spp. ...11
 2.3.1.1. Importancia de Bacillus spp. En el sector Agrícola ...11
 2.3.1.2. Mecanismo de acción ...12
 2.3.1.2. Fitopatógenos y enfermedades que controla Bacillus spp ...12
 2.4. Identificación de Bacillus spp ..14
CAPÍTULO III

3. MARCO METODOLÓGICO..20

3.1. MATERIALES Y EQUIPOS..20

3.1.1. Materiales de la fase de campo...20

3.1.2. Materiales de la fase de laboratorio...20

3.1.3. Equipos ..21

3.2. MÉTODOS...21

3.2.1. Área de estudio ..21

3.2.2. Recolección de las muestras de suelo..22

3.2.3. Obtención de Fusarium oxysporum f.sp. cubense raza tropical 1............23

3.2.4. Procesamiento de las muestras..23

3.2.4.1. Aislamiento de Bacillus spp..23

3.2.4.2. Identificación morfológica de Bacillus spp...24

3.2.4.2.1. Identificación morfológica y microscópica......................................24

3.2.4.2.2. Prueba de catalasa...24

3.2.4.3. Identificación morfológica de Fusarium oxysporum f.sp. cubense raza tropical 1...25

3.2.5. Pruebas de antagonismo para seleccionar a las especies antagonistas (Pre Screening)...26

3.2.5.1. Concentración de Bacillus spp...26

3.2.5.2. Screening de la prueba de antagonismo: técnica de cultivo dual........26

3.2.6. Identificación molecular de las cepas o especies antagonistas de Bacillus........26
ÍNDICE DE FIGURAS

Figura. 2.1. Dispersión de *F. oxysporum* f. sp. *cubense* raza tropical 4………………7

Figura. 2.2. Características morfológicas de las colonias en medio de cultivo...........14

Figura. 2.3. Etapas de la PCR..17

Figura. 2.4. Esquema del gen 16S rRNA (aproximadamente 1500 pares de bases). Los círculos representan las regiones conservadas del gen...18

Figura. 3.1. Mapa de recolección de muestras de suelo de cultivos de banano………22

Figura. 3.2. Recolección de las muestras de suelo..23

Figura. 3.3. Identificación morfológica de FOC RT1...25

Figura. 4.1. Características macroscópicas de *Bacillus* de cuatro localidades de la región costa del Ecuador, A) SD, B) MA, C) INIAP y D) ASM..30

Figura. 4.2. Reacción positiva de la prueba de catalasa. A) *Bacillus* SD, B) *Bacillus* MA, C) *Bacillus* INIAP, D) *Bacillus* ASM...31

Figura. 4.3. Identificación microscópica de *Bacillus* spp.: bacilos GRAM positivos, esporulados. A) *Bacillus* SD, B) *Bacillus* MA, C) *Bacillus* INIAP, D) *Bacillus* ASM..31

Figura. 4.4. A) *Fusarium oxysporum* f. sp. *cubense* raza tropical 1, B) microconidias, C) macroconidias y D) clamidiosporas...32

Figura. 4.5. A) *Bacillus subtilis* SD, B) *Bacillus subtilis* INIAP, C) *Bacillus subtilis*, ASM, D) *Bacillus* sp. Manabí y E) No antagonismo...33

Figura. 4.6. Análisis del porcentaje de inhibición. La actividad antagónica entre cuatro cepas de *Bacillus* y *Fusarium oxysporum* f. sp. *cubense* raza tropical 1 fue medida como porcentajes de inhibición. La actividad fue medida desde las 48 horas hasta las 144
horas SD – *Bacillus subtilis*, INIAP - *Bacillus subtilis*, MA - *Bacillus* sp., ASM - *Bacillus subtilis*.

Figura 4.7. Halos de inhibición. A) Controles, B) MA (*Bacillus* sp.), C) ASM (*Bacillus subtilis*), D) SD (*Bacillus subtilis*) E) INIAP (*Bacillus subtilis*).…………………………..38
ÍNDICE DE TABLAS

Tabla 2.1. Fitopatógenos y enfermedades que controla *Bacillus spp.*…………………13

Tabla 4.1. Bacterias bacilares GRAM positivas esporuladas aisladas de suelos de cuatro localidades del litoral ecuatoriano…………………………………………………29

Tabla 4.2. Identificación molecular de las especies del género *Bacillus*………………33

Tabla 4.3. Homogeneidad de varianzas de los datos del crecimiento micelial de FOC RT1 a las 144 horas, en contacto con las bacterias antagónicas…………………………………………………………………………………………36

Tabla 4.4. Prueba de Kolmogorov-Smirnov de los datos del crecimiento micelial de FOC RT1 a las 144 horas, en contacto con las bacterias antagónicas…………………………………………………………………………………………36

Tabla 4.5. ANOVA de los datos del crecimiento micelial de FOC RT1 a las 144 horas, en contacto con las bacterias antagónicas…………………………………………………………………………………………36

Tabla 4.6. Prueba de Tukey de los datos del crecimiento micelial de FOC RT1 a las 144 horas, en contacto con las bacterias antagónicas…………………………………………………………………………………………37
ÍNDICE DE ANEXOS

Anexo 1. Mapa de recolección de muestras de suelo de cultivos de banano. ..56

Anexo 2. Procedimiento de la extracción del ADN genómico..........................57

Anexo 3. Cuantificación del ADN de los cuatro mejores antagonistas........59

Anexo 4. Actividad antagónica entre cuatro cepas de Bacillus y Fusarium oxysporum f. sp. cubense raza tropical 1. ...60

Anexo 5. Datos del crecimiento micelial de FOC RT1 enfrentado con las bacterias antagónicas...62

Anexo 6. Control de temperatura..63
RESUMEN

El Ecuador como productor de banano ocupa el quinto lugar a nivel mundial, esta fruta fue el principal producto no petrolero más exportado durante el año 2014, no obstante su producción se ve amenazada por la presencia de *F. oxysporum* f.sp. *cubense* raza tropical 1 (FOC RT1), hongo fitopatógeno que ocasiona pérdidas económicas en las plantaciones de banano de la variedad Gros Michel. En este estudio se recolectaron muestras de suelo alrededor de cultivos de banano sano en cuatro provincias del litoral: Santo Domingo de los Tsáchilas, Manabí, Los Ríos y Guayas, para su análisis en los laboratorios de la Escuela de Bioanálisis de la PUCE – Quito. Se obtuvieron diez muestras de suelo de cada provincia, de las cuales se aislaron 18 bacterias con forma bacilar, Gram positivos esporulados, catalasa positiva y morfológicamente identificadas como del género *Bacillus*. De forma preliminar se enfrentaron in vitro los 18 aislados al hongo fitopatógeno FOC RT1, cepa obtenida del Centro de Investigaciones Biotecnológicas del Ecuador (CIBE). De este pre ensayo se escogieron 4 de los mejores aislados antagonistas. La identificación molecular de estos *Bacillus* se realizó mediante la secuenciación del gen 16S ARNr, las secuencias editadas fueron comparadas con el Banco de Genes del NCBI mediante la herramienta BLAST, obteniendo como resultado tres cepas pertenecientes a *Bacillus subtilis* y la cuarta solo se la identificó como *Bacillus* sp. Las cuatro cepas fueron probadas in vitro nuevamente contra el hongo fitopatógeno FOC RT1, consiguiendo los mejores porcentajes (56,18% y 54,12%) y halos de inhibición (1,02 cm y 0,99 cm) las cepas pertenecientes a las provincias de Santo Domingo de los Tsáchilas y Manabí respectivamente, siendo el *Bacillus subtilis* proveniente de la provincia de Santo Domingo de los Tsáchilas (SD) la cepa antagonista más promisoria.
ABSTRACT

Ecuador as banana’s producer ranks in the fifth worldwide site. This fruit was the first non-oil product most exported in 2014. However the banana’s production is threaten by the presence of *F. oxysporum* f.sp. *cubense* tropical race 1 (FOC RT1), a phytopathogenic fungus that causes economic decreases in banana’s plantations, especially in Gros Michel type. In this study the samples came from healthy banana crops that were collected in four coast provinces: Santo Domingo de los Tsáchilas, Manabí, Los Ríos and Guayas, after its samples were taken for analysis in the laboratories of the Bioanalysis School of PUCE - Quito. Ten soil samples were collected from each province. Of which were 18 bacterial isolates were obtained with bacillary form, Gram positive sporulated, catalase positive and morphologically identified as the genus *Bacillus*. Preliminarily clashed *in vitro* eighteen strain were against FOC RT1 plant pathogenic fungus strain obtained from the Biotechnology Research Center of Ecuador (CIBE) of this screening 4 of the best antagonists were chosen. The molecular identification of this type of *Bacillus* was by sequencing the 16S rRNA gene. The edited sequences were compared with GenBank of NCBI using the BLAST tool, resulting in three strains belonging to *Bacillus subtilis* and the fourth one was identified as *Bacillus* sp. The four strains were tested *in vitro* against the phytopathogenic fungus FOC RT1 again, getting the best percentage (56.18% and 54.12%) and halos inhibitory (1.02 cm and 0.99 cm) strains belonging to the Santo Domingo of Tsáchilas and Manabí respectively, *Bacillus subtilis* from Santo Domingo of Tsáchilas (SD) province, it is the most promising strain antagonist.
1. INTRODUCCIÓN

A nivel nacional, el cultivo de banano (Musa paradisiaca) es uno de los cultivos de gran importancia en el Ecuador. En el 2013 la producción anual de banano fue de 6 millones de toneladas (datos de producción en toneladas métricas) (Visualizador de Estadísticas Agropecuarias del Ecuador, 2013) de los cuales se exportó 2 263 727 FOB (free on board), colocándolo en el quinto lugar de productores de esta fruta. Debido a esto, la industria bananera brinda trabajo a 2 millones de personas, las cuales trabajan en diferentes etapas de producción y comercialización de banano (ProEcuador, 2014; ProEcuador, s.f). Sin embargo, el cultivo se ve amenazado por el posible ingreso de Fusarium oxysporum f. sp. cubense raza tropical 4 (FOC RT4), lo que llegaría a provocar un impacto económico negativo con efectos sociales marcados (Sotomayor, 2012).

En América Latina se ha reportado la presencia de F. oxysporum f. sp. cubense de las razas uno, dos y tres pero todavía no se ha reportado la raza cuatro. La raza cuatro afecta a todo tipo de musáceas, esto debido a que invade el sistema vascular de la planta afectando el paso de agua y nutrientes (Fiallos, 2009).

Para proteger a las plantas de la presencia de las formas patogénicas del hongo fitopatógeno FOC, los agricultores nacionales utilizan productos químicos, los cuales afectan a la biodiversidad microbiana, calidad del producto y a la salud tanto del medio ambiente como de las personas (Martínez, 2013). De ahí la importancia de encontrar una alternativa ecológica para manejar esta enfermedad en el caso que se la detecte en el país. Una opción es el uso de bacterias que habitan normalmente en el suelo y la rizósfera y pueden realizar antagonismo frente a microorganismos patógenos.

Las bacterias que se encuentran en el suelo y la rizósfera brindan protección a la planta contra enfermedades ya que producen metabolitos secundarios, necesarios para el control del patógeno. Una de las bacterias que ha dado buenos resultados como biocontrolador pertenece al género Bacillus debido a que actúa directamente contra organismos fitopatógenos (Pozo, Flores, Romero, García y Álvarez-Rivera, 2007; Corrales et al., 2011; Tejera, Heydrich y Rojas, 2012; Yuan, Raza, Shen y Huang 2012; Zhao et al., 2014). Mediante la producción extracelular de antibióticos, toxinas, enzimas hidrolasas y lipopéptidos antimicrobianos ejercen una amplia acción
antifúngica, además activan los mecanismos de resistencia inducida en plantas (Orberá, Serrat y Ortega, 2014).

En el Ecuador existe la presencia de FOC RT1, la cual en los años 60 causó fusariosis en el banano en las variedades Gros Michel, Manzano y Pisang Awak (Organización de las Naciones Unidas para la Alimentación y la Agricultura, 2014).

En el país no existen estudios reportados sobre antagonismo de Bacillus spp. frente al hongo fitopatógeno Fusarium oxysporum f. sp. cubense raza tropical 1 (FOC RT1). Por lo que el presente trabajo contribuirá con información nueva e importante sobre la actividad antagónica in vitro de la bacteria frente al hongo patógeno mencionado.

Los resultados obtenidos en la presente investigación brindarán herramientas para el uso de las especies del género Bacillus como potenciales biocontroladores y de esa manera reducir el uso de fungicidas. Esta alternativa ecológica que además de beneficiar al medio ambiente tiene un costo de producción inferior al de los agroquímicos con el objetivo de que los agricultores nacionales lo puedan adquirir a un precio conveniente, evitando así el uso de fungicidas que tienen un costo elevado (Vurro y Gressel, 2007; Bale, van Lenteren y Bigler, 2008) y contaminación del suelo y del agua.

La industria bananera es de gran importancia para la economía e ingresos individuales para los productores ecuatorianos, además de ser un producto básico en la alimentación de la población. De ahí la importancia de identificar especies del género Bacillus que actúen como controladores biológicos contra hongos fitopatógenos. Por esta razón, el presente trabajo pretende probar la hipótesis de que las especies de Bacillus son buenos antagonistas in vitro frente al hongo fitopatógeno Fusarium oxysporum f. sp. cubense raza tropical 1 para lo cual se plantea la siguiente pregunta de investigación ¿Cómo la actividad de Bacillus spp. aislado del suelo de los cultivos de banano de la región Costa del Ecuador inhibe el crecimiento de Fusarium oxysporum f. sp. cubense raza tropical 1?
1.1. OBJETIVOS

1.1.1. OBJETIVO GENERAL

- Determinar la actividad antagónica in vitro de *Bacillus* spp. aislados del suelo de los cultivos de banano de la región Costa del Ecuador frente a *Fusarium oxysporum* f. sp. *cubense* raza tropical 1.

1.1.2. OBJETIVOS ESPECÍFICOS

- Aislar y seleccionar las especies del género *Bacillus* presentes en el suelo de los cultivos de banano mediante técnicas convencionales.
- Determinar los porcentajes de inhibición producidos por *Bacillus* spp. frente a *Fusarium oxysporum* f. sp. *cubense* raza tropical 1.
- Evaluar la actividad antifúngica de *Bacillus* spp. contra *Fusarium oxysporum* f. sp. *cubense* raza tropical 1 en base al tamaño de los halos de inhibición.
- Identificar por medio de técnicas moleculares los aislados que tienen mayor actividad antifúngica.
2. MARCO TEÓRICO

2.1. La Industria Bananera en el Ecuador

El banano pertenece al reino Plantae, división Magnoliophyta, clase Liliopsida, orden Zingiberales, familia Musácea, género *Musa* y especie *paradisiaca*. El banano para su crecimiento requiere de una buena luminosidad, pluviosidad entre 120-150 mm de lluvia mensual o precipitaciones de 44 mm semanales. El clima adecuado es el trópico-húmedo y los suelos idóneos para el cultivo de banano son aquellos que muestran una textura: franco arcilloso y limoso (Fagiani y Tapia, 2011).

A nivel mundial 150 países se dedican a la producción de banano, pero el banano ecuatoriano es nombrado a nivel mundial por la calidad y el sabor, estas características las obtiene gracias a las condiciones del suelo y del clima del país (Dirección de Inteligencia Comercial e Inversiones, 2013).

El cultivo de banano en el Ecuador es de gran importancia económica así como comercial. La producción de banano hasta el año 2013 fue de 6 millones de toneladas (datos de producción en toneladas métricas) (Visualizador de Estadísticas Agropecuarias del Ecuador, 2013). De enero a abril del 2014, la exportación de banano fue de 898 760 FOB, lo que corresponde al 10% de las exportaciones totales de frutas del Ecuador (Pro Ecuador, 2014; Pro Ecuador, s.f).

Según datos oficiales en el 2012, la superficie total cosechada en las provincias de El Oro, Guayas y Los Ríos sumó el 78,54% de la producción nacional lo que representó 6 millones de toneladas métricas anuales. La provincia que más se dedica al cultivo de banano es El Oro, la cual cosecha el 32,37%, seguida de las provincias de Los Ríos y Guayas cuyas superficies cultivadas es de 29,65% y 19,09% respectivamente (Dirección de Inteligencia Comercial e Inversiones, 2013; Instituto Nacional de Estadística y Censo, 2012).

2.2. La enfermedad mal de Panamá

La enfermedad denominada mal de Panamá o fusariosis se originó en el sudeste de Asia. Por primera vez, la enfermedad fue reportada en Australia en 1876. A principios de 1900, la enfermedad fue identificada en varias regiones de Asia como la India, Indonesia (Java), Filipinas y Malasia (Sotomayor, 2012). Se ha estimado que entre 1910
y 1950 FOC identificada como raza tropical 1 (RT1) destruyó 80 000 hectáreas de plantaciones Gros Michel (*Musa acuminata*) (AAA) en el Centro y Sudamérica. Esto conllevó a la industria bananera a la introducción de la variedad Cavendish (Caballero, 2011).

En la actualidad 9 países de América (Ecuador, Colombia, Honduras, Costa Rica, México, El Salvador, Guatemala, Perú y Brasil) se encuentran en alerta por el ingreso de una nueva raza del hongo fitopatógeno (FOC RT4) (Organización de las Naciones Unidas para la Alimentación y la Agricultura, 2014). En el Ecuador todavía no se ha reportado la presencia de la variante de esta enfermedad, pero se presume que el ingreso de FOC raza tropical 4 (RT4) tendría un importante impacto económico y social (Agrocalidad, 2013).

2.2.1. Agente causal: *Fusarium oxysporum*

Pertenece al phylum Ascomycota, orden Hypocreales y familia Nectriaceae (Leslie y Summerell, 2006; Marín, 2010). *F. oxysporum* constituye un grupo cosmopolita, saprófito del suelo, pero causa enfermedades en muchas especies de plantas en todo el mundo (Leslie y Summerell, 2006). El hongo patógeno se caracteriza por la producción de tres tipos de esporas asexuales (Agrios, 2005):

- **Macroconidias**: esporas en forma de hoz, tienen de 3-5 septos, paredes delgadas.
- **Microconidias**: esporas pequeñas en forma ovalada, tienen 1-2 septos, se las encuentra en mayor cantidad y frecuencia en los vasos de las plantas huéspedes infectadas.
- **Clamidosporas**: esporas redondas, tienen 1-2 células, pared gruesa y se forman de manera terminal o intercalada en el micelio más viejo o en las macroconidias del hongo (Agrios, 2005; Ploetz, 2000)

Fusarium oxysporum puede sobrevivir en el suelo como clamidosporas por más de 30 años, en las raíces de hospederos alternativos y en restos de vegetales (Ploetz, 2000).

Actualmente, FOC RT4 de fase sexual desconocida es el principal responsable de la enfermedad considerada a nivel mundial como la más destructiva del cultivo de banano (*Musa paradisiaca*) (Martínez, 2013; Sotomayor, 2012).

2.2.1.1. Formas especiales y Razas

Muchos *Fusarium oxysporum* aislados parecen ser específicos del hospedero, lo cual ha resultado en la subdivisión de las especies (Leslie y Summerell, 2006).
La clasificación de *F. oxysporum* está estrechamente relacionado con las formas especiales, lo que quiere decir que la forma especial es una cepa que tiene diferentes características fisiológicas pero similares características morfológicas. El hongo fitopatógeno *Fusarium oxysporum f. sp. cubense* se subdivide en razas las cuales determinan la patogenicidad de las variedades de una misma especie de planta (Gárces, 2001). Se han reportado más de 70 formas especiales para este hongo fitopatógeno (Gárces et al., 2001; Román, 2012).

Se han descrito cuatro razas fisiológicas basándose en su poder patogénico sobre los cultivares hospedantes. La raza 1 fue causante de las epidemias producidas en plantaciones de la variedad Gros Michel en Centro y Sudamérica en la década de los 60, la raza 2 afecta a bananos de cocción como Bluggoe conocido como “guineo cuadrado”, la raza 3 es patogénica de *Heliconia* sp. y en *Musa* sp. causa efectos medianos, y la raza tropical 4 ataca a la variedad Cavendish y a todos los clones susceptibles al patógeno de las razas 1 y 2. La raza tropical 4 tiene la capacidad de atacar el 80% de los cultivares de banano de exportación y diversos plátanos (Fiallos, 2009; Sotomayor, 2012).

2.2.1.2. Ciclo de vida y dispersión del hongo fitopatógeno

El hongo fitopatógeno *F. oxysporum f. sp. cubense* permanece en el suelo o sobre restos de banano infectado, en forma de clamidiosporas, estas esporas asexuales germinan gracias a los exudados (nutrientes) de las raíces de las plantas hospedantes y no hospedantes. A continuación, el hongo penetra a la planta por medio de las raicillas laterales, atraviesa el sistema vascular del rizoma y pseudotallo e invade los vasos del xilema de la planta. Una vez dentro del xilema, el tejido vascular se encuentra infectado por hifas y microconidias. Estas esporas son translocadas por medio del agua a través de haces vasculares hacia otras partes de la planta provocando la obstrucción del sistema conductor ocasionando así la reducción del paso de nutrientes y agua dentro de la planta. Finalmente la infección llega a la parte superior de la planta y a las hojas (Agrios, 2005; Sotomayor, 2012; Pérez, Dita y Martínez, 2014). Cuando la enfermedad se encuentra avanzada el hongo fitopatógeno crece afuera del sistema vascular, en el parénquima adyacente, produciendo grandes cantidades de microconidias, macroconidias y clamidiosporas. Las clamidiosporas regresan al suelo cuando la planta ha muerto, y estas permanecen en dormancia durante varios años. El ciclo nuevamente comienza cuando se produce la germinación de las clamidiosporas en nuevas plantas (Nel, 2004; Ploetz, 2000).
F. oxysporum f. sp. cubense se dispersa por medio de residuos de banano infectado, uso de herramientas agrícolas no desinfectadas que han estado en contacto con el patógeno, por riego, lluvia la cual sirve como medio de transporte de las esporas a nuevas áreas, trasplante de una planta infectada a una nueva área sana y además el hongo fitopatógeno puede infectar las raíces de plantas no hospedantes y sobrevivir allí de una forma saprófita (Figura 2.1) (Hwang y Ko, 2004).

Figura. 2.1. Dispersión de F. oxysporum f. sp. cubense raza tropical 4. Adaptado de “Cavendish banana cultivars resistant to Fusarium wilt acquired through somaclonal variation in Taiwan” por Hwang, S., Ko, W., 2004, p 581.

2.2.2. Síntomas

El Mal de Panamá es una enfermedad que produce marchitamiento vascular, debido a la disrupción del transporte del agua en la planta. Como síntomas internos se encuentra la coloración vascular (amarilla, marrón o café-oscuro). La primera coloración se observa en las vainas de las hojas externas del pseudotallo, en el cormo y en las raicillas de la planta infectada. Los síntomas externos típicos son el amarillamiento en el borde de las hojas más viejas, que luego se dirige a la nervadura provocando que la hoja quede completamente seca y de color café, esta decoloración de las hojas viejas progresa gradualmente a las hojas más jóvenes. Consecutivamente todas las hojas de la planta se marchitan y quedan colgadas, esto debido a que el pecíolo se dirige a la nervadura.
central. Finalmente, estas hojas muertas se encuentran unidas al pseudotallo en forma de una “falda” (Pérez et al., 2014; Sotomayor, 2012; Ploetz, 2000).

2.2.3. Impacto económico

A nivel mundial 150 países están dedicados al cultivo de banano, produciendo 78 millones de toneladas anuales aproximadamente (Dirección de Inteligencia Comercial e Inversiones, 2013; Instituto Nacional de Estadística y Censos, s.f). La exportación anual de esta fruta en América Latina y el Caribe es de 13 millones de toneladas hasta el 2012 (Organización de las Naciones Unidas para la Alimentación y la Agricultura, 2014). Siendo el Ecuador uno de los principales países productores y exportadores de banano a nivel mundial por la calidad y sabor de su fruta, el ingreso del hongo fitopatógeno FOC RT4, sería devastador para las industrias bananeras del país ya que destruye a todas las variedades de musáceas. Además, las pérdidas económicas serían notables, la seguridad alimentaria se vería afectada y el impacto social sería marcado, ya que la industria bananera presta servicio a gran cantidad de personas que están relacionadas directa e indirectamente con el sistema de producción y comercialización del banano (Dita, Echegoyén y Pérez, 2013; Martínez, 2013; Sotomayor, 2012).

2.2.4. Manejo de la enfermedad

Hasta la actualidad el uso de controladores químicos (fungicidas) no han combatido la enfermedad mal de Panamá, pero existen alternativas para el manejo de esta enfermedad, como el uso de controladores biológicos en el cual se usa microorganismos antagonistas, la creación de plantas de banano con resistentes genética (el problema de estas plantas con resistencia genética es que su fruto no presentan buenas características organolépticas), y por ultimo tenemos las prácticas culturales, las cuales se basan en poner en cuarentena a cultivos de banano y la eliminación de cultivos infectados por el patógeno, además de la rotación de cultivos y las buenas practicas agronómicas (Fiallos, 2009; Ploetz, 2006, Martínez, 2013).

2.2.4.1. Fungicidas

Los fungicidas son compuestos químicos que se utilizan para matar o inhibir el crecimiento del hongo causante de la enfermedad. Estos productos químicos se utilizan por tres razones (Tuttle, 2004):
Para que un fungicida sea eficiente este debe adherirse a la superficie de la planta huésped y persistir a las condiciones ambientales, a estos fungicidas se los conoce como fungicidas de contacto. Además existen fungicidas sistémicos los cuales deben movilizarse a través de la planta protegiendo la parte interna y externa de esta (Troya y Zuleta, 1999; Pérez y Forbes, 2014).

Los fungicidas usados en el suelo no son efectivos contra las clamidiosporas producidas por *Fusarium oxysporum* f. sp. *cubense*, ya que estas esporas tienen una pared gruesa, además de encontrarse en dormancia en el suelo de cultivos infectado, ocasionando que el hongo fitopatógeno tenga la capacidad de recolonizar los suelos infectados de una manera inmediata después de la fumigación (Sotomayor, 2012).

Los agentes fúngicos utilizados para reducir el crecimiento micelial de *F. oxysporum* f. sp. *cubense* son: propiconazol y procloraz, los cuales son efectivos cuando se los aplica en etapas tempranas de crecimiento de la planta. Las sales cuaternarias se utiliza para la desinfección de equipos usados en las prácticas culturales (Nel et al., 2007; Martínez, 2013). El uso constante de estos compuestos químicos, puede provocar la resistencia del fitopatógeno (Dixon y Tilston, 2010). Además los productos químicos en pequeñas o grandes cantidades son dañinos tanto para los seres vivos como para el medio ambiente, aún más cuando son colocados en dosis no adecuadas y en periodos de tiempos no correctos (INEN, 1995).

2.2.4.2. Control biológico

La Organización Internacional de Lucha Biológica (OILB) define el control biológico como “la utilización de organismos vivos, o de sus productos, para evitar o reducir las pérdidas o daños causados por los organismos nocivos” (Guédez, Castillo, Cañizales y Olivar, 2009, p. 53), con el objetivo de lograr un equilibrio poblacional. Para seleccionar a los microorganismos como biocontroladores se debe considerar ciertas características como la capacidad de colonizar rápidamente la superficie donde el microorganismo biocontrolador sea aplicado y la persistencia de una manera efectiva;
además, poseer mayor habilidad que el patógeno para adquirir los nutrientes y para sobrevivir a condiciones ambientales extremas. Por otro lado, los microorganismos biocontroladores deben tener una estabilidad genética, efectividad a bajas concentraciones y bajos requerimientos nutricionales (Wisniewski y Wilson, 1992 citado por Hernández, Bautista, Velázquez y Hernández, 2007). El efecto antagónico de los biocontroladores es un proceso lento en comparación con los agroquímicos pero la acción de los microorganismos antagonistas puede ser más estable y duradera que el control químico. Las ventajas de un controlador biológico son (Guédez et al., 2009):

- No tiene efectos nocivos sobre los seres vivos ni el ambiente.
- Es muy rara la resistencia de los microorganismos patógenos al antagonista.
- La correlación costo-beneficio es favorable.
- Tienen varios mecanismos de acción lo que reduce el riesgo de desarrollo de resistencia en el patógeno.

2.3. Antagonismo

El antagonismo microbiano también conocido como exclusión microbiana, es la competencia entre microorganismos. Esta competencia se da entre los microorganismos que protegen al huésped contra los posibles organismos patógenos. El antagonismo se produce porque compiten por la disponibilidad de nutrientes, oxígeno o espacio, producen sustancias que cambian el pH (Tortora, Funke y Case, 2007). En la actualidad, el uso de microorganismos antagonistas es de gran importancia ya que la mayoría de microorganismos fitopatógenos tienen antagonistas biológicos (Pérez, 2004). Por lo general, los antagonistas no tienen un solo mecanismo de acción, y esto reduce los riesgos de desarrollo de resistencia en el patógeno. Esta resistencia también se puede reducir mediante el uso de combinaciones de antagonistas con diferente modo de acción (Fernández y Vega, 2001). Por ejemplo, entre los microorganismos antagónicos más importantes para el control biológico de FOC tenemos los géneros de bacterias como *Bacillus, Pseudomonas, Streptomyces* y de hongos como *Trichoderma y Fusarium* no patogénicos (Fiallos, 2009).

Para la evaluación de la actividad antagónica de un biocontrolador frente a un patógeno se realiza el cálculo del porcentaje de inhibición, el cual mide el antagonismo de los microorganismos que se encuentran enfrentados. También se puede medir los halos de
inhibición formados, con el propósito de evidenciar si existe o no una zona de inhibición de actividad antagónica producido por los metabolitos extracelulares que afectarán al crecimiento del microorganismo patógeno (Astorga, Meneses, Zúñiga, Brenes, Rivera, 2013; Sosa et al. 2012).

2.3.1. Bacillus spp.

El género Bacillus, familia Bacillaceae, orden Bacillales, clase Bacilli, división Firmicutes son bacilos aerobios y anaerobios facultativos, GRAM positivos, productores de endosporas termoresistentes con morfología ovalada o cilíndrica que le permite resistir condiciones desfavorables en el ambiente, son móviles por la presencia de flagelos periféricos, con reacción catalasa positiva, crecen en un rango de pH entre 5,5 – 8,5 y además pueden ser psicrófilos o termófilos. Las especies del género Bacillus son microorganismos que se encuentran distribuidos en la naturaleza, pero normalmente se encuentran en el suelo (Layton, Maldonado, Monroy, Corrales y Sánchez, 2011; Fritze, 2004).

2.3.1.1. Importancia de Bacillus spp. en el sector Agrícola

El manejo convencional de las enfermedades fitosanitarias generalmente es mediante el uso de agroquímicos, los cuales han ocasionado daño al medio ambiente, a la salud de los seres vivos y a la disminución de la calidad de los productos de los cultivos. En la actualidad muchos investigadores se han dedicado al estudio de Bacillus como biocontrolador como alternativa ecológica para combatir enfermedades producidas por organismos patógenos (Corrales et al., 2011). Bacillus al ser una bacteria productora de antibióticos genera un efecto antagónico frente a sus patógenos sin producir efectos adversos en los seres vivos ni en el ambiente además de preservar la calidad de los cultivos. Se ha reportado que Bacillus puede inhibir el crecimiento de 17 géneros de hongos fitopatógenos que causan enfermedad en cultivos de interés comercial (Castellanos, Ortiz, Oliva, Fresneda, Fraga y Meléndez, 2008). De igual manera, la relación costo/beneficio del biocontrolador es propicia y el efecto antagónico es permanente (Guédez et al., 2009). Del mismo modo, al usar esta bacteria como biocontrolador en el sector agrícola se incrementa el rendimiento de los cultivos evitando la presencia de las sustancias tóxicas proporcionadas por los fungicidas (Albornoz y Salinas, 2011). Esta bacteria induce la estimulación del sistema de defensa de la planta, protegiéndola de futuros ataques por parte de microorganismos patógenos.
Además, algunos Bacillus en contacto con la planta produce fitohormonas, solubiliza fosfatos o fija nitrógeno (Tejera et al., 2011).

2.3.1.2. Mecanismo de acción

El mecanismo de acción de un biocontrolador se fundamenta en el conjunto de reacciones metabólicas, bioquímicas, mecánicas y físicas que inhiben la expresión del patógeno en un hábitat determinado, sea disminuyendo el crecimiento o eliminando al microorganismo patógeno (Layton et al., 2011). Las especies de Bacillus tienen la capacidad de producir una amplia variedad de antibióticos y enzimas hidrolíticas extracelulares (Nakamura et al., 1999 citado por Espinosa de los Monteros, 2005). La acción biocontroladora de Bacillus contra hongos fitopatógenos se debe a la facilidad de digerir la quitina y a la producción de metabolitos antibióticos (antibiosis). Entre los antibióticos que generan estas bacterias están la bacitracina, polimixina, tirocidina, gramicidina y circulina, entre otros (Corrales et al., 2011) capaces de actuar sobre microorganismos de diversa etiologías. El mecanismo de acción de Bacillus frente al microorganismo patógeno comienza cuando la raíz de la planta secreta nutrientes, los cuales son aprovechados por Bacillus que se encuentra en la superficie de la raíz de la planta, permitiéndole a Bacillus la producción de metabolitos secundarios, lipopéptidos cíclicos antibióticos (CLPS) entre los cuales se destacan iturina A, surfactina y fengicina, esta última actúa frente a Fusarium oxysporum impidiendo su crecimiento in vitro (Joshi y McSpadden, 2005). La interacción de la membrana de las células dianas con los lipopéptidos ocasiona la formación de pequeñas vesículas y agregaciones de partículas intramembranosas, modificando la permeabilidad y la composición de los lípidos de la membrana, de esta forma se inhibe el crecimiento del micelio y el desarrollo de los hongos, además de prevenir la germinación de esporas (Layton et al., 2011). Los lipopéptidos producidos por estas bacterias tienen una buena actividad antifúngica contra hongos fitopatógenos en plantas de interés comercial (Orberá et al., 2014).

2.3.1.3. Fitopatógenos y enfermedades que controla Bacillus spp

En la Tabla. 2.1 se muestran los microorganismos patógenos causantes de las enfermedades en los cultivos de interés comercial como son papa, tomate, cebolla, remolacha, banana, palma africana, etc. que son controladas biológicamente por
Bacillus inhibiendo su crecimiento o reduciendo el crecimiento de estos patógenos gracias al efecto antagónico de la bacteria.

Tabla. 2.1. Fitopatógenos y enfermedades que controla Bacillus spp.

<table>
<thead>
<tr>
<th>Nombre científico del fitopatógeno</th>
<th>Nombre de las enfermedades</th>
<th>Bacteria (B) / Hongo (H)</th>
<th>Cita bibliográfica</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternaria solani Sor</td>
<td>Tizón temprano</td>
<td>H</td>
<td>(Reinoso et al., 2007)</td>
</tr>
<tr>
<td>Rhizoctonia solani Kühn</td>
<td>Pudrición radical</td>
<td>H</td>
<td>(Reinoso et al., 2007)</td>
</tr>
<tr>
<td>Curvularia sp.</td>
<td>Mancha foliar</td>
<td>H</td>
<td>(Tejera et al., 2012)</td>
</tr>
<tr>
<td>Pyricularia grisea</td>
<td>Quemado, mancha</td>
<td>H</td>
<td>(Tejera et al., 2012)</td>
</tr>
<tr>
<td>Fusarium sp.</td>
<td>Dormancia de la hoja, marchitez y fusariosis</td>
<td>H</td>
<td>(Layton et al., 2011)</td>
</tr>
<tr>
<td>Pectobacterium carotovorum</td>
<td>Pudrición blanda</td>
<td>B</td>
<td>(Reinoso et al., 2006)</td>
</tr>
<tr>
<td>Pseudomonas syringae</td>
<td>Cáncer bacterial</td>
<td>B</td>
<td>(Albornoz y Salinas, 2011)</td>
</tr>
<tr>
<td>Clavibacter michiganense</td>
<td>Cancro bacteriano</td>
<td>B</td>
<td>(Albornoz y Salinas, 2011)</td>
</tr>
<tr>
<td>Xanthomonas campestris</td>
<td>Mancha bacteriana, mancha foliar, tizón de las hojas.</td>
<td>B</td>
<td>(Albornoz y Salinas, 2011)</td>
</tr>
<tr>
<td>Erwinia carotovora</td>
<td>Pudrición suave o acuosa, fuego bacteriano-necrosamiento</td>
<td>B</td>
<td>(Albornoz y Salinas, 2011)</td>
</tr>
<tr>
<td>Colletotrichum</td>
<td>Antracnosis</td>
<td>H</td>
<td>(Ashwini, y Srvidya, 2013)</td>
</tr>
<tr>
<td>Botrytis</td>
<td>Moho gris, pudrición gris</td>
<td>H</td>
<td>(Castellanos et al., 2008)</td>
</tr>
<tr>
<td>Pyrenochaeta terrestres</td>
<td>Raíz rosada</td>
<td>H</td>
<td>(Castellanos et al., 2008)</td>
</tr>
</tbody>
</table>
2.4. Identificación de *Bacillus* spp

La identificación de *Bacillus* sp. se realiza de manera fenotípica (macroscópica, microscópica), bioquímica y molecular. Los métodos fenotípicos se basan en las características morfológicas del microorganismo. Por otro lado, la identificación bioquímica permite determinar las características metabólicas del microorganismo. Mientras que, la identificación molecular se basa en el análisis del gen 16S ADNr ribosomal, uno de los genes más utilizado en estudios de diversidad bacteriana.

2.4.1. Identificación morfológica

2.4.1.1 Identificación macroscópica

La identificación macroscópica se basa en observar el crecimiento de una colonia pura en un medio de cultivo sólido y en el aspecto de la colonia para la identificación de ésta. Las características macroscópicas (Figura 2.2) de cada bacteria da un indicio del grupo bacteriano al que podrían pertenecer, así cada colonia presenta colores típicos, sus bordes pueden ser ondulados o lobulados, la elevación puede ser plana o convexa, etc (Forbes, Sahm y Wessfeld, 2009).

![Figura 2.2. Características morfológicas de las colonias en medio de cultivo sólido. Adaptado de “Ilustraciones de diversas formas morfológicas de las colonias con el nombre de los términos de cada una” por Winn, Allen, Janda, Koneman, Procop, Schreckenberger, Woods, 2008, p 34.](image)

Las colonias del género *Bacillus* tienen forma irregular, elevación planoconvexa y el borde ondulado. El color de las colonias son blanquecino en Agar nutritivo y el tamaño puede variar entre grandes y medianas (Scioscia, 2014).

2.4.1.2 Identificación microscópica

La identificación microscópica de la morfología celular bacteriana es importante porque es el primer paso para identificar a estos microorganismos. Con la ayuda del
microscopio y el uso de la tinción Gram se puede observar las características morfológicas de los microorganismos que no se puede percibir a simple vista. La tinción Gram es la tinción diferencial más utilizada para distinguir dos grandes grupos de bacterias según la estructura de sus paredes (Gram positivas y Gram negativas), la cual se basa en colocar primero un colorante primario, luego una solución mordiente, seguido de la decoloración el frotis y finalmente un colorante de contraste. Después de la tinción se distingue a las bacterias Gram positivas las cuales se tiñen de color morado o bacterias Gram negativas las cuales se colorean de un color rosado/rojo (Harvey y Champe, 2008; Willey, Sherwood y Woolverton, 2009). *Bacillus* es un bacilo Gram positivo formador de endosporas las cuales no se tiñen porque son impermeables a varios colorantes (Willey et al., 2009).

2.4.2. Reacción enzimática: Prueba de catalasa

Las pruebas para determinar la presencia de una enzima específica son importantes para la identificación rápida de un microorganismo, aunque no proporcionen la información necesaria para determinar la especie de una bacteria, ayudan a diferenciar entre los diferentes géneros bacterianos Gram positivos. La prueba de catalasa es un ejemplo ya que la enzima catalasa se encuentra presente en todas las bacterias que tienen citocromos, y descompone peróxido de hidrógeno en oxígeno y agua. Si un microorganismo es catalasa positiva se observará una efervescencia al contacto con peróxido de hidrógeno y si es catalasa negativa no hay reacción. El género *Bacillus* es catalasa positiva (Harvey y Champe, 2008; Bou, Fernández, García de la Fuente, Saéz y Valdezate, 2010).

2.4.3. Identificación molecular

La identificación molecular microbiana se realiza mediante el uso de cualquier técnica molecular que permita determinar los patrones de diversidad genética de los microorganismos de interés (Alejos, Aragón y Cornejo, 2014).

2.4.3.1. Extracción de ADN

El ácido desoxirribonucleico (ADN) es una molécula que está formada por dos cadenas de nucleótidos unidos entre sí formando una doble hélice. Los nucleótidos están constituidos por un azúcar, un grupo fosfato y una base nitrogenada. La aplicación de cualquier técnica molecular comienza con la extracción de ADN. La extracción de los
ácidos nucleicos se basa en el aislamiento y purificación de las moléculas. La obtención exitosa de este producto es de gran importancia porque conferirá datos confiables de pureza y calidad. Para tener estos dos elementos importantes se debe realizar técnicas de extracción adecuadas con el propósito de eliminar contaminantes que dificulten el procesamiento posterior de la molécula. La extracción de ADN tradicional y moderna se basa en: la lisis celular, la separación de proteínas y la resuspensión del ADN (Alejos et al., 2014). Después de la extracción de ADN se debe evaluar la calidad, lo cual puede realizarse mediante un espectrofotómetro, fluorescencia inducida por luz ultravioleta y densitometría en gel, siendo el espectrofotómetro el más utilizado. El espectrofotómetro es un equipo que ayuda a cuantificar compuestos gracias a la transmisión de la luz (espectro de absorbancia), calidad y pureza. La muestra de ADN pura debe tener un rango de absorbancia A260/A280 de 1.8 – 2.0, y la concentración debe ser de 5 ng/µl (Clark y Christopher, 2001; Somma, 2007; Alejos et al., 2014).

2.4.3.2. Reacción en cadena de la polimerasa

La reacción en cadena de la polimerasa (PCR, por sus siglas en inglés) fue creada por el Doctor Kary Mullis en 1983 y en 1993 recibió un premio Nobel de Química por esta invención (Pérez de Castro, 2011). La PCR es una técnica que permite obtener in vitro la amplificación (millones de copias de ADN) de una región conocida de ADN, proceso en el que están involucradas varias proteínas. El proceso de la PCR se lleva a cabo en tres etapas (Pérez de Castro, 2011; Somma y Querci, 2007; Serrato, Flores, Aportela, y Sierra, 2014):

- **Desnaturalización**: romper los puentes de hidrógeno que une a la cadena de ADN bicatenario (doble hélice) en una cadena de ADN monocatenaria (ADN molde), para lo cual se necesita elevar la temperatura a 94ºC – 96ºC.
- **Hibridación o alineamiento**: el ADN molde se hibrida por complementariedad a los iniciadores (cebadores) uniéndose a la zona libre 3´ del ADN molde, este proceso se da gracias a que la temperatura baja a 50ºC – 65ºC.
- **Elongación o extensión**: síntesis de una cadena sencilla en sentido 5´- 3´, la temperatura necesaria para que se dé la elongación es de 72ºC, temperatura necesaria para que actué la ADN polimerasa uniendo los desoxirribonucleótidos fosfato (dNTPs) a la cadena molde a partir de los iniciadores por la región 3´.
Estas tres fases se repiten sucesivamente (ciclos) con el propósito de amplificar la zona de interés del ADN molde, los productos de la amplificación servirán para dar origen a nuevas copias de fragmentos de ADN. De una sola molécula de ADN se pueden obtener dos billones de copias de ácido desoxirribonucleico, en 30 ciclos. Esta reacción de la PCR se lleva a cabo en equipos conocidos como termocicladores en los cuales se programan los ciclos, las temperaturas de la amplificación y el tiempo de cada ciclo (Serrato et al., 2014) (Figura. 2.3). Los componentes necesarios para llevar a cabo la PCR son: solución tampón, MgCl₂, iniciadores, dNTPs, Taq polimerasa y ADN molde. Para que esta reacción sea más específica se debe tomar en cuenta: la temperatura de alineamiento debe ser la adecuada o mayor para que los iniciadores se unan a la cadena molde complementaria, también debe ser exacta la concentración del cloruro de magnesio para evitar la disminución de la especificidad de la reacción ya que los iones permiten la unión de los cebadores a la cadena monocatenaria y la incorporación de los dNTPs a la nueva cadena sintetizada (Pérez de Castro, 2011).

Figura. 2.3. Etapas de la PCR.

2.4.3.3. Gen 16S ADNr

El gen ribosomal 16S (unidades Svedberg) también denominado ADN ribosomal 16S (Figura. 2.4) se encuentra en la subunidad pequeña 30S del ribosoma de los procariotas, esta subunidad poliribonucleoproteica contiene 21 proteínas y 16SADNr, su tamaño aproximadamente es de 1500 pares de bases, número de bases necesarias para codificar la subunidad 30S del ribosoma, en las bacterias esta macromolécula se pliega formando
una estructura secundaria. El 16S ADNr es una herramienta fundamental en las investigaciones moleculares de organismos procariotas porque permite establecer relaciones evolutivas y taxonomía entre bacterias ya que este gen tiene regiones altamente conservadoras y pocas regiones variables, además de ser un gen esencial en el ribosoma de las bacterias (Böddinghaus, Rogall, Flohr, Böcker, Böttger, 1990; Rodicio, y Mendoza, 2004). A esta macromolécula se la conoce como cronómetro molecular definitivo, denominación dada por Carl Woese quien estableció que: a) es una macromolécula que se encuentra presente en todas las bacterias, por lo tanto es una molécula antigua, la cual sirve como molécula diana para la identificación de bacterias, b) la estructura y la función del gen 16S ADNr no han cambiado en el transcurso del tiempo, c) permite diferenciar organismos lejanos de organismos cercanos esto gracias a que existe pequeñas variables en las regiones de la macromolécula, d) la estructura secundaria permite el alineamiento preciso, esto debido a que es una estructura conservada, e) puede ser secuenciado directamente por la enzima transcriptasa reversa (ADN polimerasa) (Woese, 1987). Las ventajas al usar este gen ribosomal son: identificar microorganismos que no pueden ser identificados fenotípicamente, identificar bacterias que no pueden ser cultivadas, bacterias que no se las puede diferenciar después de haber realizados pruebas bioquímicas, bacterias de crecimiento lento y que tienen requerimientos nutricionales exigentes (Rodicio y Mendoza, 2004).

Figura. 2.4. Esquema del gen 16S ADNr (aproximadamente 1500 pares de bases). Los círculos representan las regiones conservadas del gen. Adaptado de “Detection and Identification of microorganisms by gene amplification and sequencing” por Petti, C, 2007, p 1110.

2.4.3.4. Secuenciamiento

El secuenciamiento del ADN es una técnica que se fundamenta en determinar la secuencia y el orden de los nucleótidos presentes en el ADN. En 1977 se publicaron dos métodos de secuenciación: secuenciación de los ácidos nucleicos propuesta por Sanger, Nicklen y Coulson, técnica que utiliza dideoxynucleótidos (ddNTPs), también conocida como método “plus and minus”, la segunda técnica de secuenciamiento fue propuesta por Maxam y Gilbert y la denominaron secuenciación química. En la
actualidad la técnica de Sanger y colaboradores es la más utilizada debido a que es una técnica sencilla y precisa (Franca, Carrilho, y Kist, 2002; Greif, 2006; Dorado, 2009). En 1986 Hood y sus colaboradores junto a la compañía Applied Biosystems realizaron avances a la técnica de Sanger y reportaron la automatización secuenciamento del ADN, la cual se basa en una diferente molécula fluorescente para cada ddNTPs, además la lectura de la secuenciación se realizan mediante en un computador. Las ventajas de la secuenciación son: utilizar cualquier cebador, si existen errores por parte de la polimerasa no se detecta debido a que no está marcada fluorescentemente, y los diferentes nucleótidos están marcados con un fluorocromo diferente (Oliva y Vidal, 2006).

2.4.3.5. Programas informáticos

Los productos de la secuenciación (electroferograma) son analizados y editados manualmente mediante programas bioinformáticos los cuales sirven para conocer el funcionamiento y la estructura de los organismos vivos. Igualmente estos programas informáticos nos ayudan al análisis, búsqueda y almacenamiento (base de datos) de ácidos nucleicos, ARN, proteínas, etc, para luego poder acceder y recuperar la información que se desea (Malik, Grohmann, y Alves, 2013). Como por ejemplo el programa informático MEGA 6 (Análisis Molecular Genético Evolutivo, por sus siglas en inglés) (Tamura, Stecher, Peterson y Kumar, 2013), permite editar y analizar manualmente las secuencias para obtener una secuencia consenso con el propósito de compararla con bases de datos públicas. Para la identificación de las especies se usa BLAST (Herramienta Básica Local para la Búsqueda de Alineamiento, por sus siglas en inglés) que compara la secuencias de estudio con la secuencia que se encuentra en las bases de datos GenBank-NCBI (Centro Nacional para Información Biotecnológica), esta base de datos contiene 2 millones de secuencias del gen ribosomal 16S. Además de la búsqueda de secuencias, BLAST ayuda a encontrar una puntuación alta para estimar la significancia estadística de similitud de secuencias (Bou et al., 2010; Malik et al., 2013). Existen varios criterios que se pueden tomar en cuenta para el porcentaje de similitud del 16S rARN, uno de estos dependerá del género o especie del microorganismo, pero para aceptar que un microorganismo pertenece a una cierta especie la similitud es de ≥ 98 % y para género es un porcentaje de 95% - 100% (Bou et al., 2010).
3. MARCO METODOLÓGICO

El presente estudio descriptivo y transversal se realizó como parte del proyecto “Colección e inventario de hongos que causan enfermedades en cultivos de importancia comercial (fitopatógenos) de la Región Costa del Ecuador”, código K13190, financiado por la Pontificia Universidad Católica del Ecuador (PUCE).

3.1. MATERIALES Y EQUIPOS

3.1.1. MATERIALES DE LA FASE DE CAMPO

- Fundas plásticas tipo Ziploc®
- Marcadores
- Cooler
- Pilas refrigerantes
- Balde
- Pala
- Flexómetro
- GPS (Sistema de Posicionamiento Global)

3.1.2. MATERIALES DE LA FASE DE LABORATORIO

- Puntas desechables 100 µL-1 000 µL
- Puntas desechables 10 µL -100 µL
- Puntas desechables 0,1 µL -10 µL
- Asa bacteriológica 2 mm
- Asa de Drigalsky
- Tubos de vidrio de 15 mL.
- Cajas Petri de plástico 90 x 15 mm
- Parafilm®
- Portaobjetos
- Microtubos de 1,5 mL
- *Wizard® Genomic DNA Purification Kit* (Promega)
- Lisozima Sigma L6876
- Fundas plásticas tipo Ziploc®
- Botellas de vidrio 400 mL
- Caldo BHI (Infusión cerebro corazón, por sus siglas en inglés)
- Agua peptonada 0,1%
- Agar nutritivo
- Agar papa dextrosa (APD)
- Peróxido de hidrógeno 3%
- Hipoclorito de sodio 1%
- Etanol 70%
- Kit para la tinción Gram
- Aceite de inmersión
- Regla

3.1.3. EQUIPOS
- Vortex Liv Scientific
- Incubadora MEMMERT
- Cocineta HACEB
- Balanza analítica ADAM
- Agitador automático Gemmy VRN-200
- Microscopio compuesto Leitz
- Mecheros Propan gas
- Pipeta automática DROPEK 0,1 μL -10 μL
- Pipeta automática DROPEK 10 μL -100 μL
- Pipeta automática DROPEK 100 μL -1 000 μL
- Espectofotómetro Nanodrop 2 000 Thermo Scientific

3.2. MÉTODOS
3.2.1. ÁREA DE ESTUDIO
Para la toma de muestra, primero se realizó un muestreo aleatorio estratificado mediante el cual se recolectaron las muestras de suelo de diferentes cultivos sanos de banano de cuatro localidades, INIAP-Los Ríos-Quevedo (17N 0667719 UTM 9881211), Quiroga-Manabí (17N 0600740 UTM 9901910), Asociación Macul-El Empalme-Guayas (17N 0650228 UTM 9878088), vía Quevedo-Santo Domingo de los Tsáchilas-Santo Domingo de los Tsáchilas (17N 0696 300 UTM 9962948), de la región Costa del Ecuador (Figura. 3.1 y Anexo 1).
3.2.2. RECOLECCIÓN DE LAS MUESTRAS DE SUELO

En cada localidad se tomaron muestras compuestas de suelo (10 submuestras) para aislar las especies del género *Bacillus* siguiendo el procedimiento descrito por Coello, Saavedra, Santos, Solaz y Suárez (2014) y por el Instituto Nacional Autónomo de Investigaciones Agropecuarias (2006). El procedimiento fue el siguiente: se recolectó 100g de suelo de los 15-20 cm superiores y se los depositó en un balde limpio para homogenizar. La muestra homogenizada se colocó en una funda Ziploc® y se identificó con el nombre del lugar, fecha de colección y su respectiva georeferenciación.

Las muestras de suelo fueron trasladadas en un *cooler* con pilas refrigerantes vía terrestre al Laboratorio 101 del edificio de Microbiología de la Escuela de Bioanálisis de la PUCE en Quito para su análisis inmediato.

Figura. 3.1. Mapa de recolección de muestras de suelo de cultivos de banano.
Figura. 3.2. Recolección de las muestras de suelo.

3.2.3. OBTENCIÓN DE *Fusarium oxysporum* f. sp. *cubense* raza tropical 1

El hongo fitopatógeno, *Fusarium oxysporum* f. sp. *cubense* raza tropical 1 EC20-MGM, fue proporcionado por el candidato a PhD Freddy Magdama de la Universidad Estatal de Pennsylvania. El hongo fue aislado de una planta con síntomas de marchitez de la variedad Gros Michel de la comunidad La Crespa-Manabí. El aislamiento lo realizó el mismo Ing. Magdama en el Centro de Investigaciones Biológicas del Ecuador (CIBE) adscrito al Rectorado de la Escuela Superior Politécnica del Litoral (ESPOL), en la provincia del Guayas. El hongo fitopatógeno fue trasladado en un microtubo que contenía medio agar papá dextrosa (APD) a temperatura ambiente al Laboratorio de Micología de la Escuela de Bioanálisis en la PUCE-Quito, para su posterior resiembra e identificación macroscópica y microscópica.

3.2.4. PROCESAMIENTO DE LAS MUESTRAS

3.2.4.1. AISLAMIENTO DE *Bacillus* spp.

Para el aislamiento de las especies de *Bacillus* spp. se siguió el protocolo reportado por Ruiz, Ibáñez, Padilla, Carnero y Caballero (2004) y Reinoso, Casadesús, Suárez, Gutiérrez y Álvarez (2006) el mismo que se detalla a continuación. Primero, se realizó una dilución 10^{-1}, para lo cual se pesó 10 g de suelo recolectado en papel periódico estéril y se colocó en frascos de vidrio que contenían 90 mL de agua peptonada 0,1%
estéril. A partir de la dilución 10^{-1} se realizó las siguientes diluciones hasta obtener una dilución 10^{-4}, para lo cual se tomó 1 mL de la dilución 10^{-1} y se colocó en 9 mL de agua peptonada 0,1% para obtener dilución 10^{-2}; el mismo procedimiento se realizó hasta llegar a la dilución 10^{-4}, mezclando fuertemente cada dilución. Todas las diluciones fueron sometidas a baño maría a ebullición durante 20 minutos o más, después de este tiempo se sacó los frascos y los tubos de vidrio para que se enfrién. Una vez que las muestras estuvieron frías se sembró en superficie 0,1 mL de las diluciones 10^{-1}, 10^{-2}, 10^{-3} y 10^{-4} en agar nutritivo (AN), las muestras fueron esparcidas en toda la superficie del medio con un asa de Drigalsky e incubadas a 28°C por 24 horas.

3.2.4.2. IDENTIFICACIÓN MORFOLÓGICA DE Bacillus spp.

3.2.4.2.1. Identificación macroscópica y microscópica

Después de 24 horas de incubación se identificaron colonias medianas y grandes, con bordes irregulares, elevación planoconvexa y color blanquecino características de las especies del género Bacillus.

Para la identificación microscópica de Bacillus spp. se realizó una tinción Gram a las 48 horas, para lo cual se tomó una porción pequeña de la colonia de interés y se la colocó en un portaobjetos. Después, se realizó la fijación con fuego para inmediatamente colocar los reactivos para la coloración. Primero se colocó sobre la muestra cristal violeta por 1 minuto y se lavó la placa, a continuación se añadió yodo Gram por 1 minuto y se lavó nuevamente el portaobjetos, luego se puso alcohol acetona por 30 segundos o hasta que el color violeta desaparezca, se lavó la muestra; y se añade safranina por 1 minuto y finalmente se lavó el portaobjetos, los lavados se realizaron con agua. La muestra teñida fue observada al microscopio con el objetivo de 100X para buscar bacilos Gram positivos, esporulados, características de las especies del género Bacillus.

3.2.4.2.2. Prueba de catalasa

Se tomó una porción pequeña de la colonia de interés y fue colocada en un portaobjetos. Luego se añadió peróxido de hidrógeno 3% sobre la muestra. La formación de burbujas a los pocos segundos califican las muestras como positivas (Reinoso et al., 2006).
3.2.4.3. IDENTIFICACIÓN MORFOLÓGICA DE *Fusarium oxysporum* f. sp. *cubense* RAZA TROPICAL 1

Para la identificación macroscópica de FOC RT1 se consideró la producción de micelio blanco a violeta pardo y textura algodonosa y para la identificación microscópica de macroconidias, microconidias y clamidosporas se siguieron dos métodos. El método de Ridell (1950) más conocido como microcultivo. En un vidrio portaobjeto estéril se colocó un pequeño bloque de agar de aproximadamente 6 x 6 x 2 mm al mismo se depositó un inóculo con el hongo fitopatógeno todo esto fue cubierto con un vidrio cubreobjeto. La muestra fue colocada en una cámara húmeda que consistió en una caja Petri estéril con agua destilada estéril y fue incubada a 28ºC por cuatro días. Cuando el hongo creció se utilizaron el cubre y portaobjetos del microcultivo completando el montaje con un cubre y portaobjetos nuevos y una gota de azul de lactofenol. El método de cinta adhesiva consistió en tocar cuidadosamente con cinta el micelio del hongo *Fusarium oxysporum* f.sp. *cubense* raza tropical 1 de una caja Petri con cultivo de 4 días y se la colocó en un vidrio portaobjeto que contenía una gota de azul de lactofenol. En los métodos las observaciones fueron realizadas en el microscopio con el objetivo de 40X y 100X.

Figura. 3.3. Identificación morfológica de FOC RT1.
3.2.5. PRUEBAS DE ANTAGONISMO PARA SELECCIONAR A LAS ESPECIES ANTAGONISTAS (Pre Screening)

3.2.5.1. Concentración de Bacillus spp.

Para la prueba de antagonismo se obtuvo un cultivo líquido con una concentración de 10^8-10^9 UFC/mL de Bacillus spp. de acuerdo a lo reportado por Swain y Ray (2006), y Karimi, Amini, Harighi y Bahramnejad (2012). La metodología fue la siguiente: en un tubo de vidrio se colocó 3 mL de caldo BHI (Infusión cerebro corazón, por sus siglas en inglés) y un inóculo de colonia de Bacillus spp. de 24 horas de incubación. Pasadas las 24 horas se tomó 3 mL del cultivo de Bacillus spp. y se colocó en 27 mL de caldo BHI y se le dejó incubar por 2 días en agitación constante a temperatura ambiente (20°C). Del cultivo se tomó 1 mL y se realizaron diluciones seriadas en base 10 hasta la dilución 10^8. De las diluciones 10^6, 10^7 y 10^8 se tomó 1 000 uL y se colocó en cajas Petri vacías; se añadió agar nutritivo a 45°C y se homogenizaron con movimientos en 5 sentidos diferentes (derecha, izquierda, arriba, abajo y en forma de L). El medio solidificado se incubó a 28 +/- 2°C por 24 horas. Posteriormente se realizó el recuento de las colonias para verificar que el número de colonias presentes sea de 10^8-10^9 UFC/mL.

3.2.5.2. Screening de la prueba de antagonismo: técnica de cultivo dual

Para la selección de la mejor especie de Bacillus se realizaron bioensayos in vitro siguiendo la metodología modificada de cultivo dual descrita por Montealegre et al. (2003) y Ramírez et al. (2006). El procedimiento fue el siguiente: al hongo fitopatógeno, FOC RT1 se cultivó en agar papa dextrosa (APD) por 12 días. De la colonia fúngica crecida se extrajeron discos de micelio de 6 mm de diámetro y se los colocó en el centro de una caja Petri con APD. A continuación, se realizó estrías de Bacillus sp. provenientes de colonias puras a 2,5 cm de distancia de los discos que contenían el hongo. Las muestras fueron incubadas a 28°C por 5 días (Anexo 6).

3.2.6. IDENTIFICACIÓN MOLECULAR DE LAS CEPAS O ESPECIES ANTAGONISTAS DE Bacillus.

Después de la selección de las mejores bacterias antagónicas se procedió a la extracción de ADN. Para la obtención de ADN genómico se utilizaron las colonias de Bacillus de 24 horas de crecimiento para lo cual se utilizó el kit de extracción “Wizard® Genomic
La extracción de ADN se realizó de acuerdo a las recomendaciones del fabricante y las especificaciones del protocolo que se detalla en el Anexo 2. La extracción de ADN fue realizada en el Laboratorio de Bioquímica de la Escuela de Biología de la Facultad de Ciencias Exactas y Naturales. Finalmente, el ADN obtenido fue cuantificado utilizando el espectofotómetro (Anexo 3).

Para la identificación de la especie o especies de Bacillus, el ADN extraído se envió a Operón S.A. (Alabama - Estados Unidos) para su amplificación, purificación y posterior secuenciamiento del gen ribosomal 16S. Los primers utilizados fueron 27F (5-AGAGTTTGATCCTGGCTCAG-3) y 1492R (5-GGTTACCTTGTACGACTT-3) (DeLong, 1992). Las condiciones para la PCR fueron las siguientes: denaturación 95°C por 1,5 minutos, alineamiento 55°C por 1,5 minutos y la extensión 72°C por 1,5 minutos un total de 30 ciclos (DeLong, 1992). Las secuencias tanto forward como reverse fueron editadas y alineadas manualmente para obtener una secuencia consenso con el programa MEGA 6 (Tamura, Stecher, Peterson y Kumar, 2014). La identificación de las especies se realizó utilizando la herramienta BLAST que comparó la identidad de las cuatro secuencias consenso obtenidas en el presente estudio con secuencias disponibles en la base de datos del Banco de Genes (GenBank-NCBI).

3.2.7. ANTAGONISMO in vitro DE Bacillus sp. FRENTE A Fusarium oxysporum f. sp. cubense RAZA TROPICAL 1

A los 5 días de cada localidad se escogió el Bacillus que presentó mayor zona de inhibición y se procedió a realizar la prueba de antagonismo in vitro frente a FOC RT1 para lo cual se siguió la metodología anteriormente mencionada por Ramírez et al. (2006) y Montealegre et al. (2003). Para cada Bacillus sp. seleccionado se realizarán diez réplicas de la técnica de cultivo dual.

3.2.8. ANÁLISIS DE LOS DATOS

3.2.8.1. Cálculo del porcentaje de inhibición

Para el análisis del antagonismo se calculó el porcentaje de inhibición mediante la ecuación descrita por Tejera et al. (2012). La selección del mejor antagonista fue en base al porcentaje de inhibición. La ecuación para calcular el porcentaje de inhibición es la siguiente:
% de inhibición= ((D.C.C – D.C.P)/D.C.C)*100%
Donde:
D.C.C: diámetro de la colonia control.
D.C.P: diámetro de la colonia del hongo en interacción con las bacterias

3.2.8.2. Análisis de la actividad antifúngica: tamaño de los halos de inhibición
Para la actividad antifúngica de la bacteria frente al hongo fitopatógeno mencionados se basó en el protocolo descrito por Sosa et al. (2012). Para lo cual se midieron los halos inhibición entre el borde de la colonia del hongo fitopatógeno y el borde de la línea de la bacteria antagonista. Los datos fueron tomados al quinto día de incubación, cuando las bacterias ya no presentaban crecimiento activo frente a FOC RT1.

3.2.8.3. Análisis estadísticos
Los análisis estadísticos fueron realizados con los datos de antagonismo obtenidos el quinto día. Se realizó la prueba de homogeneidad de varianzas de Levene, la prueba de normalidad con el test estadístico Kolmogorov Smirnov para evaluar si los datos presentaban una distribución normal, además se realizó el Análisis de Varianza (ANOVA), el cual permite comparar varios grupos en la variable cuantitativa con el fin de observar si las medias poblacionales son iguales (0) o si son distintas (1). Para la comparación de las medias se realizó la prueba de Tukey y su significancia fue evaluada con un valor $P < 0,05$. Para todos los análisis estadísticos se utilizó el programa SPSS 20 (IBM, 2011).
4. RESULTADOS Y DISCUSIÓN

4.1. Aislamiento de bacterias bacilares Gram positivas esporuladas.

Se procesaron cuatro muestras de suelo pertenecientes a cuatro localidades de la región Costa del Ecuador. Las cajas Petri correspondientes a las diluciones 10^{-3} y 10^{-4} de cada localidad fueron escogidas, de las cuales se obtuvieron 26 aislados no bacilares y 44 aislados bacilares. Finalmente, se obtuvieron 18 cepas bacterianas con forma bacilar, Gram positivas y esporuladas (Tabla 4.1).

El género *Bacillus* es cosmopolita y comúnmente los podemos encontrar en el suelo debido a que este es uno de sus hábitats. En el presente estudio se utilizó muestras de suelo para aislar especies del género *Bacillus* similar a los estudios realizados por Reinoso et al., (2006); López, Álvarez, Torres, y Casadesús (2011); Tejera et al., (2012) y Rodríguez y Hernández (2009). Según el estudio realizado por Reinoso et al. (2006), para la identificación microscópica de las bacterias aisladas del suelo utilizaron la técnica tinción Gram obteniendo como resultado bacterias con forma bacilar Gram positivas y la presencia de endoesporas. En la presente investigación se aplicó también el método de la tinción Gram para la identificación microscópica de los aislados obtenidos.

Tabla 4.1. Bacterias bacilares Gram positivas esporuladas aisladas de suelos de cuatro localidades del litoral ecuatoriano.

<table>
<thead>
<tr>
<th>Localidad (Provincia)</th>
<th>Número de muestras de suelo</th>
<th>Número de bacterias no bacilares</th>
<th>Número de bacterias bacilares</th>
<th>Bacilos Gram positivos esporulados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vía Quevedo - Santo Domingo (SD)</td>
<td>1</td>
<td>7</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>Quiroga - Manabí (MA)</td>
<td>1</td>
<td>5</td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>Quevedo – Los Ríos – INIAP</td>
<td>1</td>
<td>5</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>El Empalme - Guayas - Asociación Macul (ASM)</td>
<td>1</td>
<td>9</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>Total</td>
<td>4</td>
<td>26</td>
<td>44</td>
<td>18</td>
</tr>
</tbody>
</table>
4.2. Identificación morfológica y prueba de catalasa de los aislados bacterianos.

Las colonias de bacterias aisladas en agar nutritivo, tenían características morfológicas macroscópicas semejantes a las del género *Bacillus* tales como de tamaño mediano-grande, borde irregular, elevación planoconvexa y color blanquecino (Figura 4.1). En el estudio de Scioscia (2014), para la caracterización fenotípica de *Bacillus* en agar nutritivo tomó en cuenta el tamaño, forma, elevación margen y color, obteniendo como resultado colonias medianas a grandes, de borde irregular, elevación planoconvexa y color blanco/crema, corroborando estas características para el género *Bacillus* como las de la presente investigación.

![Figura 4.1. Características macroscópicas de *Bacillus* de cuatro localidades de la región costa del Ecuador, A) SD, B) MA, C) INIAP y D) ASM.](image)

De acuerdo a los resultados obtenidos en la prueba de catalasa todas las bacterias aisladas con características morfológicas macroscópicas del género *Bacillus* dieron
resultados positivos a la reacción enzimática produciéndose la generación de oxígeno y agua (Figura. 4.2). Después de realizar la coloración Gram, se observó que a nivel microscópico, las bacterias identificadas como bacilos, esporulados y Gram positivos fueron en total 18 (Figura. 4.3). En el estudio realizado por Reinoso et al. (2007) seleccionaron cepas de *Bacillus* mediante la prueba de catalasa y tinción Gram, obteniendo resultados positivos en la reacción enzimática y en la tinción Gram observaron bacterias bacilares Gram positivas con presencia de endoesporas.

Figura. 4.2. Reacción positiva de la prueba de catalasa. A) *Bacillus* SD, B) *Bacillus* MA, C) *Bacillus* INIAP, D) *Bacillus* ASM

Figura. 4.3. Identificación microscópica de *Bacillus* spp.: bacilos Gram positivos, esporulados. A) *Bacillus* SD, B) *Bacillus* MA, C) *Bacillus* INIAP, D) *Bacillus* ASM
4.3. Descripción morfológica de *Fusarium oxysporum* f. sp. *cubense* raza tropical 1

Macroscópicamente el micelio del hongo fitopatógeno FOC RT1 es algodonoso, de color blanco a un violeta pardo, su crecimiento es de 4-7 mm/día a 24°C en medio APD. Para comprobar la presencia de esporas y la ausencia de contaminación del hongo fitopatógeno se recurrió a la microscopía en la que se observaron macroconidias, microconidias y clamidiosporas. Similares características macroscópica y microscópicas se encontraron en los estudios de Ploetz (2005) y Summerell (2006) (Figura. 4.4).

Figura. 4.4. A) *Fusarium oxysporum* f. sp. *cubense* raza tropical 1, B) microconidias, C) macroconidias y D) clamidiosporas

Según Gárces et al. (2001) para la identificación de las formas especiales y razas patogénicas se recomienda realizarla mediante técnicas moleculares tales como DNA *fingerprint*, RFLPs (Polimorfismo de longitud de fragmentos de restricción, por sus siglas en inglés), RAPDs (Amplificación aleatoria de ADN polimórfico, por sus siglas en inglés). Por lo tanto la descripción macroscópica y microscópica del hongo fitopatógeno no es suficiente para la identificación de las formas especiales y razas patogénicas.

4.4. Selección e identificación molecular de las cepas biocontroladores de *Bacillus*

De los ensayos preliminares realizados en los 18 bacilos Gram positivos esporulados frente al hongo fitopatógeno FOC RT1, se seleccionaron los cuatro mejores aislados del género *Bacillus* (Figura. 4.5). Estas bacterias fueron identificadas molecularmente mediante el secuenciamiento del gen 16S del ADN ribosomal (ADNr) (Tabla. 4.1), obteniendo como resultado bacterias del género y especie *Bacillus subtilis* en tres localidades (Vía Quevedo - Santo Domingo, INIAP, Asociación Macúl), y la bacteria
perteneciente a la localidad de Quiroga – Manabí no se logró identificar molecularmente porque la secuencia consenso no fue óptima, pero fenotípicamente pertenece al género *Bacillus* sp.

Figura 4.5. A) *Bacillus subtilis* SD, B) *Bacillus subtilis* INIAP, C) *Bacillus subtilis* ASM, D) *Bacillus* sp. Manabí y E) No antagonismo.

Tabla 4.2. Identificación molecular de las especies del género *Bacillus*.

<table>
<thead>
<tr>
<th>Nombre bacteria</th>
<th>Localidad</th>
<th>% de similitud</th>
<th>Código</th>
<th>Número de acceso GenBank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacillus subtilis</td>
<td>SD</td>
<td>98</td>
<td>gi</td>
<td>305410941</td>
</tr>
<tr>
<td>Bacillus sp.</td>
<td>Manabí</td>
<td>Secuencia ilegible</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bacillus subtilis</td>
<td>INIAP</td>
<td>98</td>
<td>gi</td>
<td>659902935</td>
</tr>
<tr>
<td>Bacillus subtilis</td>
<td>ASM</td>
<td>98</td>
<td>gi</td>
<td>721327737</td>
</tr>
</tbody>
</table>

Los resultados obtenidos concuerdan con aquellos de Souza et al. (2014) y Karimi et al. (2012), los cuales indican que primero realizaron una selección preliminar de los mejores antagonistas, para luego estos ser identificados molecularmente mediante el gen 16S del ADN ribosomal (ADNr) obteniendo como resultado bacterias del género y especie *Bacillus subtilis*.
4.5. Prueba del Antagonismo

4.5.1. Análisis del porcentaje de inhibición

La mejor especie de *Bacillus* antagonístico aislado fue la perteneciente a la localidad de Santo Domingo identificado como *Bacillus subtilis* SD. Esta cepa se caracterizó por presentar actividad antagonística desde las 48 horas de enfrentamiento con el hongo fitopatógeno *Fusarium oxysporum* f.sp. *cubense* raza tropical 1 en adelante. Como resultado esta cepa mostró un porcentaje de inhibición de 56,18\% el mismo que fue superior a las cepas de *Bacillus* aislados de otras localidades. Por otro lado, *Bacillus* sp. aislado de los suelos cultivados de banano de Quiroga – Manabí no evidenció actividad antagonística en las primeras 72 horas pero su actividad antagonística mejoró hasta a las 144 horas donde llegó a un porcentaje de 54,12 \% (Figura. 4.6 y Anexos 4 y 5).

En el estudio de Fiallos (2009), se aislaron dieciséis bacterias endófitas en cultivos de banano Gros Michel (AAA), de las cuales dos presentaron porcentajes de inhibición de 65\% frente al hongo fitopatógeno *Fusarium oxysporum* f.sp. *cubense*. Estas bacterias fueron identificadas a nivel de género como *Bacillus* spp. En el presente estudio las bacterias fueron identificadas como *Bacillus subtilis* y *Bacillus* sp. La mejor cepa antagonística fue la perteneciente a la vía Quevedo - Santo Domingo, la cual presentó un porcentaje de inhibición de 56,18\%. Además, en esta investigación se usaron *Bacillus* autóctonos del suelo de cultivos de banano, los cuales mostraron actividad antagonística frente al hongo fitopatógeno FOC RT1. Así también, Souza et al. (2013), demuestra que el uso de cepas bacterianas autóctonas de los suelos de cultivos de banano (*B. amyloliquefaciens, B. subtilis* subsp *subtilis*, y *B. thuringiensis*), inhiben el crecimiento *in vitro* de *F. oxysporum* f. sp *cubense* raza tropical 4 con porcentajes de inhibición de 19 \% al 30\% a diferencia de este estudio donde porcentajes de inhibición van desde el 46\% al 56\%.
Figura. 4.6. Análisis del porcentaje de inhibición. La actividad antagónica entre cuatro cepas de *Bacillus* y *Fusarium oxysporum* f. sp. *cubense* raza tropical 1 fue medida como porcentajes de inhibición. La actividad fue medida desde las 48 horas hasta las 144 horas. SD – *Bacillus subtilis*, INIAP - *Bacillus subtilis*, MA - *Bacillus* sp., y ASM - *Bacillus subtilis*

Sin embargo cabe recalcar que a las 144 horas de enfrentamiento de la cepa de Los Ríos contra FOC RT1, se produjeron cambios morfológicos en el hongo fitopatógeno, ya que el micelio cambio de violeta pardo a café oscuro.

4.5.2. Análisis estadístico

Los datos obtenidos del diámetro del micelio en el último día de medición (144 horas) de FOC RT1 enfrentados con la bacteria antagónica, se examinaron mediante un análisis de varianza de una sola vía, utilizando el programa estadístico (SPSS versión 20.0).

4.5.2.1. Prueba de homogeneidad de varianzas

De los resultados presentados, se observa que el nivel crítico (sig.) de la prueba de homogeneidad de varianza de Levene (0,419) es mayor que 0,05, entonces se acepta la hipótesis de igualdad de varianzas, lo cual indica que las varianzas de los datos de antagonismo obtenido de las pruebas con cuatro especies de *Bacillus* pertenecientes a cuatro localidades en el litoral ecuatoriano son estadísticamente iguales (Tabla. 4.3).
Tabla 4.3. Homogeneidad de varianzas de los datos del crecimiento micelial de FOC RT1 a las 144 horas, en contacto con las bacterias antagónicas.

<table>
<thead>
<tr>
<th>Estadístico</th>
<th>grados de libertad 1</th>
<th>grados de libertad 2</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Levene</td>
<td>0,966</td>
<td>3</td>
<td>36</td>
</tr>
</tbody>
</table>

4.5.2.2. Prueba de Kolmogorov-Smirnov

De la prueba de Kolmogorov – Smirnov se obtuvo el nivel de significancia en cada una de las localidades el cual es mayor a p 0,05, lo que indica que la distribución de los datos obtenidos en la prueba de antagonismo siguen la distribución normal. (Tabla 4.4)

Tabla 4.4. Prueba de Kolmogorov-Smirnov de los datos del crecimiento micelial de FOC RT1 a las 144 horas, en contacto con las bacterias antagónicas.

<table>
<thead>
<tr>
<th>Repeticiones</th>
<th>INIAP</th>
<th>MANABI</th>
<th>SD</th>
<th>ASM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Sig. Asintót.</td>
<td>0,341</td>
<td>0,949</td>
<td>0,941</td>
<td>0,916</td>
</tr>
</tbody>
</table>

Distribución normal de los datos

4.5.2.3. ANOVA (Análisis de Varianza)

De acuerdo a los resultados del ANOVA se observó que los valores de F calculado presentan diferencias significativas ($p < 0,05$) lo que indica que al menos uno de los cuatro aislados bacterianos es el mejor antagonista. (Tabla. 4.5).

Tabla 4.5. ANOVA de los datos del crecimiento micelial de FOC RT1 a las 144 horas, en contacto con las bacterias antagónicas.

<table>
<thead>
<tr>
<th></th>
<th>Suma de cuadrados</th>
<th>Grados de libertad</th>
<th>Media cuadrática</th>
<th>F</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inter-grupos</td>
<td>2,633</td>
<td>3</td>
<td>0,878</td>
<td>12,355</td>
<td>0,000</td>
</tr>
<tr>
<td>Intra-grupos</td>
<td>2,557</td>
<td>36</td>
<td>0,071</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>5,19</td>
<td>39</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.5.2.4. Prueba de Tukey

La prueba de Tukey (Tabla. 4.6) permitió identificar dos grupos uno conformado por la cepa de Santo Domingo (*Bacillus subtilis*) y Manabí (*Bacillus* sp.). El otro grupo está formado por las cepas ASM (*Bacillus subtilis*) e INIAP (*Bacillus subtilis*). De los cuales se observó que la cepa Santo Domingo (SD) y Manabí fueron las mejores cepas antagónicas con porcentajes de inhibición de 56,18% y 54,12% ($p < 0.05$) ocupando el primer y segundo lugar respectivamente. Por lo tanto, las cepas pertenecientes a Santo Domingo y Manabí tienen actividad antagónica similar.

Tabla. 4.6. Prueba de Tukey de los datos del crecimiento micelial de FOC RT1 a las 144 horas, en contacto con las bacterias antagónicas.

<table>
<thead>
<tr>
<th>Cepas</th>
<th>N</th>
<th>alfa= 0.05</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>SD</td>
<td>10</td>
<td>29.800</td>
</tr>
<tr>
<td>MANABI</td>
<td>10</td>
<td>31.200</td>
</tr>
<tr>
<td>ASM</td>
<td>10</td>
<td>34.800</td>
</tr>
<tr>
<td>INIAP</td>
<td>10</td>
<td>36.100</td>
</tr>
<tr>
<td>Sig.</td>
<td></td>
<td>0.646</td>
</tr>
</tbody>
</table>

Datos similares fueron encontrados en el estudio de Prashar, Kapoor, y Sachdeva, (2013) en cultivos de tomate, en el cual se observa diferencias significativas ($p < 0.05$) entre las cepas de *Bacillus* sp. frente al hongo fitopatógeno *F. oxyporum*. Según los datos presentados el mejor antagonista es la cepa identificada como *B. subtilis*, la cual presentó porcentajes de inhibición de 47,77%.

4.6. Análisis de la actividad antifúngica

Las cuatro cepas de *Bacillus* utilizadas formaron halos de inhibición frente al hongo fitopatógeno *Fusarium oxysporum* f.sp. *cubense* raza tropical 1. Estos datos fueron tomados al quinto día de enfrentamiento. Las cepas que presentaron mejor zona de inhibición son las provenientes de Santo Domingo (*Bacillus subtilis*) y Manabí (*Bacillus* sp.), las cuales formaron halos de inhibición de 1,02 cm y 0,94 cm, respectivamente; mientras que las cepas pertenecientes a las localidades Asociación Macúl (*Bacillus subtilis*) e INIAP (*Bacillus subtilis*) presentaron halos de inhibición de 0,89 cm y 0,77
cm respectivamente (Figura. 4.7). Los resultados obtenidos demuestran que existió actividad antagónica probablemente por la presencia de metabolitos secundarios (lipopéptidos cíclicos) producidos por *Bacillus* los cuales inhiben el crecimiento micelial de *F. oxysporum*. En otros estudios reportaron que cepas de *Bacillus* sp. producen lipopéptidos cíclicos como son: surfactina, iturina A y fengicina que son los responsables de la formación de las zonas de inhibición cuando existe el enfrentamiento de los antagonistas contra el fitopatógeno (Kim, Ryu, Kim, Chi, 2010; Basha, Ulaganathan, 2002).

Figura. 4.7. Halos de inhibición. A) Controles, B) MA (*Bacillus* sp.), C) ASM (*Bacillus subtilis*), D) SD (*Bacillus subtilis*) E) INIAP (*Bacillus subtilis*)

En la presente investigación se estudió a *Fusarium oxysporum* f. sp. *cubense* raza tropical 1 el cual ha estado presente en América desde hace más de 6 décadas. Este hongo sigue produciendo pérdidas económicas en plantaciones de banano que cultivan la variedad Gros Michel en nuestro país, especialmente en la región litoral. El estudio de la actividad antagónica de microorganismos autóctonos del suelo de cultivos de banano sanos demuestra que existen controladores biológicos en los mismos suelos y por tanto se puede desarrollar productos a base de estos y capacitar a los agricultores para usar biocontroladores con el propósito de combatir y evitar enfermedades, como el agresivo
mal de Panamá producido por FOC RT4. Además, evitando el uso de fungicidas que a la larga provoca contaminación ambiental y enfermedades en el ser humano.
CONCLUSIONES

- Las cuatro cepas del género *Bacillus* aisladas de los suelos de cultivo sano de banano (*Musa paradisiaca*) de cuatro localidades de la región Costa del Ecuador evaluadas *in vitro*, presentaron diferente grado de actividad antagónica frente al hongo fitopatógeno *Fusarium oxysporum* f. sp. *cubense* raza tropical 1.

- Los mejores porcentajes de inhibición corresponden a las cepas de Santo Domingo con 56,18% y de Manabí 54,12%, así como también la mejor actividad antifúngica con 1,02 cm y 0,99 cm respectivamente.

- Los aislados bacterianos fueron identificados molecularmente a nivel de especie como *Bacillus subtilis*, excepto la cepa perteneciente a la localidad de Manabí, la cual no produjo una secuencia consenso óptima.

- *Bacillus subtilis* perteneciente a la provincia de Los Ríos es la única cepa que produjo cambios morfológicos en el hongo fitopatógeno, lo cual podría ser objeto de mayores estudios.

- Los porcentajes de inhibición y la actividad antifúngica registrada como halos de inhibición presentan datos promisorios, por tanto podemos considerar a estas bacterias como potenciales controladores biológicos, para el FOC RT1 y FOC RT4.
RECOMENDACIONES

- En futuras investigaciones se sugiere enfrentar *in vitro* a *Bacillus subtilis* contra *Fusarium oxysporum* f. sp. *cubense* raza tropical 4, agente causal de la enfermedad conocida como mal de Panamá.

- Se debe analizar los metabolitos secundarios producidos por *Bacillus subtilis* para identificar cual es el antibiótico o el conjunto de compuestos químicos producidos por la bacteria, que permiten la inhibición del crecimiento del hongo fitopatógeno.

- Evaluar *in vivo* el efecto antagónico de *Bacillus subtilis* contra el hongo fitopatógeno *Fusarium oxysporum* f. sp. *cubense*.

- Realizar ensayos para determinar el efecto producido por la bacteria en el hongo a nivel morfológico, macroscópico y microscópico.

- Para futuras investigaciones se plantea utilizar la combinación de diversos microorganismos antagónicos autóctonos frente al hongo fitopatógeno *Fusarium oxysporum* f. sp. *cubense* raza tropical 4.

- Realizar una prospección mayor en campo para encontrar cepas con mejor actividad antagónico.
REFERENCIAS

Caballero, Á. (2011). *Uso de hongos endófiticos de Trichoderma spp. para el biocontrol del Mal de Panamá (Fusarium oxysporum f. sp. cubense) raza tropical 1 en vitroplantas del cultivar Gros Michel (AAA)*. (Tesis de maestría) Recuperado del Centro Agronómico Tropical de Investigación y Enseñanza de la página: http://orton.catie.ac.cr/repdoc/A6281E/A6281E.PDF

Nawangsih, A., y Purba, F. (2013). Isolation of fluorescent *Pseudomonas*, heat tolerant and chinolytic bacteria in banana rhizosphere with antagonistic activities against *Fusarium oxysporum* f. sp. *cubense in vitro* and molecular identification of

Nel, B., Steinberg, C., Labuschagne, N., y Viljoen, A. (2007). Evaluation of fungicides and sterilants for potential application in the management of Fusarium wilt of banana. Recuperado el 20 de enero de la página http://repository.up.ac.za/bitstream/handle/2263/3056/Nel_Eval%282007%29.pdf?sequence=1

48

Román, C. (2012). *Consideraciones epidemiológicas para el manejo de la Marchitez por Fusarium (Fusarium oxysporum f. sp. cubense) del banano en la región central del Perú* (Tesis de maestría). Recuperado del Centro Agronómico Tropical de Investigación y Enseñanza de la página: http://orton.catie.ac.cr/repdoc/A10244E/A10244E.PDF

Ruiz, I., Ibáñez, I., Padilla, M., Carnero, A., y Caballero, P. (2004). Aislamiento y caracterización de nuevas cepas de *Bacillus thuringiensis* procedentes de

ANEXOS
ANEXO 1. Mapa de recolección de muestras de suelo de cultivos de banano. Salas, 2014
ANEXO 2. Procedimiento de la extracción del ADN genómico. Promega, 2010

3.G. Isolatin Genomic DNA from Gram Positive and Gram Negative Bacteria

Materials to be Supplied by the User

- 1,5mL microcentrifuge tubes
- Water bath, 80ºC
- Water bath, 37ºC
- Isopropanol, room temperature
- 70ºC ethanol, room temperature
- Water bath 65ºC (optional; for rapid DNA rehydration)
- 50mM EDTA (pH 8.0) (for gram positive bacteria)
- 10mg/ml lysozyme (Sigma Cat. # 17651) (for gram positive bacteria)
- 10mg/ml lysotaphin (Sigma Cat. # 17386) (for gram positive bacteria)

1. Add 1ml of an overnight culture to a 1,5 ml microcentrifuge tube.
2. Centrifuge at 13,000-16,000 x g for 2 mminutes to pellet the cells. Remove the supernatant.
3. Resuspend the cells thoroughly in 480µl of 50mM EDTA.
4. Add the appropriate lytic enzyme(s) to the resuspended cell pellet in a total volume of 120µl, and gently pipet to mix. The purpose of this pretreatment is to weaken the cell wall so that efficient cell lysis can take place.
5. Incubate the sample at 37ºC for 30-60 minutes. Centrifuge for 2 mminutes at 13,000-16,000 x g and remove the supernatant.
6. Add 600 µl of Nucleic Lysis Solution. Gently pipet until the cells are resuspended.
7. Incubate at 80ºC for 5 minutes to lyse the cells; then cool to room temperature.
8. Add 3 µl of RNase Solution to the cell lysate. Invert the tube 2-5 times to mix.
9. Incubate a 37ºC for 15-60 minutes. Cool the sample to room temperature.
10. Add 200 µl of Protein Precipitation Solution to the RNase-treated cell lysate. Vortex vigorously at high speed for 20 seconds to mix the Protein Precipitation Solution with the cell lysate.
11. Incubate the sample on ice for 5 minutes.
12. Centrifuge at 13,000-16,000 x g for 3 minutes.
13. Transfer the supernatant containing the DNA to clean 1.5ml microcentrifuge tube containing 600 µl of room temperature isopropanol.

 Note: Some supernatant may remain in the original tube containing the protein pellet. Leave this residual liquid in the tube to avoid contaminating the DNA solution with the precipitated protein.

14. Gently mix by inversion until the thread-like strands of DNA form a visible mass.

15. Centrifuge at 13,000-16,000 x g for 2 minutes.

16. Carefully pour the supernatant drain the tube on clean absorbent paper. Add 600µl of room temperature 70% ethanol and gently invert the tube several times to wash the DNA pellet.

17. Centrifuge at 13,000-16,000 x g for 2 minutes. Carefully aspirate the ethanol.

18. Drain the tube on clean absorbent paper and allow the pellet air-dry for 10-15 minutes.

19. Add 100µl of DNA Rehydration Solution to the tube and rehydrate the DNA by incubating at 65ºC for 1 hour. Periodically mix the solution by gently tapping the tube. Alternatively, rehydrate the DNA by incubating the solution overnight at room temperature or at 4ºC.

20. Store the DNA at 2-8ºC.
ANEXO 3. Cuantificación del ADN de los cuatro mejores antagonistas. Salas, 2014

<table>
<thead>
<tr>
<th></th>
<th>MUESTRAS</th>
<th>DÍA / HORA</th>
<th>CONCENTRACION DE ACIDOS NUCLEICOS ng/µl</th>
<th>A 260/280</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Manabí</td>
<td>11/09/2014 14: 36: 24</td>
<td>179,4</td>
<td>1,98</td>
</tr>
<tr>
<td>2</td>
<td>INIAP</td>
<td>11/09/2014 14: 37: 17</td>
<td>877,7</td>
<td>1,93</td>
</tr>
<tr>
<td>3</td>
<td>ASM</td>
<td>11/09/2014 14: 39: 03</td>
<td>470,3</td>
<td>2,07</td>
</tr>
<tr>
<td>4</td>
<td>Santo Domingo</td>
<td>11/09/2014 14: 40: 18</td>
<td>312,8</td>
<td>1,93</td>
</tr>
</tbody>
</table>
ANEXO 4. Actividad antagónica entre cuatro cepas de Bacillus y Fusarium oxysporum f. sp. cubense raza tropical 1. A) Control FOC RT1, B) Control Negativo, C) Santo Domingo – Bacillus subtilis, D) INIAP - Bacillus subtilis, E) MA: Manabí - Bacillus sp., F) ASM - Bacillus subtilis
ANEXO 5. Datos del crecimiento micelial de FOC RT1 enfrentado con *Bacillus* spp.

<table>
<thead>
<tr>
<th>Provincias</th>
<th>Promedio del diámetro (cm) de FOC RT1 enfrentado con Bacillus</th>
<th>% de inhibición</th>
</tr>
</thead>
<tbody>
<tr>
<td>Santo Domingo</td>
<td>2,98</td>
<td>56,18</td>
</tr>
<tr>
<td>Manabí</td>
<td>3,12</td>
<td>54,12</td>
</tr>
<tr>
<td>Los Ríos</td>
<td>3,61</td>
<td>46,91</td>
</tr>
<tr>
<td>Guayas</td>
<td>3,48</td>
<td>48,82</td>
</tr>
</tbody>
</table>
ANEXO 6. Control de temperatura.

REGISTRO DIARIO DE TEMPERATURA

MES: Septiembre AÑO: 2021

- REGISTRE EN LA TABLA LA TEMPERATURA EN EL PRIMER Y ÚLTIMO CABECERÓN CUALQUIER DOBLEZ DE LOS GRADOS RESEÑADOS EN LA ESCALA DE PAPEL FORMALINO
- TEMPERATURA MÁXIMA: SEñALÉ CON UN PUNTO DE COLORES LOS DÍAS PUNTOS PARA OBTENER LA CURVA DE TEMPERATURA
- TEMPERATURA MÍNIMA: SEñALÉ CON UN PUNTO COLOR ROJO LOS DÍAS PUNTOS PARA OBTENER LA CURVA DE TEMPERATURA
- ZONA DE SEGURIDAD: 100°C